
PsychoPy - Psychology software for
Python

Release 2023.2.3

Open Science Tools Ltd

Mar 11, 2024

CONTENTS

1 Citing 1

2 License for use 2

3 General issues 3

4 Installation 32

5 Getting Started 35

6 Builder 42

7 Coder 125

8 Running and sharing studies online 145

9 Communicating with external hardware using PsychoPy 162

10 Reference Manual (API) 163

11 Timing information for PsychoPy 887

12 Troubleshooting 888

13 Alerts 892

14 Frequently Asked Questions (FAQs) 910

15 Resources (e.g. for teaching) 913

16 For Developers 915

17 Experiment file format (.psyexp) 942

Python Module Index 946

Index 947

i

CHAPTER

ONE

CITING

If you use this software, please cite one of the publications that describe it. For most people the 2019 paper is probably
the most relevant (the papers from 2009, 2007 did not mention Builder at all, for instance).

• Peirce, J. W., Gray, J. R., Simpson, S., MacAskill, M. R., Höchenberger, R., Sogo, H., Kastman, E., Lindeløv,
J. (2019). PsychoPy2: experiments in behavior made easy. Behavior Research Methods. 10.3758/s13428-018-
01193-y

• Peirce, J. W., Hirst, R. J. & MacAskill, M. R. (2022). Building Experiments in PsychoPy. 2nd Edn London:
Sage.

• Peirce J. W. (2009). Generating stimuli for neuroscience using PsychoPy. Frontiers in Neuroinformatics, 2 (10),
1-8. doi:10.3389/neuro.11.010.2008

• Peirce, J. W. (2007). PsychoPy - Psychophysics software in Python. Journal of Neuroscience Methods, 162
(1-2):8-13 doi:10.1016/j.jneumeth.2006.11.017

Citing these papers gives the reviewer/reader of your study information about how the system works and it attributes
some credit for its original creation. Academic assessment (whether for promotion or even getting appointed to a job in
the first place) prioritises publications over making useful tools for others. Citations provide a way for the developers
to justify their continued involvement in the development of the package.

1

https://dx.doi.org/10.3758/s13428-018-01193-y
https://uk.sagepub.com/en-gb/eur/building-experiments-in-psychopy/book273700
https://doi.org/10.3389/neuro.11.010.2008
https://doi.org/10.1016/j.jneumeth.2006.11.017

CHAPTER

TWO

LICENSE FOR USE

is licensed under a GPL3 license which means, essentially, that:

• you can use it (and adapt it) for free in your work, and you can even release those versions

• but you must include the original license

• AND you must also make your release open source using the same license

What that means is you’re free to use PsychoPy’s goodwill in being open source, you are required to pass on that
goodwill!

2

https://github.com/psychopy/psychopy/blob/master/LICENSE

CHAPTER

THREE

GENERAL ISSUES

These are issues that users should be aware of, whether they are using Builder or Coder views.

3.1 Monitor Center

provides a simple and intuitive way for you to calibrate your monitor and provide other information about it and then
import that information into your experiment.

Information is inserted in the Monitor Center (Tools menu), which allows you to store information about multiple
monitors and keep track of multiple calibrations for the same monitor.

For experiments written in the Builder view, you can then import this information by simply specifying the name of
the monitor that you wish to use in the Experiment settings dialog. For experiments created as scripts you can retrieve
the information when creating the Window by simply naming the monitor that you created in Monitor Center. e.g.:

from psychopy import visual
win = visual.Window([1024,768], mon='SonyG500')

Of course, the name of the monitor in the script needs to match perfectly the name given in the Monitor Center.

3.1.1 Real world units

One of the particular features of is that you can specify the size and location of stimuli in units that are independent
of your particular setup, such as degrees of visual angle (see Units for the window and stimuli). In order for this to be
possible you need to inform of some characteristics of your monitor. Your choice of units determines the information
you need to provide:

Units Requires
‘norm’ (normalised to width/height) n/a
‘pix’ (pixels) Screen width in pixels
‘cm’ (centimeters on the screen) Screen width in pixels and screen width in cm
‘deg’ (degrees of visual angle) Screen width (pixels), screen width (cm) and distance (cm)

3

PsychoPy - Psychology software for Python, Release 2023.2.3

3.1.2 Calibrating your monitor

can also store and use information about the gamma correction required for your monitor. If you have a Spectrascan
PR650, PR655/PR670, Minolta LS100/LS110 or a CRS ColorCAL you can perform an automated calibration in which
will measure the necessary gamma value to be applied to your monitor. Alternatively this can be added manually
into the grid to the right of the Monitor Center. To run a calibration, connect the photometer via the serial port and,
immediately after turning it on press the Get Photometer button in the Monitor Center.

Note that, if you don’t have a photometer to hand then there is a method for determining the necessary gamma value
psychophysically included in (see gammaMotionNull and gammaMotionAnalysis in the coder demos menu, under
“experiment control”).

The two additional tables in the Calibration box of the Monitor Center provide conversion from DKL and LMS colour
spaces to RGB.

3.2 Units for the window and stimuli

One of the key advantages of over many other experiment-building software packages is that stimuli can be described
in a wide variety of real-world, device-independent units. In most other systems you provide the stimuli at a fixed size
and location in pixels, or percentage of the screen, and then have to calculate how many cm or degrees of visual angle
that was.

In , after providing information about your monitor, via the Monitor Center, you can simply specify your stimulus in
the unit of your choice and allow to calculate the appropriate pixel size for you.

Your choice of unit depends on the circumstances. For conducting demos, the two normalised units (‘norm’ and
‘height’) are often handy because the stimulus scales naturally with the window size. For running an experiment it’s
usually best to use something like ‘cm’ or ‘deg’ so that the stimulus is a fixed size irrespective of the monitor/window.

For all units, the centre of the screen is represented by coordinates (0,0), negative values mean down/left, positive
values mean up/right.

For help understanding spatial units visually, try the builder demo “spatialUnits” under “Understanding PsychoPy”
(version 2021.2).

3.2.1 Units for online experiments

If you are running a study online the easiest units to use will be those that require no monitor info. It is likely that your
experiment will be run on a wide variety of devices all with differing screen resolutions. Furthermore it is going to
be more difficult for you to control factors like viewing distance. Because of this it makes it difficult to use units like
deg or cm - because we need to know both the participants viewing distance and the number of pixels that make up a
cm on that participants screen. The easiest solution here is to use Height units, this means that the size of stimuli will
be scaled relative to the height of that participants screen - which usually means it is possible to run studies even on
smartphones!

Note: If using height units on a tablet/touchscreen device,currently 1 unit height corresponds to the height of the
screen when the device is held in landscape.

Degrees of visual angle are not currently supported for online use, but you can estimate pixels per cm using a screen
scaling method (this demo was shared by Wakefield Morys Carter 2021) and then use pixel units to present stimuli in
cm see Li et al (2020) for more details. If you want to store the window size of your participants device in an online
study, you can add a code component and use thisExp.addData('windowSize', win.size).

3.2. Units for the window and stimuli 4

https://gitlab.pavlovia.org/demos/workingwithspatialunits
https://run.pavlovia.org/Wake/screenscale/html/
https://run.pavlovia.org/Wake/screenscale/html/
https://www.nature.com/articles/s41598-019-57204-1

PsychoPy - Psychology software for Python, Release 2023.2.3

3.2.2 Height units

With ‘height’ units everything is specified relative to the height of the window (note the window, not the screen).
As a result, the dimensions of a screen with standard 4:3 aspect ratio will range (-0.6667,-0.5) in the bottom left to
(+0.6667,+0.5) in the top right. For a standard widescreen (16:10 aspect ratio) the bottom left of the screen is (-0.8,-
0.5) and top-right is (+0.8,+0.5). This type of unit can be useful in that it scales with window size, unlike Degrees of
visual angle or Centimeters on screen, but stimuli remain square, unlike Normalised units units. Obviously it has the
disadvantage that the location of the right and left edges of the screen have to be determined from a knowledge of the
screen dimensions. (These can be determined at any point by the Window.size attribute.)

Spatial frequency: cycles per stimulus (so will scale with the size of the stimulus).

Requires :No monitor information

3.2.3 Normalised units

In normalised (‘norm’) units the window ranges in both x and y from -1 to +1. That is, the top right of the window has
coordinates (1,1), the bottom left is (-1,-1). Note that, in this scheme, setting the height of the stimulus to be 1.0, will
make it half the height of the window, not the full height (because the window has a total height of 1:-1 = 2!). Also note
that specifying the width and height to be equal will not result in a square stimulus if your window is not square - the
image will have the same aspect ratio as your window. e.g. on a 1024x768 window the size=(0.75,1) will be square.

Spatial frequency: cycles per stimulus (so will scale with the size of the stimulus).

Requires : No monitor information

3.2.4 Centimeters on screen

Set the size and location of the stimulus in centimeters on the screen.

Spatial frequency: cycles per cm

Requires : information about the screen width in cm and size in pixels

Assumes : pixels are square. Can be verified by drawing a stimulus with matching width and height and verifying that
it is in fact square. For a CRT this can be controlled by setting the size of the viewable screen (settings on the monitor
itself).

3.2.5 Degrees of visual angle

Use degrees of visual angle to set the size and location of the stimulus. This is, of course, dependent on the distance
that the participant sits from the screen as well as the screen itself, so make sure that this is controlled, and remember
to change the setting in Monitor Center if the viewing distance changes.

Spatial frequency: cycles per degree

Requires : information about the screen width in cm and pixels and the viewing distance in cm

There are actually three variants: ‘deg’, ‘degFlat’, and ‘degFlatPos’

• ‘deg’ : Most people using degrees of visual angle choose to make the assumption that a degree of visual angle
spans the same number of pixels at all parts of the screen. This isn’t actually true for standard flat screens - a
degree of visual angle at the edge of the screen spans more pixels because it is further from the eye. For moderate
eccentricities the error is small (a 0.2% error in size calculation at 3 deg eccentricity) but grows as stimuli are
placed further from the centre of the screen (a 2% error at 10 deg). For most studies this form of calculation is
preferred, as it does not result in a warped appearance of visual stimuli, but if you need greater precision at far
eccentricities then choose one of the alternatives below.

3.2. Units for the window and stimuli 5

PsychoPy - Psychology software for Python, Release 2023.2.3

• ‘degFlatPos’ : This accounts for flat screens in calculating position coordinates of visual stimuli but leaves size
and spatial frequency uncorrected. This means that an evenly spaced grid of visual stimuli will appear warped
in position but will

• ‘degFlat’: This corrects the calculations of degrees for flatness of the screen for each vertex of your stimuli.
Square stimuli in the periphery will, therefore, become more spaced apart but they will also get larger and rhom-
boid in the pixels that they occupy.

3.2.6 Pixels on screen

You can also specify the size and location of your stimulus in pixels. Obviously this has the disadvantage that sizes are
specific to your monitor (because all monitors differ in pixel size).

Spatial frequency: `cycles per pixel` (this catches people out but is used to be in keeping with the other units. If
using pixels as your units you probably want a spatial frequency in the range 0.2-0.001 (i.e. from 1 cycle every 5 pixels
to one every 100 pixels).

Requires : information about the size of the screen (not window) in pixels, although this can often be deduce from the
operating system if it has been set correctly there.

Assumes: nothing

3.3 Color spaces

You can explore colors in PsychoPy Builder through accessing the color picker from any parameter that takes a color
value.

The color of stimuli can be specified when creating a stimulus and when using setColor() in a variety of ways. From
Builder view you can also use the color picker to pick the color you want and explore what value that color would
correspond to in a variety of spaces. There are three basic color spaces that can use, RGB, DKL and LMS but colors
can also be specified by a name (e.g. ‘DarkSalmon’) or by a hexadecimal string (e.g. ‘#00FF00’).

examples:

3.3. Color spaces 6

PsychoPy - Psychology software for Python, Release 2023.2.3

stim = visual.GratingStim(win, color=[1,-1,-1], colorSpace='rgb') #will be red
stim.setColor('Firebrick')#one of the web/X11 color names
stim.setColor('#FFFAF0')#an off-white
stim.setColor([0,90,1], colorSpace='dkl')#modulate along S-cone axis in isoluminant plane
stim.setColor([1,0,0], colorSpace='lms')#modulate only on the L cone
stim.setColor([1,1,1], colorSpace='rgb')#all guns to max
stim.setColor([1,0,0])#this is ambiguous - you need to specify a color space

3.3.1 Colors by name

Any of the web/X11 color names can be used to specify a color. These are then converted into RGB space by .

These are not case sensitive, but should not include any spaces.

3.3.2 Colors by hex value

This is really just another way of specifying the r,g,b values of a color, where each gun’s value is given by two hex-
adecimal characters. For some examples see this chart. To use these in they should be formatted as a string, beginning
with # and with no spaces. (NB on a British Mac keyboard the # key is hidden - you need to press Alt-3)

3.3.3 RGB color space

This is the simplest color space, in which colors are represented by a triplet of values that specify the red green and
blue intensities. These three values each range between -1 and 1.

Examples:

• [1,1,1] is white

• [0,0,0] is grey

• [-1,-1,-1] is black

• [1.0,-1,-1] is red

• [1.0,0.6,0.6] is pink

The reason that these colors are expressed ranging between 1 and -1 (rather than 0:1 or 0:255) is that many experiments,
particularly in visual science where has its roots, express colors as deviations from a grey screen. Under that scheme a
value of -1 is the maximum decrement from grey and +1 is the maximum increment above grey.

You can still specify colors in RGB from 0:1 or 0:255, but you will need to let know that this is what you’re doing. To
do this, set the color space to be rgb1 for 0:1 or rgb255 for 0:255 - if the color space is just rgb, then values will be
from -1:1

Note that will use your monitor calibration to linearize this for each gun. E.g., 0 will be halfway between the minimum
luminance and maximum luminance for each gun, if your monitor gammaGrid is set correctly.

3.3. Color spaces 7

https://www.w3schools.com/Colors/colors_names.asp
https://html-color-codes.com/

PsychoPy - Psychology software for Python, Release 2023.2.3

3.3.4 HSV color space

Another way to specify colors is in terms of their Hue, Saturation and ‘Value’ (HSV). For a description of the color
space see the Wikipedia HSV entry. The Hue in this case is specified in degrees, the saturation ranging 0:1 and the
‘value’ also ranging 0:1.

Examples:

• [0,1,1] is red

• [0,0.5,1] is pink

• [90,1,1] is cyan

• [anything, 0, 1] is white

• [anything, 0, 0.5] is grey

• [anything, anything,0] is black

Note that colors specified in this space (like in RGB space) are not going to be the same another monitor; they are device-
specific. They simply specify the intensity of the 3 primaries of your monitor, but these differ between monitors. As
with the RGB space gamma correction is automatically applied if available.

3.3.5 DKL color space

To use DKL color space the monitor should be calibrated with an appropriate spectrophotometer, such as a PR650.

In the Derrington, Krauskopf and Lennie1 color space (based on the Macleod and Boynton2 chromaticity diagram)
colors are represented in a 3-dimensional space using spherical coordinates that specify the elevation from the isolu-
minant plane, the azimuth (the hue) and the contrast (as a fraction of the maximal modulations along the cardinal axes
of the space).

1 Derrington, A.M., Krauskopf, J., & Lennie, P. (1984). Chromatic Mechanisms in Lateral Geniculate Nucleus of Macaque. Journal of Physiol-
ogy, 357, 241-265.

2 MacLeod, D. I. A. & Boynton, R. M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the
Optical Society of America, 69(8), 1183-1186.

3.3. Color spaces 8

https://en.wikipedia.org/wiki/HSL_and_HSV

PsychoPy - Psychology software for Python, Release 2023.2.3

In these values are specified in units of degrees for elevation and azimuth and as a float (ranging -1:1) for the contrast.

Note that not all colors that can be specified in DKL color space can be reproduced on a monitor. You can see here a
movie plotting colors in DKL space (showing cartesian coordinates, not spherical coordinates) to show the gamut of
colors available on an example monitor.

Examples:

• [90,0,1] is white (maximum elevation aligns the color with the luminance axis)

• [0,0,1] is an isoluminant stimulus, with azimuth 0 (S-axis)

• [0,45,1] is an isoluminant stimulus,with an oblique azimuth

3.3.6 LMS color space

To use LMS color space the monitor should be calibrated with an appropriate spectrophotometer, such as a PR650.

In this color space you can specify the relative strength of stimulation desired for each cone independently, each with
a value from -1:1. This is particularly useful for experiments that need to generate cone isolating stimuli (for which
modulation is only affecting a single cone type).

3.3. Color spaces 9

https://youtu.be/xwoVrGoBaWg
https://youtu.be/xwoVrGoBaWg

PsychoPy - Psychology software for Python, Release 2023.2.3

3.4 Preferences

The Preferences dialog allows to adjust general settings for different parts of . The preferences settings are saved in the
configuration file userPrefs.cfg. The labels in brackets for the different options below represent the abbreviations used
in the userPrefs.cfg file.

In rare cases, you might want to adjust the preferences on a per-experiment basis. See the API reference for the Pref-
erences class here.

3.4.1 General settings (General)

window type (winType) :
can use one of two ‘backends’ for creating windows and drawing; pygame, pyglet and glfw. Here you can set the
default backend to be used.

units (units) :
Default units for windows and visual stimuli (‘deg’, ‘norm’, ‘cm’, ‘pix’). See Units for the window and stimuli.
Can be overridden by individual experiments.

full-screen (fullscr) :
Should windows be created full screen by default? Can be overridden by individual experiments.

allow GUI (allowGUI) :
When the window is created, should the frame of the window and the mouse pointer be visible. If set to False
then both will be hidden.

paths (paths) :
Paths for additional Python packages can be specified. See more information on paths here.

flac audio compression (flac) :
Set flac audio compression.

parallel ports (parallelPorts) :
This list determines the addresses available in the drop-down menu for the Parallel Port Out Component.

3.4.2 Application settings (App)

These settings are common to all components of the application (Coder and Builder etc)

show start-up tips (showStartupTips) :
Display tips when starting .

large icons (largeIcons) :
Do you want large icons (on some versions of wx on macOS this has no effect)?

default view (defaultView) :
Determines which view(s) open when the app starts up. Default is ‘last’, which fetches the same views as were
open when last closed.

reset preferences (resetPrefs) :
Reset preferences to defaults on next restart of .

auto-save prefs (autoSavePrefs) :
Save any unsaved preferences before closing the window.

debug mode (debugMode) :
Enable features for debugging itself, including unit-tests.

3.4. Preferences 10

PsychoPy - Psychology software for Python, Release 2023.2.3

locale (locale) :
Language to use in menus etc.; not all translations are available. Select a value, then restart the app. Think about
adding translations for your language.

3.4.3 Builder settings (Builder)

reload previous exp (reloadPrevExp) :
Select whether to automatically reload a previously opened experiment at start-up.

uncluttered namespace (unclutteredNamespace) :
If this option is selected, the scripts will use more complex code, but the advantage is that there is less of a chance
that name conflicts will arise.

components folders (componentsFolders) :
A list of folder path names that can hold additional custom components for the Builder view; expects a comma-
separated list.

hidden components (hiddenComponents) :
A list of components to hide (e.g., because you never use them)

unpacked demos dir (unpackedDemosDir) :
Location of Builder demos on this computer (after unpacking).

saved data folder (savedDataFolder) :
Name of the folder where subject data should be saved (relative to the script location).

Flow at top (topFlow) :
If selected, the “Flow” section will be shown topmost and the “Components” section will be on the left. Restart
to activate this option.

always show readme (alwaysShowReadme) :
If selected, always shows the Readme file if you open an experiment. The Readme file needs to be located in the
same folder as the experiment file.

max favorites (maxFavorites) :
Upper limit on how many components can be in the Favorites menu of the Components panel.

3.4.4 Coder settings (Coder)

code font (codeFont) :
A list of font names to be used for code display. The first found on the system will be used.

comment font (commentFont) :
A list of font names to be used for comments sections. The first found on the system will be used

output font (outputFont) :
A list of font names to be used in the output panel. The first found on the system will be used.

code font size (codeFontSize) :
An integer between 6 and 24 that specifies the font size for code display in points.

output font size (outputFontSize) :
An integer between 6 and 24 that specifies the font size for output display in points.

show source asst (showSourceAsst) :
Do you want to show the source assistant panel (to the right of the Coder view)? On Windows this provides help
about the current function if it can be found. On macOS the source assistant is of limited use and is disabled by
default.

3.4. Preferences 11

PsychoPy - Psychology software for Python, Release 2023.2.3

show output (showOutput) :
Show the output panel in the Coder view. If shown all python output from the session will be output to this panel.
Otherwise it will be directed to the original location (typically the terminal window that called application to
open).

reload previous files (reloadPrevFiles) :
Should fetch the files that you previously had open when it launches?

preferred shell (preferredShell) :
Specify which shell should be used for the coder shell window.

newline convention (newlineConvention) :
Specify which character sequence should be used to encode newlines in code files: unix = n (line feed only), dos
= rn (carriage return plus line feed).

3.4.5 Connection settings (Connections)

proxy (proxy) :
The proxy server used to connect to the internet if needed. Must be of the form http://111.222.333.444:5555

auto-proxy (autoProxy) :
should try to deduce the proxy automatically. If this is True and autoProxy is successful, then the above field
should contain a valid proxy address.

allow usage stats (allowUsageStats) :
Allow to ping a website at when the application starts up. Please leave this set to True. The info sent is simply
a string that gives the date, version and platform info. There is no cost to you: no data is sent that could identify
you and will not be delayed in starting as a result. The aim is simple: if we can show that lots of people are using
there is a greater chance of it being improved faster in the future.

check for updates (checkForUpdates) :
can (hopefully) automatically fetch and install updates. This will only work for minor updates and is still in a
very experimental state (as of v1.51.00).

timeout (timeout) :
Maximum time in seconds to wait for a connection response.

3.4.6 Hardware settings

audioLib :
Select your choice of audio library with a list of names specifying the order they should be tried. We recommend
[‘PTB’, ‘sounddevice’, ‘pyo’, ‘pygame’] for lowest latency.

audioLatencyMode
[0, 1, 2, 3 (default), 4] Latency mode for PsychToolbox audio. See PTB Audio Latency Modes.

audioDriver
[‘portaudio’] Some of PsychoPy’s audio engines provide the option not to use portaudio but go directly to another
lib (e.g. to coreaudio) but some don’t allow that.

audioDevice :
The name of the audio driver to use.

parallelPorts :
A list of parallel ports. The default is ['0x0378', '0x03BC'].

qmixConfiguration :
The name of the Qmix pump configuration to use. The default is 'qmix_config'.

3.4. Preferences 12

PsychoPy - Psychology software for Python, Release 2023.2.3

3.4.7 Key bindings

There are many shortcut keys that you can use in . For instance did you realise that you can indent or outdent a block
of code with Ctrl-[and Ctrl-] ?

3.5 Data outputs

There are a number of different forms of output that can generate, depending on the study and your preferred analysis
software. Multiple file types can be output from a single experiment (e.g. Excel data file for a quick browse, Log file
to check for error messages and data file (.psydat) for detailed analysis)

3.5.1 Log file

Log files are actually rather difficult to use for data analysis but provide a chronological record of everything that
happened during your study. The level of content in them depends on you. See Logging data for further information.

3.5.2 data file (.psydat)

This is actually a TrialHandler or StairHandler object that has been saved to disk with the python cPickle module.

.psydat files can be useful for retrieving data that you forgot to explicitly tell to save. They can also be more directly
used by experienced users with previous experience of python and, probably, matplotlib. The contents of the file can
be explored with dir(), as any other python object.

.psydat files are ideal for batch analysis with a python script and plotting via matplotlib. They contain more information
than the Excel or csv data files, and can even be used to (re)create those files.

Of particular interest might be the following attributes and methods of the Handler:
entries

a list of dictionaries. Each entry/dictionary in the list represents a single trial’s (a single routine
‘run’/iteration) data.

saveAsPickle()
a method for saving all of the entries’ data in a Python pickle file

saveAsWideText()
a method for saving all of the entrie’s data in a .csv file.

If you just want to recover data or first wish to try things out in a familiar format you can put all of the data in a .csv
file, very similar to the .csv files that are produced by default when running experiments. The following script assumes
you’re using a command-line interface (e. g. Terminal on Mac, or the Command Prompt on Windows) where you’ve
opened up a Python shell, and that you have installed as a Python package:

import PsychoPy function for loading Pickle/JSON data
from psychopy.misc import fromFile
(replace with the file path to your .psydat file)
fpath = '/Users/my_user/myexperiments/myexperiment/participant_expname_date.psydat'
load in the data
psydata = fromFile(fpath)
(replace with the file path to where you want the resulting .csv
to be saved)
save_path = '/Users/my_user/Desktop/test_out.csv'

(continues on next page)

3.5. Data outputs 13

http://docs.python.org/library/pickle.html#module-cPickle

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

save the data as a .csv file, ie separating the values with a
comma. 'CSV' simply means 'comma-separated values'
psydata.saveAsWideText(save_path, delim=',')

To get started using the data directly in Python, you can try opening a psydat file and printing all its entries:

from psychopy.misc import fromFile
(replace with the file path to your .psydat file)
fpath = 'path/to/file.psydat'
psydata = fromFile(fpath)
for entry in psydata.entries:

print(entry)

Ideally, we should provide a demo script here for fetching and plotting some data (feel free to contribute).

3.5.3 Long-wide data file

This form of data file is the default data output from Builder experiments as of v1.74.00. Rather than summarising
data in a spreadsheet where one row represents all the data from a single condition (as in the summarised data format),
in long-wide data files the data is not collapsed by condition, but written chronologically with one row representing
one trial (hence it is typically longer than summarised data files). One column in this format is used for every single
piece of information available in the experiment, even where that information might be considered redundant (hence
the format is also ‘wide’).

Although these data files might not be quite as easy to read quickly by the experimenter, they are ideal for import and
analysis under packages such as R, SPSS or Matlab.

3.5.4 Excel data file

Excel 2007 files (.xlsx) are a useful and flexible way to output data as a spreadsheet. The file format is open and
supported by nearly all spreadsheet applications (including older versions of Excel and also OpenOffice). N.B. because
.xlsx files are widely supported, the older Excel file format (.xls) is not likely to be supported by unless a user contributes
the code to the project.

Data from are output as a table, with a header row. Each row represents one condition (trial type) as given to the
TrialHandler. Each column represents a different type of data as given in the header. For some data, where there
are multiple columns for a single entry in the header. This indicates multiple trials. For example, with a standard data
file in which response time has been collected as ‘rt’ there will be a heading rt_raw with several columns, one for each
trial that occurred for the various trial types, and also an rt_mean heading with just a single column giving the mean
reaction time for each condition.

If you’re creating experiments by writing scripts then you can specify the sheet name as well as file name for Excel file
outputs. This way you can store multiple sessions for a single subject (use the subject as the filename and a date-stamp
as the sheetname) or a single file for multiple subjects (give the experiment name as the filename and the participant as
the sheetname).

Builder experiments use the participant name as the file name and then create a sheet in the Excel file for each loop of
the experiment. e.g. you could have a set of practice trials in a loop, followed by a set of main trials, and these would
each receive their own sheet in the data file.

3.5. Data outputs 14

PsychoPy - Psychology software for Python, Release 2023.2.3

3.5.5 Delimited text files (.csv, .tsv, .txt)

For maximum compatibility, especially for legacy analysis software, you can choose to output your data as a delimited
text file. Typically this would be comma-separated values (.csv file) or tab-delimited (.tsv file). The format of those
files is exactly the same as the Excel file, but is limited by the file format to a single sheet.

3.6 Gamma correcting a monitor

Monitors typically don’t have linear outputs; when you request luminance level of 127, it is not exactly half the lumi-
nance of value 254. For experiments that require the luminance values to be linear, a correction needs to be put in place
for this nonlinearity which typically involves fitting a power law or gamma (𝛾) function to the monitor output values.
This process is often referred to as gamma correction.

can help you perform gamma correction on your monitor, especially if you have one of the supported photome-
ters/spectroradiometers.

There are various different equations with which to perform gamma correction. The simple equation (3.1) is assumed
by most hardware manufacturers and gives a reasonable first approximation to a linear correction. The full gamma
correction equation (3.3) is more general, and likely more accurate especially where the lowest luminance value of the
monitor is bright, but also requires more information. It can only be used in labs that do have access to a photometer
or similar device.

3.6.1 Simple gamma correction

The simple form of correction (as used by most hardware and software) is this:

𝐿(𝑉) = 𝑎 + 𝑘𝑉 𝛾 (3.1)

where 𝐿 is the final luminance value, 𝑉 is the requested intensity (ranging 0 to 1), 𝑎, 𝑘 and 𝛾 are constants for the
monitor.

This equation assumes that the luminance where the monitor is set to ‘black’ (V=0) comes entirely from the surround
and is therefore not subject to the same nonlinearity as the monitor. If the monitor itself contributes significantly to 𝑎
then the function may not fit very well and the correction will be poor.

The advantage of this function is that the calibrating system (in this case) does not need to know anything more about
the monitor than the gamma value itself (for each gun). For the full gamma equation (3.3), the system needs to know
about several additional variables. The look-up table (LUT) values required to give a (roughly) linear luminance output
can be generated by:

𝐿𝑈𝑇 (𝑉) = 𝑉 1/𝛾 (3.2)

where V is the entry in the LUT, between 0 (black) and 1 (white).

3.6.2 Full gamma correction

For very accurate gamma correction uses a more general form of the equation above, which can separate the contribution
of the monitor and the background to the lowest luminance level:

𝐿(𝑉) = 𝑎 + (𝑏 + 𝑘𝑉)𝛾 (3.3)

This equation makes no assumption about the origin of the base luminance value, but requires that the system knows
the values of 𝑏 and 𝑘 as well as 𝛾.

3.6. Gamma correcting a monitor 15

PsychoPy - Psychology software for Python, Release 2023.2.3

The inverse values, required to build the LUT are found by:

𝐿𝑈𝑇 (𝑉) =
((1 − 𝑉)𝑏𝛾 + 𝑉 (𝑏 + 𝑘)𝛾)1/𝛾 − 𝑏

𝑘
(3.4)

This is derived below, for the interested reader. ;-)

And the associated luminance values for each point in the LUT are given by:

𝐿(𝑉) = 𝑎 + (1 − 𝑉)𝑏𝛾 + 𝑉 (𝑏 + 𝑘)𝛾

3.6.3 Deriving the inverse full equation

The difficulty with the full gamma equation (3.3) is that the presence of the 𝑏 value complicates the issue of calculating
the inverse values for the LUT. The simple inverse of (3.3) as a function of output luminance values is:

𝐿𝑈𝑇 (𝐿) =
((𝐿− 𝑎)1/𝛾 − 𝑏)

𝑘
(3.5)

To use this equation we need to first calculate the linear set of luminance values, 𝐿, that we are able to produce the
current monitor and lighting conditions and then deduce the LUT value needed to generate that luminance value.

We need to insert into the LUT the values between 0 and 1 (to use the maximum range) that map onto the linear range
from the minimum, m, to the maximum M possible luminance. From the parameters in (3.3) it is clear that:

𝑚 = 𝑎 + 𝑏𝛾

𝑀 = 𝑎 + (𝑏 + 𝑘)𝛾
(3.6)

Thus, the luminance value, L at any given point in the LUT, V, is given by

𝐿(𝑉) = 𝑚 + (𝑀 −𝑚)𝑉

= 𝑎 + 𝑏𝛾 + (𝑎 + (𝑏 + 𝑘)𝛾 − 𝑎− 𝑏𝛾)𝑉

= 𝑎 + 𝑏𝛾 + ((𝑏 + 𝑘)𝛾 − 𝑏𝛾)𝑉

= 𝑎 + (1 − 𝑉)𝑏𝛾 + 𝑉 (𝑏 + 𝑘)𝛾

(3.7)

where 𝑉 is the position in the LUT as a fraction.

Now, to generate the LUT as needed we simply take the inverse of (3.3):

𝐿𝑈𝑇 (𝐿) =
(𝐿− 𝑎)1/𝛾 − 𝑏

𝑘
(3.8)

and substitute our 𝐿(𝑉) values from (3.7):

𝐿𝑈𝑇 (𝑉) =
(𝑎 + (1 − 𝑉)𝑏𝛾 + 𝑉 (𝑏 + 𝑘)𝛾 − 𝑎)1/𝛾 − 𝑏

𝑘

=
((1 − 𝑉)𝑏𝛾 + 𝑉 (𝑏 + 𝑘)𝛾)1/𝛾 − 𝑏

𝑘

(3.9)

3.6.4 References

3.7 OpenGL and Rendering

All rendering performed by uses hardware-accelerated OpenGL rendering where possible. This means that, as much
as possible, the necessary processing to calculate pixel values is performed by the graphics card GPU rather than by

3.7. OpenGL and Rendering 16

https://www.opengl.org//

PsychoPy - Psychology software for Python, Release 2023.2.3

the CPU. For example, when an image is rotated the calculations to determine what pixel values should result, and any
interpolation that is needed, are determined by the graphics card automatically.

In the double-buffered system, stimuli are initially drawn into a piece of memory on the graphics card called the ‘back
buffer’, while the screen presents the ‘front buffer’. The back buffer initially starts blank (all pixels are set to the
window’s defined color) and as stimuli are ‘rendered’ they are gradually added to this back buffer. The way in which
stimuli are combined according to transparency rules is determined by the blend mode of the window. At some point
in time, when we have rendered to this buffer all the objects that we wish to be presented, the buffers are ‘flipped’ such
that the stimuli we have been drawing are presented simultaneously. The monitor updates at a very precise fixed rate
and the flipping of the window will be synchronised to this monitor update if possible (see Sync to VBL and wait for
VBL).

Each update of the window is referred to as a ‘frame’ and this ultimately determines the temporal resolution with which
stimuli can be presented (you cannot present your stimulus for any duration other than a multiple of the frame duration).
In addition to synchronising flips to the frame refresh rate, can optionally go a further step of not allowing the code to
continue until a screen flip has occurred on the screen, which is useful in ascertaining exactly when the frame refresh
occurred (and, thus, when your stimulus actually appeared to the subject). These timestamps are very precise on most
computers. For further information about synchronising and waiting for the refresh see Sync to VBL and wait for VBL.

If the code/processing required to render all you stimuli to the screen takes longer to complete than one screen refresh
then you will ‘drop/skip a frame’. In this case the previous frame will be left on screen for a further frame period and the
flip will only take effect on the following screen update. As a result, time-consuming operations such as disk accesses
or execution of many lines of code, should be avoided while stimuli are being dynamically updated (if you care about
the precise timing of your stimuli). For further information see the sections on Detecting dropped frames and Reducing
dropped frames.

3.7.1 Fast and slow functions

The fact that modern graphics processors are extremely powerful; they can carry out a great deal of processing from a
very small number of commands. Consider, for instance, the Coder demo elementArrayStim in which several hundred
Gabor patches are updated frame by frame. The graphics card has to blend a sinusoidal grating with a grey background,
using a Gaussian profile, several hundred times each at a different orientation and location and it does this in less than
one screen refresh on a good graphics card.

There are three things that are relatively slow and should be avoided at critical points in time (e.g. when rendering a
dynamic or brief stimulus). These are:

1. disk accesses

2. passing large amounts of data to the graphics card

3. making large numbers of python calls.

Functions that are very fast:

1. Calls that move, resize, rotate your stimuli are likely to carry almost no overhead

2. Calls that alter the color, contrast or opacity of your stimulus will also have no overhead IF your graphics card
supports OpenGL Shaders

3. Updating of stimulus parameters for psychopy.visual.ElementArrayStim is also surprisingly fast BUT you should
try to update your stimuli using numpy arrays for the maths rather than for. . . loops

Notable slow functions in PsychoPy calls:

1. Calls to set the image or set the mask of a stimulus. This involves having to transfer large amounts of data between
the computer’s main processor and the graphics card, which is a relatively time-consuming process.

2. Any of your own code that uses a Python for. . . loop is likely to be slow if you have a large number of cycles
through the loop. Try to ‘vectorise’ your code using a numpy array instead.

3.7. OpenGL and Rendering 17

PsychoPy - Psychology software for Python, Release 2023.2.3

3.7.2 Tips to render stimuli faster

1. Keep images as small as possible. This is meant in terms of number of pixels, not in terms of Mb on your disk.
Reducing the size of the image on your disk might have been achieved by image compression such as using jpeg
images but these introduce artefacts and do nothing to reduce the problem of send large amounts of data from the
CPU to the graphics card. Keep in mind the size that the image will appear on your monitor and how many pixels
it will occupy there. If you took your photo using a 10 megapixel camera that means the image is represented by
30 million numbers (a red, green and blue) but your computer monitor will have, at most, around 2 megapixels
(1960x1080).

2. Try to use square powers of two for your image sizes. This is efficient because computer memory is organised
according to powers of two (did you notice how often numbers like 128, 512, 1024 seem to come up when you
buy your computer?). Also several mathematical routines (anything involving Fourier maths, which is used a lot
in graphics processing) are faster with power-of-two sequences. For the psychopy.visual.GratingStim a
texture/mask of this size is required and if you don’t provide one then your texture will be ‘upsampled’ to the
next larger square-power-of-2, so you can save this interpolation step by providing it in the right shape initially.

3. Get a faster graphics card. Upgrading to a more recent card will cost around £30. If you’re currently using an
integrated Intel graphics chip then almost any graphics card will be an advantage. Try to get an nVidia or an ATI
Radeon card.

3.7.3 OpenGL Shaders

You may have heard mention of ‘shaders’ on the users mailing list and wondered what that meant (or maybe you didn’t
wonder at all and just went for a donut!). OpenGL shader programs allow modern graphics cards to make changes
to things during the rendering process (i.e. while the image is being drawn). To use this you need a graphics card
that supports OpenGL 2.1 and will only make use of shaders if a specific OpenGL extension that allows floating point
textures is also supported. Nowadays nearly all graphics cards support these features - even Intel chips from Intel!

One example of how such shaders are used is the way that colors greyscale images. If you provide a greyscale image
as a 128x128 pixel texture and set its color to be red then, without shaders, needs to create a texture that contains the
3x128x128 values where each of the 3 planes is scaled according to the RGB values you require. If you change the
color of the stimulus a new texture has to be generated with the new weightings for the 3 planes. However, with a
shader program, that final step of scaling the texture value according to the appropriate RGB value can be done by the
graphics card. That means we can upload just the 128x128 texture (taking 1/3 as much time to upload to the graphics
card) and then we each time we change the color of the stimulus we just a new RGB triplet (only 3 numbers) without
having to recalculate the texture. As a result, on graphics cards that support shaders, changing colors, contrasts and
opacities etc. has almost zero overhead.

3.7. OpenGL and Rendering 18

PsychoPy - Psychology software for Python, Release 2023.2.3

3.7.4 Blend Mode

A ‘blend function’ determines how the values of new pixels being drawn should be combined with existing pixels in
the ‘frame buffer’.

blendMode = ‘avg’

This mode is exactly akin to the real-world scenario of objects with varying degrees of transparency being placed
in front of each other; increasingly transparent objects allow increasing amounts of the underlying stimuli to show
through. Opaque stimuli will simply occlude previously drawn objects. With each increasing semi-transparent object
to be added, the visibility of the first object becomes increasingly weak. The order in which stimuli are rendered is
very important since it determines the ordering of the layers. Mathematically, each pixel colour is constructed from
opacity*stimRGB + (1-opacity)*backgroundRGB. This was the only mode available before version 1.80 and remains
the default for the sake of backwards compatibility.

blendMode = ‘add’

If the window blendMode is set to ‘add’ then the value of the new stimulus does not in any way replace that of the
existing stimuli that have been drawn; it is added to it. In this case the value of opacity still affects the weighting of the
new stimulus being drawn but the first stimulus to be drawn is never ‘occluded’ as such. The sum is performed using
the signed values of the color representation in , with the mean grey being represented by zero. So a dark patch added
to a dark background will get even darker. For grating stimuli this means that contrast is summed correctly.

This blend mode is ideal if you want to test, for example, the way that subjects perceive the sum of two potentially
overlapping stimuli. It is also needed for rendering stereo/dichoptic stimuli to be viewed through colored anaglyph
glasses.

If stimuli are combined in such a way that an impossible luminance value is requested of any of the monitor guns then
that pixel will be out of bounds. In this case the pixel can either be clipped to provide the nearest possible colour, or
can be artificially colored with noise, highlighting the problem if the user would prefer to know that this has happened.

3.7.5 Sync to VBL and wait for VBL

will always, if the graphics card allows it, synchronise the flipping of the window with the vertical blank interval (VBL
aka VBI) of the screen. This prevents visual artefacts such as ‘tearing’ of moving stimuli. This does not, itself, indicate
that the script also waits for the physical frame flip to occur before continuing. If the waitBlanking window argument is
set to False then, although the window refreshes themselves will only occur in sync with the screen VBL, the win.flip()
call will not actually wait for this to occur, such that preparations can continue immediately for the next frame. For
rendering purposes this is actually optimal and will reduce the likelihood of frames being dropped during rendering.

By default the Window will also wait for the VBL (waitBlanking=True) . Although this is slightly less efficient for
rendering purposes it is necessary if we need to know exactly when a frame flip occurred (e.g. to timestamp when the
stimulus was physically presented). On most systems this will provide a very accurate measure of when the stimulus
was presented (with a variance typically well below 1ms but this should be tested on your system).

3.7. OpenGL and Rendering 19

PsychoPy - Psychology software for Python, Release 2023.2.3

3.8 Timing Issues and synchronisation

One of the key requirements of experimental control software is that it has good temporal precision. aims to be as
precise as possible in this domain and can achieve excellent results depending on your experiment and hardware. It
also provides you with a precise log file of your experiment to allow you to check the precision with which things
occurred.

Many scientists have asked “Can provide sub-millisecond timing precision?”. The short answer is yes it can - ’s timing
is as good as any software package we’ve tested (we’ve tested quite a lot).

BUT there are many components to getting good timing, and many ways that your timing could be less-than-perfect.
So if timing is important to you then you should really read this entire section of the manual and you should test your
timing using dedicated hardware (photodiodes, microphones or, ideally the Black Box Toolkit). We can’t emphasise
enough how many ways there are for your hardware and/or operating system to break the good timing that is providing.

3.8.1 Can deliver millisecond precision?

The simple answer is ‘yes’. PsychoPy’s timing is as good as (or in most cases better than) any package out there. For
detailed Studies of timing see Bridges et al., 2020

The longer answer is that you should test the timing of your own experimental stimuli on your own hardware. Very
often a computer is not optimally configured to produce good timing, and a poorly coded experiment could also destroy
your timing (which is one reason we now recommend even good coders use Builder!). Many software and hardware
manufacturers will suggest that the key to good timing is using computer clocks with high precision (lots of decimal
places) but that is not the answer at all. The sources of error in stimulus/response timing are almost never to do with the
poor precision of the clock. The following issues are extremely common and until you actually test your experiment
you don’t realise that your timing is being affected by them:

• Additional delays caused by monitors: e.g. the monitor taking additional time to process the image before
presentation

• Delays caused by drivers and OS: Windows, Linux and Mac all perform further processing on the images,
depending on settings and this can delay your visual stimulus delivery by a further frame interval or more

• Delays caused by coding errors

• Delays caused by keyboards

• Audio delays

The clocks that uses do have sub-millisecond precision but your keyboard has a latency of 4-25ms depending on your
platform and keyboard. You could buy a response pad (e.g. a Labhackers Millikey) for response timing with a sub-ms
precision, but note that there will still be an apparent lag that is dependent on the monitor’s absolute lag and the position
of the stimulus on it.

Also note that the variance in terms of response times between your participants, and from trial to trial within a partic-
ipant, probably dwarfs that of your keyboard and monitor issues! That said, does aim to give you as high a temporal
precision as possible and, in a well-configured system achieves this very well.

3.8. Timing Issues and synchronisation 20

https://peerj.com/articles/9414/
https://www.blackboxtoolkit.com/
https://peerj.com/articles/9414/
https://labhackers.com/millikey.html

PsychoPy - Psychology software for Python, Release 2023.2.3

3.8.2 Computer monitors

There are several issues with monitors that you should be aware of.

1. Monitors have fixed refresh rates

2. The top of the screen appears 5-15 ms before the bottom

3. Additional delays caused by monitors

Monitors have fixed refresh rates

Most monitors have fixed refresh rates, typically 60 Hz for a flat-panel display. You probably knew that but it’s very
easy to forget that this means certain stimulus durations won’t be possible. If your screen is a standard 60 Hz monitor
then your frame period is 1/60 s, roughly 16.7 ms. That means you can generate stimuli that last for 16.7 ms, or 33.3
ms or 50 ms, but you cannot present a stimulus for 20, 40, or 60 ms.

The caveat to this is that you can now buy specialist monitors that support variable refresh rates (although not below at
least 5 ms between refreshes). These are using a technology called G-Sync (nVidia) or FreeSync (everyone else) and
can make use of those technologies but support isn’t built in to the library. See the publication by Poth et al (2018) for
example code.

The top of the screen appears 5-15 ms before the bottom

For most monitor technologies, the lines of pixels are drawn sequentially from the top to the bottom and once the
bottom line has been drawn the screen is finished and the line returns to the top (the Vertical Blank Interval, VBI).
Most of your frame interval is spent drawing the lines, with 1-2ms being left for the VBI. This means that the pixels at
the bottom are drawn ‘”up to 10 ms later”’ than the pixels at the top of the screen. At what point are you going to say
your stimulus ‘appeared’ to the participant?

Additional delays caused by monitors

Monitors themselves often cause delays on top of the unavoidable issue of having a refresh rate. Modern displays
often have features to optimize the image, which will be often labelled as modes like “Movie Mode”, Game Mode”
etc. If your display has any such settings then you want to turn them off so as not to change your image. Not only
do these settings entail altering the color of the pixels that your experiment generator is send to the screen (if you’ve
spent time carefully calibrating your colors and then the monitor changes them it would be annoying) but these forms
of “post-processing” take time and often a variable time.

If your monitor has any such “post-processing” enabled then you might well be seeing an additional 20-30 ms of
(variable) lag added to the stimulus onset as a result. This will not be detected by psychoPy (or any other system) and
will not show up in your log files.

3.8.3 Delays caused by drivers and OS

All three major operating systems are capable of introducing timing errors into your visual presentations, although these
are usually observed as (relatively) constant lags. The particularly annoying factor here is that your experiment might
work with very good timing for a while and then the operating system performs and automatic update and the timing
gets worse! Again, the only way you would typically know about these sorts of changes is by testing with hardware.

Triple buffering: In general , and similar graphics systems, are expecting a double-buffered rendering pipeline,
whereby we are drawing to one copy of the screen (the “back buffer”) and when we have finished drawing our stimuli
we “flip” the screen, at which point it will wait for the next screen refresh period and become visible as the “front
buffer”. Triple-buffering is a system whereby the images being rendered to the screen are put in a 3rd buffer, and the

3.8. Timing Issues and synchronisation 21

https://link.springer.com/article/10.3758/s13428-017-1003-6

PsychoPy - Psychology software for Python, Release 2023.2.3

Fig. 3.1: Figure 1: photodiode trace at top of screen. The image above shows the luminance trace of a CRT recorded
by a fast photo-sensitive diode at the top of the screen when a stimulus is requested (shown by the square wave). The
square wave at the bottom is from a parallel port that indicates when the stimulus was flipped to the screen. Note that
on a CRT the screen at any point is actually black for the majority of the time and just briefly bright. The visual system
integrates over a large enough time window not to notice this. On the next frame after the stimulus ‘presentation time’
the luminance of the screen flash increased.

3.8. Timing Issues and synchronisation 22

PsychoPy - Psychology software for Python, Release 2023.2.3

Fig. 3.2: Figure 2: photodiode trace of the same large stimulus at bottom of screen. The image above shows comes
from exactly the same script as the above but the photodiode is positioned at the bottom of the screen. In this case,
after the stimulus is ‘requested’ the current frame (which is dark) finishes drawing and then, 10ms later than the above
image, the screen goes bright at the bottom.

3.8. Timing Issues and synchronisation 23

PsychoPy - Psychology software for Python, Release 2023.2.3

operating system can do further processing as the rendered image moves from this 3rd buffer to the back buffer. Such
a system means that your images all appear exactly one frame later than expected.

Errors caused by triple buffering, either by the operating system or by the monitor, cannot be detected by and will not
show up in your log files.

MacOS

The stimulus presentation on MacOS used to be very good, up until version 10.12. In MacOS 10.13 something changed
and it appears that a form of triple buffering has been added and, to date, none of the major experiment generators have
managed to turn this off. As a result, since MacOS 10.13 stimuli appear always to be presented a screen refresh period
later than expected, resulting in a delay of 16.66 ms in the apparent response times to visual stimuli.

Windows 10

In Windows, triple buffering is something that might be turned on by default in your graphics card settings (look for
3D, or OpenGL, settings in the driver control panel to turn this off). The reason it gets used is that it often results in a
more consistent frame rate for games, but having the frame appear later then expected is typically bad for experiments!

As well as the graphics card performing triple buffering, the operating system itself (via the Desktop Window Manager)
does so under certain conditions: - Anytime a window is used (instead of full-screen mode) Windows 10 now uses triple
buffering - having Scaling set to anything other than 100% also results in triple-buffering (presumably Microsoft renders
the screen once and then scales it during the next refresh).

There are surely other settings in Windows and the graphics card that will alter the timing performance and, again, until
you test these you aren’t likely to know.

Linux

In Linux, again, timing performance of the visual stimuli depends on the graphics card driver but we have also seen
timing issues arising from the Window Compositor and with interactions between compositor and driver.

The real complication here is that in Linux there are many different window compositors (Compiz, XFwm, Enlighten-
ment,. . .), as well as different options for drivers to install (e.g. for nVidia cards there is a proprietary nVidia driver as
well as an open-source “Nouveau” driver which is often the default but has worse performance).

Ultimately, you need to test the timing with hardware and work through the driver/compositor settings to optimise
the timing performance.

3.8.4 Delays caused by coding errors

It can be really easy, as a user, to introduce timing errors into your experiment with incorrect coding. Even if you really
know what you’re doing, it’s easy to make a silly mistake, and if you don’t really know what you’re doing then all bets
are definitely off!!

Common ways for this to happen are to forget the operations that are potentially time-consuming. The biggest of these
is the loading of images from disk.

For image stimuli where the image is constant the image should be loaded from disk at the beginning of the script
(Builder-generate experiments will do so automatically for you). When an image stimulus has to change on each trial,
it must be loaded from disk at some point. That typically takes several milliseconds (possibly hundreds of milliseconds
for a large image) and while that is happening the screen will not be refreshing. You need to take your image-loading
time into account and allow it to occur during a static period of the screen.

3.8. Timing Issues and synchronisation 24

PsychoPy - Psychology software for Python, Release 2023.2.3

In B Builder experiments if you set something to update “On every repeat” then it will update as that Routine begins
so, if your trial Routine simply begins with 0.5s fixation period, all your stimuli can be loaded/updated in that period
and you will have no further problems. Sometimes you want to load/update your stimulus explicitly at a different point
in time and then you can insert a Static Component Component into your Builder experiment (a “Static Period” in the
Python API) and then set your stimulus to update during that period (it will show up as an update option after you insert
the Static Component).

The good news is that a lot of the visual timing issues caused by coding problems are visible in the Log Files, unlike
the problems with hardware and operating systems introducing lags.

3.8.5 Delays caused by keyboards

Keyboards are hopeless for timing. We should expand on that. But for now, it’s all you need to know! Get yourself a
button box, like the LabHackers Millikey.

3.8.6 Audio delays

has a number of settings for audio and the main issue here is that the user needs to know to turn on the optimal settings.

For years we were looking for a library that provided fast reliable audio and we went through an number of libraries to
optimize that (pygame was the first, with 100ms latencies, then pyo and sounddevice which were faster).

Most recently we added support for the Psychophysics Toolbox audio library (PsychPortAudio), which Mario Kleiner
has ported Python in 2018. With that library we can achieve really remarkable audio timing (thanks to Mario for his
fantastic work). But still there are several things you need to check to make use of this library and use it to its full
potential:

• Make sure you’re running with a 64bit installation of Python3. The PsychPortAudio code has not, and almost
certainly will not, be built to support legacy Python installations

• Set the preferences to use it! As of version 3.2.x the PTB backend was not the default. In future versions this
will probably be the default, but as of version 3.2.x you need to set to use it (we didn’t want to make it the default
until it had been used without issue in a number of labs in “the wild”).

• Make sure that the library settings are using a high

For further information please see the documentation about the Sound library

3.8.7 Non-slip timing for imaging

For most behavioural/psychophysics studies timing is most simply controlled by setting some timer (e.g. a Clock())
to zero and waiting until it has reached a certain value before ending the trial. We might call this a ‘relative’ timing
method, because everything is timed from the start of the trial/epoch. In reality this will cause an overshoot of some
fraction of one screen refresh period (10ms, say). For imaging (EEG/MEG/fMRI) studies adding 10ms to each trial
repeatedly for 10 minutes will become a problem, however. After 100 stimulus presentations your stimulus and scanner
will be de-synchronised by 1 second.

There are two ways to get around this:

1. Time by frames If you are confident that you aren’t dropping frames then you could base your timing on frames
instead to avoid the problem.

2. Non-slip (global) clock timing The other way, which for imaging is probably the most sensible, is to arrange timing
based on a global clock rather than on a relative timing method. At the start of each trial you add the (known)
duration that the trial will last to a global timer and then wait until that timer reaches the necessary value. To

3.8. Timing Issues and synchronisation 25

https://labhackers.com/millikey.html

PsychoPy - Psychology software for Python, Release 2023.2.3

Fig. 3.3: With the new PTB library you can achieve not only sub-millisecond precision, but roughly sub-millisecond
lags!! You do need to know how to configure this though and testing it can only be done with hardware.

facilitate this, the Clock() was given a new add() method as of version 1.74.00 and a CountdownTimer() was
also added.

The non-slip method can only be used in cases where the trial is of a known duration at its start. It cannot, for example,
be used if the trial ends when the subject makes a response, as would occur in most behavioural studies.

Non-slip timing from the Builder

When creating experiments in the Builder, will attempt to identify whether a particular Routine has a known endpoint in
seconds. If so then it will use non-slip timing for this Routine based on a global countdown timer called routineTimer.
Routines that are able to use this non-slip method are shown in green in the Flow, whereas Routines using relative
timing are shown in red. So, if you are using PsychoPy for imaging studies then make sure that all the Routines within
your loop of epochs are showing as green. (Typically your study will also have a Routine at the start waiting for the
first scanner pulse and this will use relative timing, which is appropriate).

3.8. Timing Issues and synchronisation 26

PsychoPy - Psychology software for Python, Release 2023.2.3

3.8.8 Detecting dropped frames

Occasionally you will drop frames if you:

• try to do too much drawing

• do it in an inefficient manner (write poor code)

• have a poor computer/graphics card

Things to avoid:

• recreating textures for stimuli

• building new stimuli from scratch (create them once at the top of your script and then change them using stim.
setOri(ori)(), stim.setPos([x,y]. . .)

Turn on frame time recording

The key sometimes is knowing if you are dropping frames. can help with that by keeping track of frame durations.
By default, frame time tracking is turned off because many people don’t need it, but it can be turned on any time after
Window creation:

from psychopy import visual
win = visual.Window([800,600])
win.recordFrameIntervals = True

Since there are often dropped frames just after the system is initialised, it makes sense to start off with a fixation period,
or a ready message and don’t start recording frame times until that has ended. Obviously if you aren’t refreshing the
window at some point (e.g. waiting for a key press with an unchanging screen) then you should turn off the recording
of frame times or it will give spurious results.

Warn me if I drop a frame

The simplest way to check if a frame has been dropped is to get to report a warning if it thinks a frame was dropped:

from psychopy import visual, logging
win = visual.Window([800,600])

win.recordFrameIntervals = True

By default, the threshold is set to 120% of the estimated refresh
duration, but arbitrary values can be set.
#
I've got 85Hz monitor and want to allow 4 ms tolerance; any refresh that
takes longer than the specified period will be considered a "dropped"
frame and increase the count of win.nDroppedFrames.
win.refreshThreshold = 1/85 + 0.004

Set the log module to report warnings to the standard output window
(default is errors only).
logging.console.setLevel(logging.WARNING)

print('Overall, %i frames were dropped.' % win.nDroppedFrames)

3.8. Timing Issues and synchronisation 27

PsychoPy - Psychology software for Python, Release 2023.2.3

Show me all the frame times that I recorded

While recording frame times, these are simply appended, every frame to win.frameIntervals (a list). You can simply
plot these at the end of your script using matplotlib:

import matplotlib.pyplot as plt
plt.plot(win.frameIntervals)
plt.show()

Or you could save them to disk. A convenience function is provided for this:

win.saveFrameIntervals(fileName=None, clear=True)

The above will save the currently stored frame intervals (using the default filename, ‘lastFrameIntervals.log’) and then
clears the data. The saved file is a simple text file.

At any time you can also retrieve the time of the /last/ frame flip using win.lastFrameT (the time is synchronised with
logging.defaultClock so it will match any logging commands that your script uses).

‘Blocking’ on the VBI

As of version 1.62 ‘blocks’ on the vertical blank interval meaning that, once Window.flip() has been called, no code
will be executed until that flip actually takes place. The timestamp for the above frame interval measurements is taken
immediately after the flip occurs. Run the timeByFrames demo in Coder to see the precision of these measurements
on your system. They should be within 1ms of your mean frame interval.

Note that Intel integrated graphics chips (e.g. GMA 945) under win32 do not sync to the screen at all and so blocking
on those machines is not possible.

3.8.9 Reducing dropped frames

There are many things that can affect the speed at which drawing is achieved on your computer. These include, but are
probably not limited to; your graphics card, CPU, operating system, running programs, stimuli, and your code itself.
Of these, the CPU and the OS appear to make rather little difference. To determine whether you are actually dropping
frames see Detecting dropped frames.

Things to change on your system:

1. make sure you have a good graphics card. Avoid integrated graphics chips, especially Intel integrated chips and
especially on laptops (because on these you don’t get to change your mind so easily later). In particular, try to
make sure that your card supports OpenGL 2.0

2. shut down as many programs, including background processes. Although modern processors are fast
and often have multiple cores, substantial disk/memory accessing can cause frame drops

• anti-virus auto-updating (if you’re allowed)

• email checking software

• file indexing software

• backup solutions (e.g. TimeMachine)

• Dropbox

• Synchronisation software

3.8. Timing Issues and synchronisation 28

PsychoPy - Psychology software for Python, Release 2023.2.3

Writing optimal scripts

1. run in full-screen mode (rather than simply filling the screen with your window). This way the OS doesn’t have
to spend time working out what application is currently getting keyboard/mouse events.

2. don’t generate your stimuli when you need them. Generate them in advance and then just modify them later with
the methods like setContrast(), setOrientation() etc. . .

3. calls to the following functions are comparatively slow; they require more CPU time than most other
functions and then have to send a large amount of data to the graphics card. Try to use these methods in
inter-trial intervals. This is especially true when you need to load an image from disk too as the texture.

• GratingStim.setTexture()

• RadialStim.setTexture()

• TextStim.setText()

4. if you don’t have OpenGL 2.0 then calls to setContrast, setRGB and setOpacity will also be slow, because they
also make a call to setTexture(). If you have shader support then this call is not necessary and a large speed
increase will result.

5. avoid loops in your python code (use numpy arrays to do maths with lots of elements) Note: numpy arrays will
not work for online experiments, which use JavaScript*

6. if you need to create a large number (e.g. greater than 10) similar stimuli, then try the ElementArrayStim (cur-
rently not supported for online experiments)

Possible good ideas

It isn’t clear that these actually make a difference, but they might).

1. disconnect the internet cable (to prevent programs performing auto-updates?)

2. on Macs you can actually shut down the Finder. It might help. See Alex Holcombe’s timing tips page

3. use a single screen rather than two (probably there is some graphics card overhead in managing double the number
of pixels?)

3.8.10 Understand and measuring your timing

There are certain steps that we strongly advise you to take before running an experiment that needs to be temporally
precise in PsychoPy, or indeed any other software:

• Read this timing megastudy by Bridges et al (2020) which compares several pieces of behavioural software in
terms of their temporal precision. You can find a summary of the results here: Mega-timing study data

• Check that your stimulus presentation monitor is not dropping frames. You can do this by running the time-
ByFrames.py demo. Find this demo in the Coder window > demos > timing. The timeByFrames demo examines
the precision of your frame flips, and shows the results in a plot similar to the one below:

• Use a photodiode or other physical stimulus detector to fully understand the lag, and more importantly the vari-
ability of that lag, between any triggers that you send to indicate the start of your stimulus and when the stimulus
actually starts.

3.8. Timing Issues and synchronisation 29

https://openwetware.org/wiki/Holcombe:VerifyTiming
https://peerj.com/articles/9414/

PsychoPy - Psychology software for Python, Release 2023.2.3

Fig. 3.4: The results here are for a 60Hz monitor, and you can see that there are no dropped frames from the left hand
side of the screen, and also the timing of each frame is 16.7ms (shown on the right-hand side of the screen) which is
what we would expect from a 60Hz monitor (1000ms/60 = 16.66ms).

3.8. Timing Issues and synchronisation 30

PsychoPy - Psychology software for Python, Release 2023.2.3

3.9 Glossary

Adaptive staircase
An experimental method whereby the choice of stimulus parameters is not pre-determined but based on previous
responses. For example, the difficulty of a task might be varied trial-to-trial based on the participant’s responses.
These are often used to find psychophysical thresholds. Contrast this with the method of constants.

CPU
Central Processing Unit is the main processor of your computer. This has a lot to do, so we try to minimise the
amount of processing that is needed, especially during a trial, when time is tight to get the stimulus presented on
every screen refresh.

CRT
Cathode Ray Tube ‘Traditional’ computer monitor (rather than an LCD or plasma flat screen).

csv
Comma-Separated Value files Type of basic text file with ‘comma-separated values’. This type of file can be
opened with most spreadsheet packages (e.g. MS Excel) for easy reading and manipulation.

GPU
Graphics Processing Unit is the processor on your graphics card. The GPUs of modern computers are incredibly
powerful and it is by allowing the GPU to do a lot of the work of rendering that is able to achieve good timing
precision despite being written in an interpreted language

Method of constants
An experimental method whereby the parameters controlling trials are predetermined at the beginning of the
experiment, rather than determined on each trial. For example, a stimulus may be presented for 3 pre-determined
time periods (100, 200, 300ms) on different trials, and then repeated a number of times. The order of presentation
of the different conditions can be randomised or sequential (in a fixed order). Contrast this method with the
adaptive staircase.

VBI
(Vertical Blank Interval, aka the Vertical Retrace, or Vertical Blank, VBL). The period in-between video frames
and can be used for synchronising purposes. On a CRT display the screen is black during the VBI and the display
beam is returned to the top of the display.

VBI blocking
The setting whereby all functions are synced to the VBI. After a call to psychopy.visual.Window.flip()
nothing else occurs until the VBI has occurred. This is optimal and allows very precise timing, because as soon
as the flip has occurred a very precise time interval is known to have occurred.

VBI syncing
(aka vsync) The setting whereby the video drawing commands are synced to the VBI. When psy-
chopy.visual.Window.flip() is called, the current back buffer (where drawing commands are being executed)
will be held and drawn on the next VBI. This does not necessarily entail VBI blocking (because the system may
return and continue executing commands) but does guarantee a fixed interval between frames being drawn.

xlsx
Excel OpenXML file format. A spreadsheet data format developed by Microsoft but with an open (published)
format. This is the native file format for Excel (2007 or later) and can be opened by most modern spreadsheet
applications including OpenOffice (3.0+), google docs, Apple iWork 08.

3.9. Glossary 31

CHAPTER

FOUR

INSTALLATION

4.1 Download

For the easiest installation download and install the Standalone package.

For all versions see the PsychoPy releases on github

is distributed under the GPL3 license

4.2 Manual installations

See below for options if you don’t want to use the Standalone releases:

• pip install

• brew install

• Linux

• Anaconda and Miniconda

• Developers install

4.2.1 pip install

Now that most python libraries can be installed using pip it’s relatively easy to manually install and all it’s dependencies
to your own installation of Python.

The steps are to fetch Python. This method should work on a range of versions of Python but we strongly recommend
you use Python 3.8. Older Python versions are no longer being tested and may not work correctly. Newer Python
versions may not have wheels for all the necessary depedencies even though we believe that PsychoPy’s code, itself, is
compatible all the way up to Python 3.10.

You can install and its dependencies (more than you’ll strictly need, depending on the features you use) by:

pip install psychopy

If you prefer not to install all the dependencies (e.g. because the platform or Python version you’re on doesn’t have that
depedency easily available) then you could do:

pip install psychopy --no-deps

32

https://github.com/psychopy/psychopy/releases
https://github.com/psychopy/psychopy/blob/master/LICENSE

PsychoPy - Psychology software for Python, Release 2023.2.3

and then install them manually. On Windows, if you need a package that isn’t available on PyPI you may want to try
the unofficial packages by Christoph Gohlke

4.2.2 brew install

On a MacOS machine, brew can be used to install :

brew install --cask psychopy

4.2.3 Linux

There used to be neurodebian and Gentoo packages for but these are both badly outdated. We’d recommend you do:

with --no-deps flag if you want to install dependencies manually
pip install psychopy

Then fetch a wxPython wheel for your platform from:

https://extras.wxpython.org/wxPython4/extras/linux/gtk3/

and having downloaded the right wheel you can then install it with something like:

pip install path/to/your/wxpython.whl

wxPython>4.0 and doesn’t have universal wheels yet which is why you have to find and install the correct wheel for
your particular flavor of linux.

For some reasons wxPython (wx.html2) is using an older version of libwebkitgtk e.g. psychopy will not show up to fix
this (of our own risk): sudo add-apt-repository ‘deb http://archive.ubuntu.com/ubuntu bionic main universe’ sudo apt
install -t bionic libwebkitgtk-1.0-0

Building Python PsychToolbox bindings:
The PsychToolbox bindings for Python provide superior timing for sounds and keyboard responses. Unfortunately we
haven’t been able to build universal wheels for these yet so you may have to build the pkg yourself. That should not be
hard. You need the necessary dev libraries installed first:

sudo apt-get install libusb-1.0-0-dev portaudio19-dev libasound2-dev

and then you should be able to install using pip and it will build the extensions as needed:

pip install psychtoolbox

4.2.4 Anaconda and Miniconda

We provide an environment file that can be used to install and its dependencies. Download the file, open your terminal,
navigate to the directory you saved the file to, and run:

conda env create -n psychopy -f psychopy-env.yml

This will create an environment named psychopy. On Linux, the wxPython dependency of is linked against
webkitgtk, which needs to be installed manually, e.g. via sudo apt install libwebkitgtk-1.0 on Debian-
based systems like Ubuntu.

4.2. Manual installations 33

https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://extras.wxpython.org/wxPython4/extras/linux/gtk3/
http://archive.ubuntu.com/ubuntu
https://raw.githubusercontent.com/psychopy/psychopy/master/conda/psychopy-env.yml

PsychoPy - Psychology software for Python, Release 2023.2.3

To activate the newly-created environment and run , execute:

conda activate psychopy
psychopy

4.2.5 Developers install

Ensure you have Python 3.8 and the latest version of pip installed:

python --version
pip --version

Next, follow the instructions to fork and fetch the latest version of the repository.

From the directory where you cloned the latest repository (i.e., where setup.py resides), run:

pip install -e .

This will install all dependencies to your default Python distribution (which should be Python 3.8). Next, you should
create a new shortcut linking your newly installed dependencies to your current version of in the cloned repository. To
do this, simply create a new .BAT file containing:

"C:\PATH_TO_PYTHON3.8\python.exe C:\PATH_TO_CLONED_PSYCHOPY_REPO\psychopy\app\
→˓psychopyApp.py"

Alternatively, you can run the psychopyApp.py from the command line:

python C:\PATH_TO_CLONED_PSYCHOPY_REPO\psychopy\app\psychopyApp

4.3 Recommended hardware

The minimum requirement for is a computer with a graphics card that supports OpenGL. Many newer graphics cards
will work well. Ideally the graphics card should support OpenGL version 2.0 or higher. Certain visual functions run
much faster if OpenGL 2.0 is available, and some require it (e.g. ElementArrayStim).

If you already have a computer, you can install and the Configuration Wizard will auto-detect the card and drivers, and
provide more information. It is inexpensive to upgrade most desktop computers to an adequate graphics card. High-end
graphics cards can be very expensive but are only needed for very intensive use.

Generally NVIDIA and ATI (AMD) graphics chips have higher performance than Intel graphics chips so try and get
one of those instead.

4.3.1 Notes on OpenGL drivers

On Windows, if you get an error saying “pyglet.gl.ContextException: Unable to share contexts” then the most
likely cause is that you need OpenGL drivers and your built-in Windows only has limited support for OpenGL (or
possibly you have an Intel graphics card that isn’t very good). Try installing new drivers for your graphics card from
its manufacturer’s web page, not from Microsoft. For example, NVIDIA provides drivers for its cards here

4.3. Recommended hardware 34

https://www.nvidia.com/Download/index.aspx

CHAPTER

FIVE

GETTING STARTED

As an application, has two main views: the Builder view, and the Coder view. It also has a underlying Reference
Manual (API) that you can call directly.

1. Builder. You can generate a wide range of experiments easily from the Builder using its intuitive, graphical
user interface (GUI). This might be all you ever need to do. But you can always compile your experiment into a
python script for fine-tuning, and this is a quick way for experienced programmers to explore some of PsychoPy’s
libraries and conventions. Note: if you are taking a study online we highly advise even experienced coders
use Builder view, as the JS version of your experiment will also be generated

1. Coder. For those comfortable with programming, the Coder view provides a basic code editor with syntax
highlighting, code folding, and so on. Importantly, it has its own output window and Demo menu. The demos
illustrate how to do specific tasks or use specific features; they are not whole experiments. The Coder tutorials
should help get you going, and the Reference Manual (API) will give you the details.

The Builder and Coder views are the two main aspects of the application. If you’ve installed the StandAlone version of
on MS Windows then there should be an obvious link to in your > Start > Programs. If you installed the StandAlone
version on macOS then the application is where you put it (!). On these two platforms you can open the Builder and
Coder views from the View menu and the default view can be set from the preferences. On Linux, you can start from
a command line, or make a launch icon (which can depend on the desktop and distro). If the app is started with flags
—-coder (or -c), or —-builder (or -b), then the preferences will be overridden and that view will be created as the app
opens.

35

PsychoPy - Psychology software for Python, Release 2023.2.3

36

PsychoPy - Psychology software for Python, Release 2023.2.3

For experienced python programmers, it’s possible to use without ever opening the Builder or Coder. Install the libraries
and dependencies, and use your favorite IDE instead of the Coder.

5.1 Builder

When learning a new computer language, the classic first program is simply to print or display “Hello world!”. Lets
do it.

5.1.1 A first program

Start , and be sure to be in the Builder view.

• If you have poked around a bit in the Builder already, be sure to start with a clean slate. To get a new Builder
view, type Ctrl-N on Windows or Linux, or Cmd-N on Mac.

• Click on a Text component and a Text Properties dialog will pop up.

5.1. Builder 37

http://en.wikipedia.org/wiki/Hello_world_program

PsychoPy - Psychology software for Python, Release 2023.2.3

• In the Text field, replace the default text with your message. When you run the program, the text you type here
will be shown on the screen.

• Click OK (near the bottom of the dialog box). (Properties dialogs have a link to online help—an icon at the
bottom, near the OK button.)

• Your text component now resides in a routine called trial. You can click on it to view or edit it. (Components,
Routines, and other Builder concepts are explained in the Builder documentation.)

• Back in the main Builder, type Ctrl-R (Windows, Linux) or Cmd-R (Mac), or use the mouse to click the Run
icon.

5.1. Builder 38

PsychoPy - Psychology software for Python, Release 2023.2.3

Assuming you typed in “Hello world!”, your screen should have looked like this (briefly):

If nothing happens or it looks wrong, recheck all the steps above; be sure to start from a new Builder view.

What if you wanted to display your cheerful greeting for longer than the default time?

• Click on your Text component (the existing one, not a new one).

• Edit the Stop duration (s) to be 3.2; times are in seconds.

• Click OK.

• And finally Run.

When running an experiment, you can quit by pressing the escape key (this can be configured or disabled). You can
quit from the File menu, or typing Ctrl-Q / Cmd-Q.

5.1.2 Getting beyond Hello

To do more, you can try things out and see what happens. You may want to consult the Builder documentation. Many
people find it helpful to explore the Builder demos, in part to see what is possible, and especially to see how different
things are done.

A good way to develop your own first experiment is to base it on the Builder demo that seems closest. Copy it, and
then adapt it step by step to become more and more like the program you have in mind. Being familiar with the Builder
demos can only help this process.

You could stop here, and just use the Builder for creating your experiments. It provides a lot of the key features that
people need to run a wide variety of studies. But it does have its limitations. When you want to have more complex
designs or features, you’ll want to investigate the Coder. As a segue to the Coder, lets start from the Builder, and see
how Builder programs work.

5.1. Builder 39

PsychoPy - Psychology software for Python, Release 2023.2.3

5.2 Builder-to-coder

Whenever you run a Builder experiment, will first translate it into python code, and then execute that code.

To get a better feel for what was happening “behind the scenes” in the Builder program above:

• In the Builder, load or recreate your “hello world” program.

• Instead of running the program, explicitly convert it into python: Type F5, or click the Compile icon:

The view will automatically switch to the Coder, and display the python code. If you then save and run this code, it
would look the same as running it directly from the Builder.

It is always possible to go from the Builder to python code in this way. You can then edit that code and run it as a
python program. However, you cannot go from code back to a Builder representation editing in coder is a one-way
street, so, in general, we advise compiling to code is good for understanding what exists but, where possible, make
code tweaks in builder itself using code components.

To switch quickly between Builder and Coder views, you can type Ctrl-L / Cmd-L.

5.3 Coder

Being able to inspect Builder-generated code is nice, but it’s possible to write code yourself, directly. With the Coder
and various libraries, you can do virtually anything that your computer is capable of doing, using a full-featured modern
programming language (python).

For variety, lets say hello to the Spanish-speaking world. knows Unicode (UTF-8).

If you are not in the Coder, switch to it now.

• Start a new code document: Ctrl-N / Cmd-N.

• Type (or copy & paste) the following:

from psychopy import visual, core

win = visual.Window()
msg = visual.TextStim(win, text=u"\u00A1Hola mundo!")

msg.draw()
win.flip()
core.wait(1)
win.close()

• Save the file (the same way as in Builder).

• Run the script.

Note that the same events happen on-screen with this code version, despite the code being much simpler than the code
generated by the Builder. (The Builder actually does more, such as prompt for a subject number.)

Coder Shell

5.2. Builder-to-coder 40

PsychoPy - Psychology software for Python, Release 2023.2.3

The shell provides an interactive python interpreter, which means you can enter commands here to try them out. This
provides yet another way to send your salutations to the world. By default, the Coder’s output window is shown at the
bottom of the Coder window. Click on the Shell tab, and you should see python’s interactive prompt, >>>:

PyShell in |PsychoPy| - type some commands!

Type "help", "copyright", "credits" or "license" for more information.
>>>

At the prompt, type:

>>> print(u"\u00A1Hola mundo!")

You can do more complex things, such as type in each line from the Coder example directly into the Shell window,
doing so line by line:

>>> from psychopy import visual, core

and then:

>>> win = visual.Window()

and so on—watch what happens each line:

>>> msg = visual.TextStim(win, text=u"\u00A1Hola mundo!")
>>> msg.draw()
>>> win.flip()

and so on. This lets you try things out and see what happens line-by-line (which is how python goes through your
program).

5.3. Coder 41

CHAPTER

SIX

BUILDER

6.1 Building experiments in a GUI

Making your experiments using the builder is the approach that we generally recommend. Why would we (a team of
programmers) recommend using a GUI?:

• It’s much faster to make experiments

• Your experiment will be less likely to have bugs (experiments coded from scratch can very easily contain errors
- even when made by the best of programmers!).

• You can easily make an experiment to run online in a browser. builder view is writing you a python script
“under the hood” of your experiment, but if you want to run an experiment online it can also compile a javascript
version of your task using PsychoPy’s sister library PsychoJS. Remember that PsychoJS is younger than - so
remember to check the status of online options before making an experiment you plan to run online! The easiest
way to host a study online from is through the platform, and builder has inbuilt integration to interact with this
platform.

There are a number of tutorials on how to get started making experiments in builder on the PsychoPy Youtube channel
as well as several written tutorials and Experiment Recipes. You can also find a range of materials for teaching using
builder view.

42

https://github.com/psychopy/psychojs
https://www.psychopy.org/online/status.html
https://www.youtube.com/user/peircej
https://workshops.psychopy.org/tutorials/index.html
https://workshops.psychopy.org/teaching/index.html

PsychoPy - Psychology software for Python, Release 2023.2.3

Contents:

6.1.1 Builder concepts

Routines and Flow

The Builder view of the application is designed to allow the rapid development of a wide range of experiments for
experimental psychology and cognitive neuroscience experiments.

The Builder view comprises two main panels for viewing the experiment’s Routines (upper left) and another for viewing
the Flow (lower part of the window).

An experiment can have any number of Routines, describing the timing of stimuli, instructions and responses. These
are portrayed in a simple track-based view, similar to that of video-editing software, which allows stimuli to come on
go off repeatedly and to overlap with each other.

The way in which these Routines are combined and/or repeated is controlled by the Flow panel. All experiments have
exactly one Flow. This takes the form of a standard flowchart allowing a sequence of routines to occur one after another,
and for loops to be inserted around one or more of the Routines. The loop also controls variables that change between
repetitions, such as stimulus attributes.

If it is your first time opening , we highly recommend taking a look at the large number of inbuilt demos that come
with . This can be done through selecting Demos > unpack demos within your application. Another good place to get
started is to take a look at the many openly available demos at pavlovia.org you can view an intro to Pavlovia at our
Youtube channel.

6.1. Building experiments in a GUI 43

https://pavlovia.org/explore
https://www.youtube.com/watch?v=oYhcBDK2O10&t=42s

PsychoPy - Psychology software for Python, Release 2023.2.3

The |PsychoPy| builder, the Routines panel an the Flow are highlighted, if you are new to |PsychoPy|, we recommend
starting by unpacking your demos and exploring the example tasks

The components panel

You can add components to an experiment by selecting components from the Components panel. This is currently
divided into 7 sections:

• Favorites - your commonly used components

• Stimuli - components used to present a stimulus (e.g. a visual image or shape, or an auditory tone or file)

• Responses - stimulu used to gather responses (e.g. keyboards or mouse components - amongst many others!)

• Custom - builder can be used to make a fair few complex experiments now, but for added flexibility, you can add
code components at any point in an experiment (e.g. for providing response-dependant feedback).

• EEG - can actually be used with a range of EEG devices. Most of these are interacted with through delivering
a trigger through the parallel port (see I/O below), or serial port (see ../api/serial.html). However, Builder has
inbuilt support (i.e. no need for code snippets) for working with Emotiv EEG, you can view a Youtube tutorial
on how to use Emotiv EEG with PsychoPy here.

• Eyetracking - 2021.2 released inbuilt supprort for eyetrackers! had supported eye tracker research for a while,
but not via components in builder. You can learn more about these from the more specific components.html info.

• I/O - I/O stands for “input/output” under the hood this is ../api/iohub.html, this is useful for if you are working
with external hardware devices requiring communication via the parallel port (e.g. EEG).

6.1. Building experiments in a GUI 44

https://www.youtube.com/watch?v=rRoqGa4PoN8
https://www.youtube.com/watch?v=rRoqGa4PoN8

PsychoPy - Psychology software for Python, Release 2023.2.3

Making experiments to go online

Buttons to interact with pavlovia.org from your experiment builder

Before making an experiment to go online, it is a good idea to check the status of online options - remember PsychoJS
(the javascript sister library of) is younger that - so not everything can be done online yet! but for most components
there are prototype work arounds to still make things possible (e.e. RDKs and staircases). You can learn more about
taking experiments online from builder via the online documentation.

6.1.2 Routines

An experiment consists of one or more Routines. A Routine might specify the timing of events within a trial or the
presentation of instructions or feedback. Multiple Routines can then be combined in the Flow, which controls the order
in which these occur and the way in which they repeat.

To create a new Routine, you can either select “Insert Routine” from within your flow panel or use the Experiment
menu. The display size of items within a routine can be adjusted (see the View menu).

Within a Routine there are a number of components. These components determine the occurrence of a stimulus, or the
recording of a response. Any number of components can be added to a Routine. Each has its own line in the Routine
view that shows when the component starts and finishes in time, and these can overlap.

For now the time axis of the Routines panel is fixed, representing seconds (one line is one second). If you choose to
present your stimuli based on another timing unit, e.g. number of frames (more precise) and can be scaled up or down
to allow veYou can specify the “Expected duration” within the component - that will mean that this component still
appears on your routine timeline.

6.1.3 Flow

In the Flow panel a number of Routines can be combined to form an experiment. For instance, your study may have
a Routines that presented initial instructions and waited for a key to be pressed, followed by a Routines that presented
one trial which should be repeated 5 times with various different parameters set. All of this is achieved in the Flow
panel. You can adjust the display size of the Flow panel (see View menu).

Adding Routines

The Routines that the Flow will use should be generated first (although their contents can be added or altered at any
time). To insert a Routines into the Flow click the appropriate button in the left of the Flow panel or use the Experiment
menu. A dialog box will appear asking which of your Routines you wish to add. To select the location move the mouse
to the section of the flow where you wish to add it and click on the black disk.

6.1. Building experiments in a GUI 45

https://www.psychopy.org/online/status.html
https://www.psychopy.org/online/

PsychoPy - Psychology software for Python, Release 2023.2.3

Loops

Loops control the repetition of Routines and the choice of stimulus parameters for each. To insert a loop use the button
on the left of the Flow panel, or the item in the Experiment menu of the Builder. The start and end of a loop is set in
the same way as the location of a Routines (see above). Loops can encompass one or more Routines and other loops
(i.e. they can be nested).

As with components in Routines, the loop must be given a name, which must be unique and made up of only alphanu-
meric characters (underscores are allowed). I would normally use a plural name, since the loop represents multiple
repeats of something. For example, trials, blocks or epochs would be good names for your loops.

It is usually best to use trial information that is contained in an external file (.xlsx or .csv). When inserting a loop into
the flow you can browse to find the file you wish to use for this. An example of this kind of file can be found in the
Stroop demo (trialTypes.xlsx). The column names are turned into variables (in this case text, letterColor, corrAns and
congruent), these can be used to define parameters in the loop by putting a $ sign before them e.g. $text.

As the column names from the input file are used in this way they must have legal variable names i.e. they must be
unique, have no punctuation or spaces (underscores are ok) and must not start with a digit.

The parameter Is trials exists because some loops are not there to indicate trials per se but a set of stimuli within a trial,
or a set of blocks. In these cases we don’t want the data file to add an extra line with each pass around the loop. This
parameter can be unchecked to improve (hopefully) your data file outputs. [Added in v1.81.00]

Loop types

You can use a number of different “Loop Types” in , this controls the way in which the trials you have fed into the
“Conditions” field are presented. Imagine you have a conditions file that looks like this:

letter
a
b
c

After saving this as a spreadsheet (.xlsx or .csv), we could then add this to the “Conditions” field of our loop. Let’s
imagine we want to present each letter twice, so we set nReps to 2. We could then use the following Loop Types:

• Random - present a - b in a random order, because we have nReps at 2, this would be repeated twice e.g. [c,
a, b, a, c, b]

• Full Random - present a - b in a random order but also take into account the number of nReps. Here, imagine
that rather than having 3 items in the bag that we sample from, and repeat this twice, we instead have 6 items int
he bag that are randomly sampled from. This would mean that with fullRandom, but not random, it would be
possible to get the following order of trials e.g. [a, a, b, c, c, b] - notice that a was sampled twice in the
first 2 trials.

• sequential - present the rows in the order they are set i nt he spreadsheet. Currently does not have inbuilt
support for specific randomisation constraints, so if you need a specific pseudorandom order, preset this in your
spreadsheet file and use a “sequential” loopType.

• staircase - for use with adaptive procedures, create an output variable called level that can then be used to set
the parameter of a stimulus (e.g. it’s opacity) in an adaptive fashion. This allows researchers to converge upon a
participants threshold by adjusting the value of level in accordance with performance.

• interleaved staircases - for use with multiple staircases that are interleaved. This can also be used to implement
other staircasing algorithms such as QUEST (Watson and Pelli, 1983) via QuestHandler.

6.1. Building experiments in a GUI 46

https://link.springer.com/content/pdf/10.3758/BF03202828.pdf

PsychoPy - Psychology software for Python, Release 2023.2.3

Using a Staircase

Using a staircase procedure to control your loop allows the implementation of adaptive methods. That is, aspects of a
trial can depend on (or “adapt to”) how a subject has responded earlier in the study. This could be, for example, simple
up-down staircases where an intensity value is varied trial-by-trial according to certain parameters, or a stop-signal
paradigm to assess impulsivity.

To use a staircase, you’ll need to set a ‘correct’ and an ‘incorrect’ response to the stimuli in your experiment. This is
because the estimate produced by staircases is dependent on your participant’s responses; the value will decrease when
a participant is ‘correct’ and increase when the participant is ‘incorrect’.

There are currently three types of staircase in PsychoPy:

• Simple

• QUEST

• QUEST Plus

You can add just one of these staircases, or you can choose to interleave two or more.

Only QUEST is currently supported for online use.

6.1.4 Using a simple staircase

A simple staircase allows you to input the step sizes that you want the staircase to take when a user gets an answer
correct or incorrect.

** To add one simple staircase**

• To add just one simple staircase, you’ll firstly need to add a loop around the routines you want to repeat. Then,
from the loop type drop-down list select “staircase”:

• You’ll now see a list of parameters:

– nReps: The minimum number of trials in the staircase. If the staircase has not reached the required number
of reversals then it will continue.

– start value: The initial value for the staircase.

– max value: The largest legal value for the staircase, which can be used to prevent it reaching impossible
contrast values, for instance.

– min value: The smallest legal value for the staircase.

– step sizes: The size of steps as a single value or a list. For a single value the step size is fixed. For a list the
step size will progress to the next value at each reversal.

– step type: The type of steps that should be taken each time:
∗ ‘lin’ - This will simply add or subtract that amount at each step.

∗ ‘log’ - This will add or subtract a certain number of log units at each step (note that this will prevent
your value ever reaching zero or less).

∗ ‘db’ - This will add or subtract a certain number of decibels at each step (note that this will prevent
your value ever reaching zero or less).

– N up: The number of ‘incorrect’ (or 0) responses before the staircase level increases.

– N down: The number of ‘correct’ (or 1) responses before the staircase level decreases.

– nReversals: The minimum number of reversals (i.e., times that the staircase changes direction when an
answer is correct/incorrect) that must occur before the staircase ends.

6.1. Building experiments in a GUI 47

PsychoPy - Psychology software for Python, Release 2023.2.3

6.1. Building experiments in a GUI 48

PsychoPy - Psychology software for Python, Release 2023.2.3

• Complete these fields as required for your experiment and click OK to save the loop.

• Now that you have your conditions set up, you will need to use the estimates that are being produced by the
staircase to control the particular aspect of the stimulus that you’re investigating (contrast, or opacity for example).
To do this, simply use the variable $level as the value for that parameter and set every repeat!

** To add more than one simple staircase**

• To add more than one staircase, add a loop in the same way as above but select “Interleaved staircases” from the
loop type drop-down list, then “simple” from the stair type drop-down:

• Set nReps to the minimum number of trials to run.

• Next, use the switch method drop-down list to select whether you want to switch between your staircases sequen-
tially or randomly. Let’s imagine that you have four staircases that you want to interleave. Choosing sequential
would mean that on the first trial staircase one is used, on the next trial staircase two is used, then staircase three
followed by staircase four. Then we go back to staircase one on the fifth trial. Choosing random would randomly
choose from one of the four staircases to use on each trial.

• Now, you’ll need to create a conditions file that contains the following column headers:

– label: So that you can distinguish between the different staircases in your data output, add a label column
containing a name for each of your staircases.

– nReps: The minimum number of trials in the staircase. If the staircase has not reached the required number
of reversals then it will continue.

– startVal: The initial value for the staircase.

– maxVal: The largest legal value for the staircase, which can be used to prevent it reaching impossible
contrast values, for instance.

6.1. Building experiments in a GUI 49

PsychoPy - Psychology software for Python, Release 2023.2.3

– minVal: The smallest legal value for the staircase.

– stepSizes: The size of steps as a single value or a list. For a single value the step size is fixed. For a list the
step size will progress to the next value at each reversal.

– stepType: The type of steps that should be taken each time:
∗ ‘lin’ - This will simply add or subtract that amount at each step.

∗ ‘log’ - This will add or subtract a certain number of log units at each step (note that this will prevent
your value ever reaching zero or less).

∗ ‘db’ - This will add or subtract a certain number of decibels at each step (note that this will prevent
your value ever reaching zero or less).

– nUp: The number of ‘incorrect’ (or 0) responses before the staircase level increases.

– nDown: The number of ‘correct’ (or 1) responses before the staircase level decreases.

– nReversals: The minimum number of reversals (i.e., times that the staircase changes direction when an
answer is correct/incorrect) that must occur before the staircase ends.

• You’ll then need to input values for each of your staircases. For example:

Fig. 6.1: This example has two staircases, one that will start with a high spatial frequency and one that will start with
a low spatial frequency.

• Use the variable $level in exactly the same way as you would with one staircase - this will update on every repeat
automatically.

6.1.5 Using a QUEST staircase

Rather than setting the step sizes manually, as with a simple staircase, the QUEST staircase procedure produces es-
timates that are based on the stimuli and the observer’s responses in the preceding trials. Watson and Pelli (1983)
reported QUEST which uses a Bayesian method to estimate the position of the psychometric function. For full infor-
mation please see their paper in the first instance.

• To add a QUEST staircase, you’ll firstly need to add a loop around the routines you want to repeat. Then, from
the loop type drop-down list select “Interleaved staircases” and “QUEST” from the stair type drop-down:

• Set nReps to the minimum number of trials to run.

• If you’re using more than one staircase, use the switch method drop-down list to select whether you want to
switch between your staircases sequentially or randomly. If you’re only using one staircase you can just leave
this set to the default value.

• Now, you’ll need to create a conditions file that contains the following column headers/variables:

– label: The label given to the staircase.

– startVal: The initial value for the staircase.

– startValSd: Standard deviation of your starting guess threshold. Be generous with the SD as QUEST will
have trouble finding the true threshold if it’s more than one SD from your initial guess.

6.1. Building experiments in a GUI 50

https://link.springer.com/content/pdf/10.3758/BF03202828.pdf

PsychoPy - Psychology software for Python, Release 2023.2.3

6.1. Building experiments in a GUI 51

PsychoPy - Psychology software for Python, Release 2023.2.3

– pThreshold: Your threshold criterion expressed as probability of response==1. Typical values for pThresh-
old are: 0.82 which is equivalent to a 3 up 1 down standard staircase; 0.63 which is equivalent to a 1 up 1
down standard staircase; 0.5 in a yes-no task and 0.75 in a 2-AFC task

– method: The method used to determine the next threshold estimate to test. Choose from ‘mean’, ‘mode’ or
‘quantile’. The default value is quantile.

– beta: This controls the steepness of the psychometric function (or slope).

– delta: This is the lapse rate - the fraction of trials that the participant lapses attention and guesses blindly.
The default value is 0.01.

– gamma: The value that is scored while the participant is guessing. Watson and Pelli (1983) state that “The
parameter gamma specifies the probability of a success at zero intensity: for two-alternative forced choice
it is 0.5, for n-alternative forced choice it is n to the -1 ; for yes-no, it is the false alarm rate.”

– grain: Grain: This is the quantization (step size) of the internal table, e.g., 0.01.

– minVal Use this along with maxVal when running the staircase locally (i.e., not online): The minimum
value that the staircase will return (good for preventing impossible contrast values, for instance).

– maxVal Use this along with minVal when running the staircase locally (i.e., not online): The maximum
value that the staircase will return (good for preventing impossible contrast values, for instance).

– range Use this when running the staircase online): This is the intensity difference between the largest
and smallest value, centered on startVal. Be generous with the range so that you don’t exclude possible
values for the threshold estimate.

• Complete these fields as required for your experiment and click OK to save the loop.

• Add as many staircases as you need to the conditions file.

• Now that you have your conditions set up, you will need to use the estimates that are being produced by the
staircase to control the particular aspect of the stimulus that you’re investigating (contrast, or opacity for example).
To do this, simply use the variable $level as the value for that parameter and set every repeat!

6.1.6 Using a QUEST Plus staircase

QUEST Plus is an extension of the original QUEST procedure set out by Watson and Pelli (1983), by Watson (2017).
Read the paper here for a complete explanation of the QUEST Plus procedure.

• To add a QUEST Plus staircase, you’ll firstly need to add a loop around the routines you want to repeat. Then,
from the loop type drop-down list select “Interleaved staircases” and “QUEST Plus” from the stair type drop-
down:

• Now, you’ll need to create a conditions file that contains the following column headers/variables:

– label: The label given to the staircase.

– nTrials: The number of trials to run.

– intensityVals: The complete set of stimulus levels. These do not have to just be intensity, they can be
contrasts, durations or weights etc.

– thresholdVals: The complete set of possible threshold values.

– slopeVals: The complete set of possible slope values.

– lowerAsymptoteVals: The complete set of possible values of the lower asymptote. This corresponds to
false-alarm rates in yes-no tasks, and to the guessing rate in n-AFC tasks. Therefore, when performing an
n-AFC experiment, the collection should consist of a single value only (e.g., [0.5] for 2-AFC, [0.33] for
3-AFC, [0.25] for 4-AFC, etc.).

6.1. Building experiments in a GUI 52

https://jov.arvojournals.org/article.aspx?articleid=2611972

PsychoPy - Psychology software for Python, Release 2023.2.3

6.1. Building experiments in a GUI 53

PsychoPy - Psychology software for Python, Release 2023.2.3

– lapseRateVals: The complete set of possible lapse rate values. The lapse rate defines the upper asymptote
of the psychometric function, which will be at 1 - lapse rate.

– responseVals: The complete set of possible response outcomes. Currently, only two outcomes are sup-
ported: the first element must correspond to a successful response/stimulus detection, and the second one
to an unsuccessful or incorrect response. For example, in a yes-no task, you would use [‘Yes’, ‘No’], and in
an n-AFC task,`[‘Correct’, ‘Incorrect’]`; or, alternatively, you could use [1, 0] in both cases.

– prior: The prior probabilities to assign to the parameter values.

– startIntensity: The very first intensity (or stimulus level) to present.

– stimScale: The scale on which the stimulus intensities (or stimulus levels) are provided. Currently sup-
ported are the log scale, log10; decibels, dB; and a linear scale, linear.

– stimSelectionMethod: How to select the next stimulus. minEntropy will select the stimulus that will min-
imize the expected entropy. minNEntropy will randomly pick pick a stimulus from the set of stimuli that
will produce the smallest, 2nd-smallest, . . . , N-smallest entropy. This can be used to ensure some varia-
tion in the stimulus selection (and subsequent presentation) procedure. The number N will then have to be
specified via the stimSelectionOption parameter.

– stimSelectionOptions: This parameter further controls how to select the next stimulus in case stimSelec-
tionMethod=minNEntropy. The dictionary supports two keys:N and maxConsecutiveReps. N defines the
number of “best” stimuli (i.e., those which produce the smallest N expected entropies) from which to ran-
domly select a stimulus for presentation in the next trial. maxConsecutiveReps defines how many times the
exact same stimulus can be presented on consecutive trials. For example, to randomly pick a stimulus from
those which will produce the 4 smallest expected entropies, and to allow the same stimulus to be presented
on two consecutive trials max, use stimSelectionOptions=dict(N=4, maxConsecutiveReps=2). To achieve
reproducible results, you may pass a seed to the random number generator via the randomSeed key.

– paramEstimationMethod: How to calculate the final parameter estimate. mean returns the mean of each
parameter, weighted by their respective posterior probabilities. mode returns the the parameters at the peak
of the posterior distribution.

• Complete these fields as required for your experiment and click OK to save the loop.

• Add as many staircases as you need to the conditions file.

• Now that you have your conditions set up, you will need to use the estimates that are being produced by the
staircase to control the particular aspect of the stimulus that you’re investigating (contrast, or opacity for example).
To do this, simply use the variable $level as the value for that parameter and set every repeat!

In the standard Loop types you would use all the rows/conditions within your conditions file. However there are often
times when you want to select a subset of your trials before randomising and repeating.

The parameter Select rows allows this. You can specify which rows you want to use by inserting values here:

• 0,2,5 gives the 1st, 3rd and 6th entry of a list - Python starts with index zero)

• $random(4)*10 gives 4 indices from 0 to 9 (so selects 4 out of 10 conditions)

• 5:10 selects the 6th to 10th rows

• $myIndices uses a variable that you’ve already created

Note in the last case that 5:8 isn’t valid syntax for a variable so you cannot do:

myIndices = 5:8

but you can do:

6.1. Building experiments in a GUI 54

PsychoPy - Psychology software for Python, Release 2023.2.3

myIndices = slice(5,8) #python object to represent a slice
myIndices = "5:8" #a string that PsychoPy can then parse as a slice later
myIndices = "5:8:2" #as above but

Note that uses Python’s built-in slicing syntax (where the first index is zero and the last entry of a slice doesn’t get
included). You might want to check the outputs of your selection in the Python shell (bottom of the Coder view) like
this:

>>> range(100)[5:8] #slice 5:8 of a standard set of indices
[5, 6, 7]
>>> range(100)[5:10:2] #slice 5:8 of a standard set of indices
[5, 7, 9, 11, 13, 15, 17, 19]

Check that the conditions you wanted to select are the ones you intended!

Once you have a loop around the routine you want to repeat, you can use the variables created in your conditions file
to update any parameter within your routine. For example, let’s say that you have a conditions file that looks like this:

letter
a
b
c

You could then add a Text component and in the text field type $letter and then set the corresponding dropsown box
to “set every repeat”. This indicates that you want the value of this parameter to change on each iteration of your loop,
and the value of that parameter on each loop will correspond to the value of “letter” drawn on each trial.

Note: You only need to use the $ sign if that field name does not already contain a $ sign! You also don’t need several
dollar signs in a field e.g. you wouldn’t set the position of a stimulys on each repeat using ($myX, $myY) instead you
would just use $(myX, myY) - this is because the dollar sign indicates that this field will now accept python code,
rather than that this value corresponds to a variable.

6.1.7 Blocks of trials and counterbalancing

Many people ask how to create blocks of trials, how to randomise them, and how to counterbalance their order. This
isn’t all that hard, although it does require a bit of thinking!

Blocking similar conditions

The key thing to understand is that you should not create different Routines for different trials in your blocks (if at
all possible). Try to define your trials with a single Routine. For instance, let’s imagine you’re trying to create an
experiment that presents a block of pictures of houses or a block of faces. It would be tempting to create a Routine
called presentFace and another called presentHouse but you actually want just one called presentStim (or just trial) and
then set that to differ as needed across different stimuli.

This example is included in the Builder demos, as of 1.85, as “images_blocks”.

You can add a loop around your trials, as normal, to control the trials within a block (e.g. randomly selecting a number
of images) but then you will have a second loop around this to define how the blocks change. You can also have
additional Routines like something to inform participants that the next block is about to start.

6.1. Building experiments in a GUI 55

PsychoPy - Psychology software for Python, Release 2023.2.3

So, how do you get the block to change from one set of images to another? To do this create three spreadsheets, one
for each block, determining the filenames within that block, and then another to control which block is being used:

Setting up the basic conditions. The facesBlock, and housesBlock, files look more like your usual conditions files.
In this example we can just use a variable stimFile with values like stims/face01.jpg and stims/face02.jpg while the
housesBlock file has stims/house01.jpg and stims/house02.jpg. In a real experiment you’d probably also have response
keys andsuchlike as well.

So, how to switch between these files? That’s the trick and that’s what the other file is used for. In the chooseBlocks.xlsx
file you set up a variable called something like condsFile and that has values of facesBlock.xlsx and housesBlock.xlsx.
In the outer (blocks) loop you set up the conditions file to be chooseBlocks.xlsx which creates a variable condsFile.
Then, in the inner (trials) loop you set the conditions file not to be any file directly but simply $condsFile. Now, when
starts this loop it will find the current value of condsFile and insert the appropriate thing, which will be the name of an
conditions file and we’re away!

Your chooseBlocks.xlsx can contain other values as well, such as useful identifiers. In this demo you could add a value
readyText that says “Ready for some houses”, and “Ready for some faces” and use this in your get ready Routine.

Variables that are defined in the loops are available anywhere within those. In this case, of course, the values in the
outer loop are changing less often than the values in the inner loop.

Counterbalancing similar conditions

Counterbalancing is simply an extension of blocking. Until now, we have a randomised block design, where the order
of blocks is set to random. At the moment we also only have one repeat of each block, but we could also present more
than one repeat of each block by controlling the number of rows assigned to each block in our ‘chooseBlocks’ file.

In a counterbalanced design you want to control the order explicitly and you want to provide a different order for
different groups of participants. Maybe group A always gets faces first, then houses, and group B always gets houses
first, then faces.

Now we need to create further conditions files, to specify the exact orders we want, so we’d have something like
chooseBlockA.xlsx and chooseBlockB.xlsx:

6.1. Building experiments in a GUI 56

PsychoPy - Psychology software for Python, Release 2023.2.3

The last part of the puzzle is how to assign participants to groups. For this you could write a Code Component that
would generate a variable for you (if.: groupFile = “groupB.xlsx”) but the easiest thing is probably that you, the
experimenter, chooses this using the GUI we present at the start of the experiment. So, we add a field to our GUI using
experiment settings:

Note that entering a list as the default input will present us with a dropdown in our GUI.

Finally, we set parameters of our blocks loop to use the method ‘sequential’ (because we are using a predefined order)
and we enter the following into the conditions field: ` $"chooseBlocks"+expInfo['group']+".xlsx" ` This
will concatenate the string “chooseBlocks” with our selected group (“A” or “B”) and the required file extension (in this
case “xlsx”) in order to select the correct order.

Even though our outer loop is now sequential, your inner loop still probably wants to be random (to shuffle the image
order within a block).

Counterbalancing different subtasks

The above example is useful when we have multiple blocks where the routines we present would be largely similar (i.e.
both blocks present an image component), but what about situations where we have totally different tasks we need to
counterbalance (e.g. an auditory stroop and an n-back task). The following method is an extension of the logic used in
the ‘branchedExp’ demo available in builderview. You can download a working version of the example we will work
through.

So, imagine we have 4 very different tasks. Our flow might look something like this:

Here we have 4 totally different tasks, each with its own loop. Now imagine one participant is presented with these tasks
using the order Task1 -> Task2 -> Task3 -> Task 4 (for ease let’s call this group, ‘ABCD’) whilst another is presented
with Task2 -> Task3 -> Task4 -> Task 1 (let’s call them group ‘BCDA’).

6.1. Building experiments in a GUI 57

https://gitlab.pavlovia.org/lpxrh6/counterbalance_multiple_tasks_demo

PsychoPy - Psychology software for Python, Release 2023.2.3

The loop surrounding each task will look something like this (although here I have stripped the parameters to the bare
minimum, you will likely have a conditions file):

Where the number of times that block is repeated (or occurs at all!) is determined by the outer loop (e.g. Task1 nReps
= ‘nRepsTask1’, Task2 nReps = ‘nRepsTask2’ and so on).

For our outer loop we will use conditions files that look something like this:

Each row corresponds to how many times a subtask routine (or set of routines) will be repeated per iteration of the
outer loop. The example conditions file above would be used for a participant in group ‘ABCD’ (on the first iteration
Task 1 will repeat once, on the second iteration Task 2 will repeat once and so on).

Just like before we create a field in our experiment settings called group (but let’s say that the group names this time are
‘ABCD’, ‘BCDA’ and so on where the content of the conditions file differs). Finally, we use the following parameters
for our outermost loop to select which, preordered, conditions file we are using.

Using this method, we could present several subtasks in a counterbalanced order (without having to create new exper-
iment files for each order!).

What about going online ? Well, things are more difficult there, but not impossible let’s talk about Counterbalancing
online

6.1. Building experiments in a GUI 58

PsychoPy - Psychology software for Python, Release 2023.2.3

6.1.8 Components

Routines in the Builder contain any number of components, which typically define the parameters of a stimulus or an
input/output device.

The following components are available, as at version 1.65, but further components will be added in the future including
Parallel/Serial ports and other visual stimuli (e.g. GeometricStim).

Pavlovia Survey

This component is only for use with online experiments. You can now use Pavlovia.org to create feature rich surveys,
with a range of response options, which display nicely across a range of devices (i.e. laptops, smart phones, tablets).
To create and launch a Pavlovia Survey, you technically do not need the PsychoPy app at all. For more information on
how to make and launch Pavlovia Surveys you can watch our launch event here. However, if you want to integrate a
Pavlovia Survey within an experiment (e.g. to show a survey several times in a loop or before/after your task without
the need for daisy chaining), you can do so using the Pavlovia Survey component.

The Pavlovia Survey component is a “Standalone Routine”, which means rather than adding a component to an existing
Routine, it will create a whole new Routine, which you can then add to your flow. Once you have selected the component,
select Insert Routine and add it to your flow.

To specify a survey you can either use “Survey ID” or “Survey Model File”.

Get ID

You can make a Pavlovia Survey in Pavlovia by selecting “Dashboard” and Surveys (for details see this guide). Once you
have created a Survey, the survey ID will be visible in the “Overview” tab of that survey as shown below. Alternatively,
you can find the Survey directly from PsychoPy by selecting “Find online. . . ”

6.1. Building experiments in a GUI 59

https://www.youtube.com/watch?v=1fs8CVKBPGk
https://pavlovia.org/docs/surveys/overview

PsychoPy - Psychology software for Python, Release 2023.2.3

Get JSON

Another way you can add a Pavlovia Survey to your experiment is by directly adding the “Survey Model File”. When
creating a Survey in Pavlovia you can select “Download” to download the json file used to create that Survey (you could
actually share this with others and they could “Import” your json to re-use your Survey!). In PsychoPy, if you select
“Survey Model File” - you will need to load the json file you’ve downloaded.

6.1. Building experiments in a GUI 60

PsychoPy - Psychology software for Python, Release 2023.2.3

Basic

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

survey type
[Survey ID or Survey Model File] See above for how to specify.

Aperture Component

This component can be used to filter the visual display, as if the subject is looking at it through an opening (i.e. add
an image component, as the background image, then add an aperture to show part of the image). Currently, in builder,
only circular apertures are supported (you can change the shape by specifying your aperture in a code component- we
are hoping to make it easier to do this through builder soon!). Moreover, only one aperture is enabled at a time. You
can’t “double up”: a second aperture takes precedence. Currently this component does not run online (see the status
of online options, but you can achieve something similar online using an image with a mask: see an example demo
here with corresponding PsychoPy experiment files here or by using the MouseView plugin.

Basic

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

start
[float or integer] The time that the aperture should start having its effect. See Defining the onset/duration of
components for details.

expected start(s) :
If you are using frames to control timing of your stimuli, you can add an expected start time to display the
component timeline in the routine.

stop :
When the aperture stops having its effect. See Defining the onset/duration of components for details.

expected duration(s) :
If you are using frames to control timing of your stimuli, you can add an expected duration to display the com-
ponent timeline in the routine.

Layout

How should the stimulus be laid out? Padding, margins, size, position, etc.

size
[integer] The size controls how big the aperture will be, in pixels, default = 120

pos
[[X,Y]] The position of the centre of the aperture, in the units specified by the stimulus or window.

Note: Top tip: You can make an aperture (or anything!) track the position of your mouse by adding a mouse compo-
nent, then setting the position of your aperture to be mouse.getPos() (and set every frame), where “mouse” corre-
sponds to the name of your mouse component.

6.1. Building experiments in a GUI 61

https://www.psychopy.org/online/status.html
https://www.psychopy.org/online/status.html
https://run.pavlovia.org/demos/dynamic_selective_inspect/html/
https://run.pavlovia.org/demos/dynamic_selective_inspect/html/
https://gitlab.pavlovia.org/demos/dynamic_selective_inspect
https://run.pavlovia.org/demos/mouseview_demo/

PsychoPy - Psychology software for Python, Release 2023.2.3

spatial units :
What units to use.

See also:
API reference for Aperture

Brush Component

The Brush component is a freehand drawing tool.

Properties

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

Start
[int, float] The time that the stimulus should first appear.

Stop
[int, float] Governs the duration for which the stimulus is presented.

Press Button
[bool] Should the participant have to press a button to paint, or should it be always on?

Appearance

How should the stimulus look? Colour, borders, etc.

Brush Size
[int, float] Width of the line drawn by the brush, in pixels

Opacity :
Vary the transparency, from 0.0 = invisible to 1.0 = opaque

Brush Color
[color] Colour of the brush

Brush Color Space
[rgb, dkl, lms, hsv] See Color spaces

See also:
API reference for Brush

Button Component

This component allows you to show a static textbox which ends the routine and/or triggers a “callback” (some custom
code) when pressed. The nice thing about the button component is that you can allow mouse/touch responses with
a single component instead of needing 3 separate components i.e. a textbox component (to display as a “clickable”
thing), a mouse component (to click the textbox) and a code component (not essential, but for example to check if a
clicked response was correct or incorrect).

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

6.1. Building experiments in a GUI 62

PsychoPy - Psychology software for Python, Release 2023.2.3

start :
The time that the stimulus should first appear. See Defining the onset/duration of components for details.

stop :
The duration for which the stimulus is presented. See Defining the onset/duration of components for details.

Force End Routine on Press
If this box is checked then the Routine will end as soon as one of the mouse buttons is pressed.

button text
[string] Text to be shown

callback function
[code] Custom code to run when the button is pressed

run once per click
[bool] Whether the callback function to only run once when the button is inititally clicked, or whether it should
run continuously each frame while the button is pressed.

Appearance

How should the stimulus look? Colour, borders, etc.

text color
[color] See Color spaces

fill color
[color] See Color spaces

border color
[color] See Color spaces

color space
[rgb, dkl, lms, hsv] See Color spaces

border width
[int | float] How wide should the line be? Width is specified in chosen spatial units, see Units for the window and
stimuli

opacity :
Vary the transparency, from 0.0 = invisible to 1.0 = opaque

Layout

How should the stimulus be laid out? Padding, margins, size, position, etc.

ori
[degrees] The orientation of the stimulus in degrees.

pos
[[X,Y]] The position of the centre of the stimulus, in the units specified by the stimulus or window

size
[(width, height)] Size of the stimulus on screen

spatial units
[deg, cm, pix, norm, or inherit from window] See Units for the window and stimuli

padding
[float] How much space should there be between the box edge and the text?

6.1. Building experiments in a GUI 63

PsychoPy - Psychology software for Python, Release 2023.2.3

anchor
[center, center-left, center-right, top-left, top-center, top-right, bottom-left, bottom-center, bottom-right] What
point on the button should be anchored to its position? For example, if the position of the button is (0, 0), should
the middle of the button be in the middle of the screen, should its top left corner be in the middle of the screen,
etc.?

Formatting

Formatting text

font
[string] What font should the text be set in? Can be a font installed on your computer, saved to the “fonts” folder
in your user folder or (if you are connected to the internet), a font from Google Fonts.

language style
[LTR, RTL, Arabic] Should text be laid out from left to right (LTR), from right to left (RTL), or laid out like
Arabic script?

letter height
[integer or float] The height of the characters in the given units of the stimulus/window. Note that nearly all
actual letters will occupy a smaller space than this, depending on font, character, presence of accents etc. The
width of the letters is determined by the aspect ratio of the font.

line spacing
[float] How tall should each line be, proportional to the size of the font?

See also:
API reference for ButtonStim

Camera Component

The camera component provides a way to use the webcam to record participants during an experiment. Note: For
online experiments, the browser will notify participants to allow use of webcam before the start of the task.
When recording via webcam, specify the starting time relative to the start of the routine (see start below) and a stop
time (= duration in seconds). A blank duration evaluates to recording for 0.000s.

The resulting video files are saved in .mp4 format if recorded locally and saved in .webm if recorded online. There will
be one file per recording. The files appear in a new folder within the data directory in a folder called data_cam_recorded.
The file names include the unix (epoch) time of the onset of the recording with milliseconds, e.g., recording_cam_2022-
06-16_14h32.42.064.mp4. Note: For online experiments, the recordings can only be downloaded from the “Down-
load results” button from the study’s Pavlovia page.
For a demo in builder mode, after unpacking the demos, click on Demos > Feature Demos > camera. For a demo in
coder mode, click on Demos > hardware > camera.py

Note: Since camera is still in beta status, do keep an eye out on bug fixes.

6.1. Building experiments in a GUI 64

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters

Basic

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

start
[float or integer] The time that the stimulus should first play. See Defining the onset/duration of components for
details.

stop (duration):
The length of time (sec) to record for. An expected duration can be given for visualisation purposes. See Defining
the onset/duration of components for details; note that only seconds are allowed.

Data

Save onset/offset times: bool
Whether to save the onset and offset times of the component.

Sync timing with screen refresh: bool
Whether to sync the start time of the component with the window refresh.

Output File Type:
File type the video is saved as locally is mp4 and for online it is webm.

Cedrus Button Box Component

This component allows you to connect to a Cedrus Button Box to collect key presses.

Before using your Cedrus response box make sure to install the required drivers. From there, your response box should
plug straight into your USB port!

Properties

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

Start :
The time that the button box is first read. See Defining the onset/duration of components for details.

Stop :
Governs the duration for which the button box is first read. See Defining the onset/duration of components for
details.

Force end of Routine
[true/false] If this is checked, the first response will end the routine.

6.1. Building experiments in a GUI 65

https://cedrus.com/support/rbx30/tn1042_install_rbx30_win.htm

PsychoPy - Psychology software for Python, Release 2023.2.3

Data

What information to save, how to lay it out and when to save it.

Allowed keys
[None, or an integer, list, or tuple of integers 0-7] This field lets you specify which buttons (None, or some or all
of 0 through 7) to listen to.

Store
[(choice of: first, last, all, nothing)] Which button events to save in the data file. Events and the response times
are saved, with RT being recorded by the button box (not by).

Store correct
[true/false] If selected, a correctness value will be saved in the data file, based on a match with the given correct
answer.

Discard previous
[true/false] If selected, any previous responses will be ignored (typically this is what you want).

Hardware

Parameters for controlling hardware.

Device number: integer
This is only needed if you have multiple Cedrus devices connected and you need to specify which to use.

Use box timer
[true/false] Set this to True to use the button box timer for timing information (may give better time resolution)

Data output

buttonBox.keys : A list of keys that were pressed (e.g. 0, 1, 2 . . .)

buttonBox.rt : A list of response times for each keypress

Special use cases

If you want to detect both key presses and key lifts from your cedrus response box, at the moment you will need to use
custom code. Add a code component to your Routine and in the Begin Experiment use:

import pyxid2 as pyxid

get a list of all attached XID devices
devices = pyxid.get_xid_devices()

dev = devices[0] # get the first device to use

Then in the Each Frame tab use:

dev.poll_for_response()
if dev.response_queue_size() > 0:

response = dev.get_next_response()
print(response)

6.1. Building experiments in a GUI 66

PsychoPy - Psychology software for Python, Release 2023.2.3

The printed response will return if the key is being pressed (i.e. a key down event) or not (i.e. a key up event):

{'port': 0, 'key': 0, 'pressed': True, 'time': 953}
{'port': 0, 'key': 0, 'pressed': False, 'time': 1298}
{'port': 0, 'key': 0, 'pressed': True, 'time': 2051}
{'port': 0, 'key': 0, 'pressed': False, 'time': 3140}

See also:
API reference for iolab

Code Component

The Code Component can be used to insert short pieces of python code into your experiments. This might be create a
variable that you want for another Component, to manipulate images before displaying them, to interact with hardware
for which there isn’t yet a pre-packaged component in (e.g. writing code to interact with the serial/parallel ports). See
code uses below.

Be aware that the code for each of the components in your Routine are executed in the order they appear on the Routine
display (from top to bottom). If you want your Code Component to alter a variable to be used by another component
immediately, then it needs to be above that component in the view. You may want the code not to take effect until next
frame however, in which case put it at the bottom of the Routine. You can move Components up and down the Routine
by right-clicking on their icons.

Within your code you can use other variables and modules from the script. For example, all routines have a stopwatch-
style Clock associated with them, which gets reset at the beginning of that repeat of the routine. So if you have a
Routine called trial, there will be a Clock called trialClock and so you can get the time (in sec) from the beginning of
the trial by using:

currentT = trialClock.getTime()

To see what other variables you might want to use, and also what terms you need to avoid in your chunks of code,
compile your script before inserting the code object and take a look at the contents of that script.

Note that this page is concerned with Code Components specifically, and not all cases in which you might use python
syntax within the Builder. It is also possible to put code into a non-code input field (such as the duration or text of
a Text Component). The syntax there is slightly different (requiring a $ to trigger the special handling, or \$ to avoid
triggering special handling). The syntax to use within a Code Component is always regular python syntax.

Parameters

Code type:
What type of code will you write?

• Py - Python code only (for local use)

• JS - Javascript only (for online use)

• Auto -> JS - Write in python code on the left and this will be auto translated to Javascript on the right.

• Both - write both Python and Javascript, but independently of one another (Python will be executed when
you run the task locally, JS will be executed when you run the task online)

Within a Code Component you can write code to be executed at 6 different points within the experiment. You can use
as many or as few of these as you need for any Code Component:

6.1. Building experiments in a GUI 67

PsychoPy - Psychology software for Python, Release 2023.2.3

Before Experiment:
Things that need to be done just once, like importing a supporting module, which do not need the experiment
window to exist yet.

Begin Experiment:
Things that need to be done just once, like initialising a variable for later use, which may need to refer to the
experiment window.

Begin Routine:
Certain things might need to be done at the start of a Routine e.g. at the beginning of each trial you might decide
which side a stimulus will appear.

Each Frame:
Things that need to updated constantly, throughout the experiment. Note that these will be executed exactly once
per video frame (on the order of every 10ms), to give dynamic displays. Static displays do not need to be updated
every frame.

End Routine:
At the end of the Routine (e.g. the trial) you may need to do additional things, like checking if the participant
got the right answer

End Experiment:
Use this for things like saving data to disk, presenting a graph(?), or resetting hardware to its original state.

Example code uses

1. Set a random location for your target stimulus

There are many ways to do this, but you could add the following to the Begin Routine section of a Code Component
at the top of your Routine. Then set your stimulus position to be $(targetX, 0) and set the correct answer field of a
Keyboard Component to be $corrAns (set both of these to update on every repeat of the Routine).:

if random()>0.5:
targetX=-0.5 #on the left
corrAns='left'

else:
targetX=0.5#on the right
corrAns='right'

2. Create a patch of noise

As with the above there are many different ways to create noise, but a simple method would be to add the following to
the Begin Routine section of a Code Component at the top of your Routine. Then set the image as $noiseTexture.:

noiseTexture = random.rand((128,128)) * 2.0 - 1

Note: Don’t expect all code components to work online. Remember that code components using specific python
libraries such as numpy won’t smoothly translate. You might want to view the PsychoPy to Javascript crib sheet for
useful info on using code components for online experiments.

6.1. Building experiments in a GUI 68

https://discourse.psychopy.org/t/psychopy-python-to-javascript-crib-sheet/14601

PsychoPy - Psychology software for Python, Release 2023.2.3

3. Send a feedback message at the end of the experiment

Make a new routine, and place it at the end of the flow (i.e., the end of the experiment). Create a Code Component with
this in the Begin Experiment field:

expClock = core.Clock()

and put this in the Begin routine field:

msg = "Thanks for participating - that took' + str(expClock.getTime()/60.0)) + 'minutes␣
→˓in total'

Next, add a Text Component to the routine, and set the text to $msg. Be sure that the text field’s updating is set to “Set
every repeat” (and not “Constant”).

4. End a loop early.

Code components can also be used to control the end of a loop. For example imagine you want to end when a key
response has been made 5 times:

if key_resp.keys: # if a key response has been made
if len(key_resp.keys) ==5: # if 5 key presses have been made

continueRoutine = False # end the current routine
trials.finished = True # exit the current loop (if your loop is called "trials"

What variables are available to use?

The most complete way to find this out for your particular script is to compile it and take a look at what’s in there.
Below are some options that appear in nearly all scripts. Remember that those variables are Python objects and can
have attributes of their own. You can find out about those attributes using:

dir(myObject)

Common variables:

• expInfo: This is a Python Dictionary containing the information from the starting dialog box. e.g. That generally
includes the ‘participant’ identifier. You can access that in your experiment using exp[‘participant’]

• t: the current time (in seconds) measured from the start of this Routine

• frameN: the number of /completed/ frames since the start of the Routine (=0 in the first frame)

• win: the Window that the experiment is using

Your own variables:

• anything you’ve created in a Code Component is available for the rest of the script. (Sometimes you might need
to define it at the beginning of the experiment, so that it will be available throughout.)

• the name of any other stimulus or the parameters from your file also exist as variables.

• most Components have a status attribute, which is useful to determine whether a stimulus has NOT_STARTED,
STARTED or FINISHED. For example, to play a tone at the end of a Movie Component (of unknown duration)
you could set start of your tone to have the ‘condition’

6.1. Building experiments in a GUI 69

PsychoPy - Psychology software for Python, Release 2023.2.3

myMovieName.status==FINISHED

Selected contents of the numpy library and numpy.random are imported by default. The entire numpy library is im-
ported as np, so you can use a several hundred maths functions by prepending things with ‘np.’:

• random() , randint() , normal() , shuffle() options for creating arrays of random numbers.

• sin(), cos(), tan(), and pi: For geometry and trig. By default angles are in radians, if you want the cosine of
an angle specified in degrees use cos(angle*180/pi), or use numpy’s conversion functions, rad2deg(angle) and
deg2rad(angle).

• linspace(): Create an array of linearly spaced values.

• log(), log10(): The natural and base-10 log functions, respectively. (It is a lowercase-L in log).

• sum(), len(): For the sum and length of a list or array. To find an average, it is better to use average() (due to the
potential for integer division issues with sum()/len()).

• average(), sqrt(), std(): For average (mean), square root, and standard deviation, respectively. Note: Be sure that
the numpy standard deviation formula is the one you want!

• np.______: Many math-related features are available through the complete numpy libraries, which are available
within psychopy builder scripts as ‘np.’. For example, you could use np.hanning(3) or np.random.poisson(10,
10) in a code component.

Dots (RDK) Component

The Dots Component allows you to present a Random Dot Kinematogram (RDK) to the participant of your study. Note
that this component is not yet supported for online use (see status of online options) but users have contributed work
arounds for use online. These are fields of dots that drift in different directions and subjects are typically required to
identify the ‘global motion’ of the field.

There are many ways to define the motion of the signal and noise dots. In the way the dots are configured follows Scase,
Braddick & Raymond (1996). Although Scase et al (1996) show that the choice of algorithm for your dots actually
makes relatively little difference there are some potential gotchas. Think carefully about whether each of these will
affect your particular case:

• limited dot lifetimes: as your dots drift in one direction they go off the edge of the stimulus and are replaced
randomly in the stimulus field. This could lead to a higher density of dots in the direction of motion providing
subjects with an alternative cue to direction. Keeping dot lives relatively short prevents this.

• noiseDots=’direction’: some groups have used noise dots that appear in a random location on each frame (noise-
Dots=’location’). This has the disadvantage that the noise dots not only have a random direction but also a random
speed (whereas signal dots have a constant speed and constant direction)

• signalDots=’same’: on each frame the dots constituting the signal could be the same as on the previous frame or
different. If ‘different’, participants could follow a single dot for a long time and calculate its average direction of
motion to get the ‘global’ direction, because the dots would sometimes take a random direction and sometimes
take the signal direction.

As a result of these, the defaults for are to have signalDots that are from a ‘different’ population, noise dots that have
random ‘direction’ and a dot life of 3 frames.

6.1. Building experiments in a GUI 70

http://docs.scipy.org/doc/numpy/reference/index.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.rand.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randint.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.shuffle.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html
https://www.psychopy.org/online/status.html
https://gitlab.pavlovia.org/Francesco_Cabiddu/staircaserdk
https://gitlab.pavlovia.org/Francesco_Cabiddu/staircaserdk
http://www.sciencedirect.com/science/article/pii/0042698995003258
http://www.sciencedirect.com/science/article/pii/0042698995003258

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters

name :
Everything in a experiment needs a unique name. The name should contain only letters, numbers and underscores
(no punctuation marks or spaces).

start :
The time that the stimulus should first appear. See Defining the onset/duration of components for details.

stop :
Governs the duration for which the stimulus is presented. See Defining the onset/duration of components for
details.

Layout

How should the stimulus be laid out? Padding, margins, size, position, etc.

Dot size:
Size of the dots in pixel units.

fieldSize
[a single value, specifying the diameter of the field (in the specified Spatial Units).] Sizes can be negative and
can extend beyond the window.

fieldPos
[(x,y) or [x,y]] Specifying the location of the centre of the stimulus.

spatial units
[None, ‘norm’, ‘cm’, ‘deg’ or ‘pix’] If None then the current units of the Window will be used. See Units for the
window and stimuli for explanation of other options.

fieldShape :
Defines the shape of the field in which the dots appear. For a circular field the nDots represents the average
number of dots per frame, but on each frame this may vary a little.

Appearance

How should the stimulus look? Colour, borders, etc.

dot color :
See Color spaces

dot color space
[rgb, dkl or lms] See Color spaces

opacity :
Vary the transparency, from 0.0 = invisible to 1.0 = opaque

6.1. Building experiments in a GUI 71

PsychoPy - Psychology software for Python, Release 2023.2.3

Dots

Parameters unique to the Dots component

number of dots
[int] Number of dots to be generated

direction:
Direction of motion for the signal dots (degrees).

speed
[float] Speed of the dots (in units per frame)

coherence
[float] Fraction moving in the signal direction on any one frame

dot life-time
[int] Number of frames each dot lives for (-1=infinite)

signalDots :
If ‘same’ then the signal and noise dots are constant. If different then the choice of which is signal and which is
noise gets randomised on each frame. This corresponds to Scase et al’s (1996) categories of RDK.

dot refresh rule
[repeat, none] When should the sample of dots be refreshed?

noiseDots
[‘direction’, ‘position’ or ‘walk’] Determines the behaviour of the noise dots, taken directly from Scase et al’s
(1996) categories. For ‘position’, noise dots take a random position every frame. For ‘direction’ noise dots
follow a random, but constant direction. For ‘walk’ noise dots vary their direction every frame, but keep a
constant speed.

See also:
API reference for DotStim

Emotiv Marking Component

The Emotiv Marking component causes Psychopy to send a marker to the EEG datastream at the time that the stimuli
are presented.

For the Emotiv Marking component to work an emotiv_recording component should have already been added to the
experiment.

By default markers with labels and values can be added. A time interval can be specified by sending a stop marker. If
the Marker intervals overlap it is important that the labels are unique. Additionally the length of the interval must be
greater than 0.2 seconds. If you need higher speeds than this, it is best to record the times of your markers manually
and compare them to the times in the raw EEG data.

If you are exporting the experiment to HTML the emotiv components will have no effect in Pavlovia. To import the
experiment into Emotiv OMNI, export the experiment to HTML and follow the instructions in the OMNI platform.

6.1. Building experiments in a GUI 72

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

Start :
The time to send the marker to the EEG datastream

Stop Marker:
If selected the stop marker will be sent as specified by the Stop parameter. If no stop marker is sent then the
marker will be an “instance” marker and will indicate a point in time. If a stop marker is sent the marker will be
an “interval” marker and have a startDatetime and endDatetime associated with it.

Stop :
Governs the duration for which the stimulus is presented. See Defining the onset/duration of components for
details.

marker label
[string] The label assigned to this marker

marker value
[int] The value assigned to this marker

stop marker
[bool] Whether or not this is a stop marker. Note: stop markers were designed for relatively long intervals (of
the order of one second). If you wish to mark short intervals it is safer to send two instance markers and label
them appropriately so that you can create the intervals in post processing.

Emotiv Record Component

The emotiv_record component causes Psychopy to connect to the headset so that markers can be sent to the datastream.

The emotiv_record component should be added ONCE before any stimuli have been presented at the top of first trial
of the experiment.

We recommend that you use the EmotivLauncher and or EmotivPro software to establish that the headset is connected
and the quality of the signals are good before running the experiment with Psychopy.

We recommend viewing the eeg data in EmotivPro from which it can be exported as a csv or edf file. However, if you do
want PschoPy to record the data into a gzipped csv file you need to set an environment variable CORTEX_DATA=1. Ad-
ditionally you will need to apply for a RAW EEG API license. See: https://emotiv.gitbook.io/cortex-api/#prerequisites
for more details.

If you are exporting the experiment to HTML the emotiv components will have no effect in Pavlovia. To import the
experiment into Emotiv OMNI, export the experiment to HTML and follow the instructions in the OMNI platform.

Getting Started

Before you can connect Psychopy to Emotiv hardware, you need to register your AppId on the Emotiv website (https:
//emotiv.com).

Note: Normally you should NOT click the checkbox: “My App requires EEG access”. Otherwise you will need to
apply for a RAW EEG API license.

Login to your account at emotiv.com, Goto My Account > Cortex Apps. There you will get a client_id and a
client_secret that you need to copy into a file called .emotiv_creds in your home directory. One line should have

6.1. Building experiments in a GUI 73

https://emotiv.gitbook.io/cortex-api/#prerequisites
https://emotiv.com
https://emotiv.com

PsychoPy - Psychology software for Python, Release 2023.2.3

“client_id” (without the quotes) then a space and then the client_id, another line should have “client_secret” (without
the quotes and then as space and then the client secret. A line beginning with a hash will be ignored. eg

—begin file —
client_id and client_secret for Emotiv application
client_id abcd1234. . .
client_secret wxyz78910. . . .
—end file—

Troubleshooting

• Check that the .emotiv_creds file does not have “.txt” file extension.

• Ensure the file format is exactly correct (do not include the begin and end file lines)

• Ensure that your AppId does not require EEG data or apply for RAW EEG API access through EMOTIV support.

• Ensure you connect your headset using EmotivPro or EmotivLauncher before you run the experiment.

Parameters

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

Start :
Set this to 0

Stop :
Set this to 1 seconds

Setting these values just allows the routine to finish

Eye Tracker Region of Interest Component

Please note: This is a new component, and is subject to change.

Record eye movement events occurring within a defined Region of Interest (ROI). Note that you will still need to add
an Eyetracker Record component to this routine to save eye movement data.

Parameters

Basic

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

Start
[float or integer] The time that the stimulus should first play. See Defining the onset/duration of components for
details.

6.1. Building experiments in a GUI 74

PsychoPy - Psychology software for Python, Release 2023.2.3

Stop (duration):
The length of time (sec) to record for. An expected duration can be given for visualisation purposes. See Defining
the onset/duration of components for details; note that only seconds are allowed.

Shape:
A shape to outline the Region of Interest. Same as the Polygon (shape) Component. Using a regular polygon
allows you to specify the number of vertices (a circle would be a regular polygon with a large number of vertices
e.g. 100). Using custom polygon allows you to add a list of coordinates to build custom shapes.

End Routine On:
What event, if any, do you want to end the current routine. If “look at” or “look away” selected you should also
specify the minimum look time in milliseconds that will constitute an event of interest.

Layout

How should the stimulus be laid out? Padding, margins, size, position, etc.

ori
[degrees] The orientation of the entire patch (texture and mask) in degrees.

pos
[[X,Y]] The position of the centre of the stimulus, in the units specified by the stimulus or window

size
[(width, height)] Size of the stimulus on screen

spatial units
[deg, cm, pix, norm, or inherit from window] See Units for the window and stimuli

Data

Save onset/offset times: bool
Whether to save the onset and offset times of the component.

Save. . . :
What eye movement events do you want to save? Every Look will return a list of looks; First Look and Last Look
will return the first and last looks respectively.

Time Relative To:
What do you want the timing of the timestamped events to be relative to?

See also:
API reference for ROI

Eye Tracker Calibration Component (Standalone Routine)

Please note: This is a new component, and is subject to change.

Note that the Eye tracking calibration component is a “standalone routine”, this means that rather than generating a
component that is added to an existing routine, it is a routine in itself, that is then placed along your flow. The reason
for this implementation is that calibration represents a series of events that will be relatively uniform across studies,
and often we would not want to add any additional info to this phase of the study (i.e. images, text etc.)

6.1. Building experiments in a GUI 75

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters

Basic

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

Target Layout:
How many targets do you want to be presented for calibration? Points will be displayed in a grid.

Randomise Target Positions: bool
If True the point positions will be presented in a random order.

Target

Aesthetic features of the calibration target.

Outer Fill Color
[string] The color of the outer circle of the target. None/Blank will be transparent.

Outer Border Color
[string] The color of the border of the outer circle of the target.

Inner Fill Color
[string] The color of the inner circle of the target. None/Blank will be transparent.

Inner Border Color
[string] The color of the border of the inner circle of the target.

Color Space :
The color space in which to read the defined colors.

Outer Border Width
[int] The width of the line around the outer target.

Animation

How should the animation of the calibration routine appear?

Progress Mode :
Should each target appear one after the other and progress based on time? Or should the next target be presented
once the space key has been pressed.

Target Duration
[int or float] The duration of the pulse of the outer circle (i.e. time or expand + contract)

Expand Scale:
How much larger should the outer circle get?

Animate Position Changes: bool
Should the target appear as though it is moving across the screen from one location to the next?

Movement Duration: int or float
The duration of the movement from one point to the next.

See also:
API reference for EyetrackerCalibration

6.1. Building experiments in a GUI 76

PsychoPy - Psychology software for Python, Release 2023.2.3

Eye Tracker Record Component

Please note: This is a new component, and is subject to change.

The eye-tracker record component provides a way to record eye movement data within an experiment. To do so, specify
the starting time relative to the start of the routine (see start below) and a stop time (= duration in seconds). Before using
the eye-tracking record component, you must specify your eye tracking device under experiment settings > Eyetracking.
Here the available options are:

• GazePoint

• MouseGaze

• SR Research Ltd (aka EyeLink)

• Tobii Technology

If you are developing your eye-tracking paradigm out-of-lab we recommend using MouseGaze which will simulate eye
movement responses through monitoring your mouse cursor and buttons to simulate movements and blinks.

The resulting eye-movement coordinates are stored and accessible through calling etRecord.pos where etRecord cor-
responds to the name of the eye-tracking record component, you can set something (e.g. a polygon) to be in the same
location as the current “look” by setting the position field to :code:`etRecord.pos and setting the field to update on
every frame When running an eye tracking study, you can optionally save the data in hdf5 format through selecting
this option in the experiment settings > data tab.

Parameters

Basic

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

start
[float or integer] The time that the stimulus should first play. See Defining the onset/duration of components for
details.

stop (duration):
The length of time (sec) to record for. An expected duration can be given for visualisation purposes. See Defining
the onset/duration of components for details; note that only seconds are allowed.

Data

Save onset/offset times: bool
Whether to save the onset and offset times of the component.

Sync timing with screen refresh: bool
Whether to sync the start time of the component with the window refresh.

See also:
API reference for EyeTracker

6.1. Building experiments in a GUI 77

PsychoPy - Psychology software for Python, Release 2023.2.3

Eye Tracker Validation Component (Standalone Routine)

Please note: This is a new component, and is subject to change.

The Eye tracking validation component is also a “standalone routine”, this means that rather than generating a compo-
nent that is added to an existing routine, it is a routine in itself, that is then placed along your flow. The reason for this
implementation is that calibration/validation represent a series of events that will be relatively uniform across studies,
and often we would not want to add any additional info to this phase of the study (i.e. images, text etc.)

Parameters

Basic

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

Target Layout:
How many targets do you want to be presented for calibration? Points will be displayed in a grid.

Randomise Target Positions: bool
If True the point positions will be presented in a random order.

Gaze Cursor Color:
The color of the gaze cursor.

Target

Aesthetic features of the target.

Outer Fill Color
[string] The color of the outer circle of the target. None/Blank will be transparent.

Outer Border Color
[string] The color of the border of the outer circle of the target.

Inner Fill Color
[string] The color of the inner circle of the target. None/Blank will be transparent.

Inner Border Color
[string] The color of the border of the inner circle of the target.

Color Space :
The color space in which to read the defined colors.

Outer Border Width
[int] The width of the line around the outer target.

6.1. Building experiments in a GUI 78

PsychoPy - Psychology software for Python, Release 2023.2.3

Animation

How should the animation of the validation routine appear?

Progress Mode :
Should each target appear one after the other and progress based on time? Or should the next target be presented
once the space key has been pressed.

Target Duration: int or float
The duration of the pulse of the outer circle (i.e. time or expand + contract)

Expand Scale:
How much larger should the outer circle get?

Animate Position Changes: bool
Should the target appear as though it is moving across the screen from one location to the next?

Movement Duration: int or float
The duration of the movement from one point to the next.

Data

Save As Image
Save the results as an image

Show Results Screen
Show a screen with the results after completion

See also:
API reference for EyetrackerCalibration

Form Component

Please note that this component is still in Beta mode and is therefore developing

The Form component enables Psychopy to be used as a questionnaire tool, where participants can be presented with a
series of questions requiring responses. Form items, defined as questions and response pairs, are presented simultane-
ously onscreen with a scrollable viewing window.

Note: We have now introduced Pavlovia Surveys which allow you to create online questionnaires. You can either use
them by themselves or in conjunction with your experiments. Click here to watch our Pavlovia Surveys Launch Webinar
to find out more.

Properties

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

Start
[int, float] The time that the stimulus should first appear.

Stop
[int, float] Governs the duration for which the stimulus is presented.

6.1. Building experiments in a GUI 79

https://pavlovia.org/docs/surveys/overview
https://youtu.be/1fs8CVKBPGk

PsychoPy - Psychology software for Python, Release 2023.2.3

Items
[A csv / xlsx file To get started, we recommend selecting the “Open/Create Icon” which will open up a
template forms spreadsheet A csv/xlsx file should have the following key, value pairs / column headers:]

index
The item index as a number

itemText
The item question string

itemWidth
The question width between 0 : 1

type
The type of rating e.g., ‘choice’, ‘rating’, ‘slider’, ‘free-text’

responseWidth
The question width between 0 : 1

options
A sequence of tick labels for options e.g., yes, no

layout
Response object layout e.g., ‘horiz’ or ‘vert’

itemColor
The question text font color

responseColor
The response object color

granularity
If you are using a slider, what do you want the granularity of the slider to be?

Missing column headers will be replaced by default entries, with the exception of itemText and type, which are
required. The default entries are:

index
0 (increments for each item)

itemWidth
0.7

responseWidth
0.3

options
Yes, No

layout
horiz

itemColor
from style

responseColor
from style

Data format
[menu] Choose whether to store items data by column or row in your datafile.

randomize
[bool] Randomize order of Form elements

6.1. Building experiments in a GUI 80

PsychoPy - Psychology software for Python, Release 2023.2.3

Layout

How should the stimulus be laid out? Padding, margins, size, position, etc.

Size
[[X,Y]] Size of the stimulus, to be specified in ‘height’ units.

Pos
[[X,Y]] The position of the centre of the stimulus, to be specified in ‘height’ units.

Item padding
[float] Space or padding between Form elements (i.e., question and response text), to be specified in ‘height’
units.

Appearance

How should the stimulus look? Color, borders, etc. Many of these read-only parameters become editable when Styles
is set to custom.

style
[light, dark] Whether to style items in your form for a light or a dark background

border color
[color] See Color spaces

fill color
[color] See Color spaces

opacity :
Vary the transparency, from 0.0 = invisible to 1.0 = opaque

Formatting

Formatting text

Text height
[float] Text height of the Form elements (i.e., question and response text).

Font
Font to use in text.

Note: Top tip: Form has an attribute to check if all questions have been answered form.complete. You could use
this to make a “submit” button appear only when the form is completed!

See also:
API reference for Form

6.1. Building experiments in a GUI 81

PsychoPy - Psychology software for Python, Release 2023.2.3

Creating a Google Cloud Speech API key

There are a few steps but they’re relatively easy. Pricing is free for the first 60 minutes per month and 1-2cents per
minute after that Information here: https://cloud.google.com/speech-to-text

Note that You might be asked to enter card details but you are not charged an auto update unless you manually enter
the card details when prompted

Steps

• Create an account on Google Cloud Platform (this is not the same as simply gmail or Google Worksuite)

• Create a project from here: https://console.cloud.google.com/home/dashboard by selecting manage resources
> create project The projects could just be for the entire lab, say, or for each experiment, depending on the
granularity you need for billing (We believe)

• Enable the Speech API for that project: select the project in the manage resources page, go to https://console.
cloud.google.com/apis/library/speech.googleapis.com click “enable”.

• Then click on Credentials and create Service Account credentials.

Fig. 6.2: Add credentials to your Google cloud project and select “Service Account”.

• Grant the service account access to Google Speech Client.

• Once you have your service account set up you can add a key and make a downloadable JSON file. Store it
somewhere (private) on your computer. You don’t need to go through these steps for every new project - once
you have a key you can use it for all of your projects.

Warning: Be careful not to store the json file in the same location as any experiment folder that might later be
shared on - this is a private file - so keep it somewhere safe.

• Finally, in go fo File > Preferences and add the path to the JSON file in General > appKeyGoogleCloud.

6.1. Building experiments in a GUI 82

https://cloud.google.com/speech-to-text
https://cloud.google.com/
https://console.cloud.google.com/home/dashboard
https://console.cloud.google.com/apis/library/speech.googleapis.com
https://console.cloud.google.com/apis/library/speech.googleapis.com

PsychoPy - Psychology software for Python, Release 2023.2.3

Fig. 6.3: Search for “Google Speech Client” and give this account access to that API.

6.1. Building experiments in a GUI 83

PsychoPy - Psychology software for Python, Release 2023.2.3

Fig. 6.4: Generate a downloadable JSON for this project.

Fig. 6.5: Setup your preferences to use your downloaded JSON - this will apply to all experiments using the mic - not
just this experiment.

6.1. Building experiments in a GUI 84

PsychoPy - Psychology software for Python, Release 2023.2.3

Warning: Remember to check that your accounts billing information stays up to date. Even if you haven’t done
enough recordings to warrant a large payment, if a card on your billing account expires this will invalidate the JSON
key and raise a “billing” error in .

Grating Component

The Grating stimulus allows a texture to be wrapped/cycled in 2 dimensions, optionally in conjunction with a mask
(e.g. Gaussian window). The texture can be a bitmap image from a variety of standard file formats, or a synthetic
texture such as a sinusoidal grating. The mask can also be derived from either an image, or mathematical form such as
a Gaussian.

When using gratings, if you want to use the spatial frequency setting then create just a single cycle of your texture and
allow to handle the repetition of that texture (do not create the cycles you’re expecting within the texture).

Gratings can have their position, orientation, size and other settings manipulated on a frame-by-frame basis. There is
a performance advantage (in terms of milliseconds) to using images which are square and powers of two (32, 64, 128,
etc.), however this is slight and would not be noticed in the majority of experiments.

Parameters

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

Start :
The time that the stimulus should first appear. See Defining the onset/duration of components for details.

Stop :
Governs the duration for which the stimulus is presented. See Defining the onset/duration of components for
details.

Appearance

How should the stimulus look? Colour, borders, etc.

blend mode
[average, add] How should colours blend when overlaid onto something? Should colours be averaged, or added?

foreground color :
See Color spaces

foreground color space
[rgb, dkl or lms] See Color spaces

Opacity
[0-1] Can be used to create semi-transparent gratings

6.1. Building experiments in a GUI 85

PsychoPy - Psychology software for Python, Release 2023.2.3

Layout

How should the stimulus be laid out? Padding, margins, size, position, etc.

Orientation
[degrees] The orientation of the entire patch (texture and mask) in degrees.

Position
[[X,Y]] The position of the centre of the stimulus, in the units specified by the stimulus or window

Size
[[sizex, sizey] or a single value (applied to x and y)] The size of the stimulus in the given units of the stimu-
lus/window. If the mask is a Gaussian then the size refers to width at 3 standard deviations on either side of the
mean (i.e. sd=size/6)

Units
[deg, cm, pix, norm, or inherit from window] See Units for the window and stimuli

Texture

Control how the stimulus handles textures.

Texture: a filename, a standard name (sin, sqr) or a variable giving a numpy array
This specifies the image that will be used as the texture for the visual patch. The image can be repeated on the
patch (in either x or y or both) by setting the spatial frequency to be high (or can be stretched so that only a subset
of the image appears by setting the spatial frequency to be low). Filenames can be relative or absolute paths and
can refer to most image formats (e.g. tif, jpg, bmp, png, etc.). If this is set to none, the patch will be a flat colour.

Mask
[a filename, a standard name (gauss, circle, raisedCos) or a numpy array of dimensions NxNx1] The mask can
define the shape (e.g. circle will make the patch circular) or something which overlays the patch e.g. noise.

Interpolate :
If linear is selected then linear interpolation will be applied when the image is rescaled to the appropriate size
for the screen. Nearest will use a nearest-neighbour rule.

Phase
[single float or pair of values [X,Y]] The position of the texture within the mask, in both X and Y. If a single value
is given it will be applied to both dimensions. The phase has units of cycles (rather than degrees or radians),
wrapping at 1. As a result, setting the phase to 0,1,2. . . is equivalent, causing the texture to be centered on the
mask. A phase of 0.25 will cause the image to shift by half a cycle (equivalent to pi radians). The advantage of
this is that is if you set the phase according to time it is automatically in Hz.

Spatial Frequency
[[SFx, SFy] or a single value (applied to x and y)] The spatial frequency of the texture on the patch. The units are
dependent on the specified units for the stimulus/window; if the units are deg then the SF units will be cycles/deg,
if units are norm then the SF units will be cycles per stimulus. If this is set to none then only one cycle will be
displayed.

Texture Resolution
[an integer (power of two)] Defines the size of the resolution of the texture for standard textures such as sin,
sqr etc. For most cases a value of 256 pixels will suffice, but if stimuli are going to be very small then a lower
resolution will use less memory.

See also:
API reference for GratingStim

6.1. Building experiments in a GUI 86

PsychoPy - Psychology software for Python, Release 2023.2.3

Image Component

The Image stimulus allows an image to be presented, which can be a bitmap image from a variety of standard file
formats, with an optional transparency mask that can effectively control the shape of the image. The mask can also be
derived from an image file, or mathematical form such as a Gaussian.

It is a really good idea to get your image in roughly the size (in pixels) that it will appear on screen to save
memory. If you leave the resolution at 12 megapixel camera, as taken from your camera, but then present it on a
standard screen at 1680x1050 (=1.6 megapixels) then |PsychoPy| and your graphics card have to do an awful lot
of unnecessary work. There is a performance advantage (in terms of milliseconds) to using images which are square
and powers of two (32, 64, 128, etc.), but this is slight and would not be noticed in the majority of experiments.

Images can have their position, orientation, size and other settings manipulated on a frame-by-frame basis.

Parameters

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

Start :
The time that the stimulus should first appear. See Defining the onset/duration of components for details.

Stop :
Governs the duration for which the stimulus is presented. See Defining the onset/duration of components for
details.

Image
[a filename or a standard name (sin, sqr)] Filenames can be relative or absolute paths and can refer to most image
formats (e.g. tif, jpg, bmp, png, etc.). If this is set to none, the patch will be a flat colour.

Appearance

How should the stimulus look? Colour, borders, etc.

opacity
[value from 0 to 1] If opacity is reduced then the underlying images/stimuli will show through

foreground color
[Colors can be applied to luminance-only images (not to rgb images)] See Color spaces

foreground color space
[to be used if a color is supplied] See Color spaces

Layout

How should the stimulus be laid out? Padding, margins, size, position, etc.

Position
[[X,Y]] The position of the centre of the stimulus, in the units specified by the stimulus or window

Size
[[sizex, sizey] or a single value (applied to x and y)] The size of the stimulus in the given units of the stimu-
lus/window. If the mask is a Gaussian then the size refers to width at 3 standard deviations on either side of the
mean (i.e. sd=size/6) Set this to be blank to get the image in its native size.

6.1. Building experiments in a GUI 87

PsychoPy - Psychology software for Python, Release 2023.2.3

Orientation
[degrees] The orientation of the entire patch (texture and mask) in degrees.

Units
[deg, cm, pix, norm, or inherit from window] See Units for the window and stimuli

flip horizontally
[bool] Flip the image along the horizontal axis

flip vertically
[bool] Flip the image along the vertical axis

spatial units
[deg, cm, pix, norm, or inherit from window] See Units for the window and stimuli

Texture

Control how the stimulus handles textures.

Mask
[a filename, a standard name (gauss, circle, raisedCos) or a numpy array of dimensions NxNx1] The mask can
define the shape (e.g. circle will make the patch circular) or something which overlays the patch e.g. noise.

Interpolate :
If linear is selected then linear interpolation will be applied when the image is rescaled to the appropriate size
for the screen. Nearest will use a nearest-neighbour rule.

Texture Resolution:
This is only needed if you use a synthetic texture (e.g. sinusoidal grating) as the image.

See also:
API reference for ImageStim

ioLab Systems buttonbox Component

A button box is a hardware device that is used to collect participant responses with high temporal precision, ideally
with true ms accuracy.

Both the response (which button was pressed) and time taken to make it are returned. The time taken is determined by
a clock on the device itself. This is what makes it capable (in theory) of high precision timing.

Check the log file to see how long it takes for to reset the button box’s internal clock. If this takes a while, then the
RT timing values are not likely to be high precision. It might be possible for you to obtain a correction factor for your
computer + button box set up, if the timing delay is highly reliable.

The ioLabs button box also has a built-in voice-key, but does not have an interface for it. Use a microphone component
instead.

6.1. Building experiments in a GUI 88

PsychoPy - Psychology software for Python, Release 2023.2.3

Properties

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

start :
The time that the stimulus should first appear. See Defining the onset/duration of components for details.

stop :
The duration for which the stimulus is presented. See Defining the onset/duration of components for details.

Force end of Routine
[checkbox] If this is checked, the first response will end the routine.

Data

What information to save, how to lay it out and when to save it.

Active buttons
[None, or an integer, list, or tuple of integers 0-7] The ioLabs box lets you specify a set of active buttons. Re-
sponses on non-active buttons are ignored by the box, and never sent to . This field lets you specify which buttons
(None, or some or all of 0 through 7).

Store
[(choice of: first, last, all, nothing)] Which button events to save in the data file. Events and the response times
are saved, with RT being recorded by the button box (not by).

Store correct
[checkbox] If selected, a correctness value will be saved in the data file, based on a match with the given correct
answer.

Discard previous
[checkbox] If selected, any previous responses will be ignored (typically this is what you want).

Hardware

Parameters for controlling hardware.

Lights off
[checkbox] If selected, all lights will be turned off at the end of each routine.

Lights :
If selected, the lights above the active buttons will be turned on.

Using code components, it is possible to turn on and off specific lights within a trial. See the API for iolab.

See also:
API reference for iolab

6.1. Building experiments in a GUI 89

PsychoPy - Psychology software for Python, Release 2023.2.3

JoyButtons Component

The JoyButtons component can be used to collect gamepad/joystick button responses from a participant.

By not storing the button number pressed and checking the forceEndTrial box it can be used simply to end a Routine If
no gamepad/joystic is installed the keyboard can be used to simulate button presses by pressing ‘ctrl’ + ‘alt’ + digit(0-9).

Parameters

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

Start
[float or integer] The time that joyButtons should first get checked. See Defining the onset/duration of components
for details.

Stop
[float or integer] When joyButtons should no longer get checked. See Defining the onset/duration of components
for details.

Force end routine :
If this box is checked then the Routine will end as soon as one of the allowed buttons is pressed.

Data

What information to save, how to lay it out and when to save it.

Allowed buttons :
A list of allowed buttons can be specified here, e.g. [0,1,2,3], or the name of a variable holding such a list. If this
box is left blank then any button that is pressed will be read. Only allowed buttons count as having been pressed;
any other button will not be stored and will not force the end of the Routine. Note that button numbers (0, 1, 2,
3, . . .), should be separated by commas.

Store :
Which button press, if any, should be stored; the first to be pressed, the last to be pressed or all that have been
pressed. If the button press is to force the end of the trial then this setting is unlikely to be necessary, unless two
buttons happen to be pressed in the same video frame. The response time will also be stored if a button press is
recorded. This time will be taken from the start of joyButtons checking (e.g. if the joyButtons was initiated 2
seconds into the trial and a button was pressed 3.2s into the trials the response time will be recorded as 1.2s).

Store correct :
Check this box if you wish to store whether or not this button press was correct. If so then fill in the next box that
defines what would constitute a correct answer e.g. 1 or $corrAns (note this should not be in inverted commas).
This is given as Python code that should return True (1) or False (0). Often this correct answer will be defined
in the settings of the Loops.

6.1. Building experiments in a GUI 90

PsychoPy - Psychology software for Python, Release 2023.2.3

Hardware

Parameters for controlling hardware.

Device number
[integer] Which gamepad/joystick device number to use. The first device found is numbered 0.

Joystick Component

The Joystick component can be used to collect responses from a participant. The coordinates of the joystick location are
given in the same coordinates as the Window, with (0,0) in the centre. Coordinates are correctly scaled for ‘norm’ and
‘height’ units. User defined scaling can be set by updating joystick.xFactor and joystick.yFactor to the desired values.
Joystick.device.getX() and joystick.device.getY() always return ‘norm’ units. Joystick.getX() and joystick.getY() are
scaled by xFactor or yFactor

No cursor is drawn to represent the joystick current position, but this is easily provided by updating the position of
a partially transparent ‘.png’ immage on each screen frame using the joystick coordinates: joystick.getX() and joy-
stick.getY(). To ensure that the cursor image is drawon on top of other images it should be the last image in the trial.

Joystick Emulation
If no joystick device is found, the mouse and keyboard are used to emulate a joystick device. Joystick position
corresponds to mouse position and mouse buttons correspond to joystick buttons (0,1,2). Other buttons can be
simulated with key chords: ‘ctrl’ + ‘alt’ + digit(0..9).

Scenarios

This can be used in various ways. Here are some scenarios (email the list if you have other uses for your joystick):

Use the joystick to record the location of a button press

Use the joystick to control stimulus parameters
Imagine you want to use your joystick to make your ‘patch’_ bigger or smaller and save the final size. Call
your joystickComponent ‘joystick’, set it to save its state at the end of the trial and set the button press to end
the Routine. Then for the size setting of your Patch stimulus insert $joystick.getX() to use the x position of the
joystick to control the size or $joystick.getY() to use the y position.

Tracking the entire path of the joystick during a period

Parameters Basic

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

start :
The time that the joystick should first be checked. See Defining the onset/duration of components for details.

stop :
When the joystick is no longer checked. See Defining the onset/duration of components for details.

Force End Routine on Press
If this box is checked then the Routine will end as soon as one of the joystick buttons is pressed.

6.1. Building experiments in a GUI 91

PsychoPy - Psychology software for Python, Release 2023.2.3

Data

What information to save, how to lay it out and when to save it.

Save Joystick State
How often do you need to save the state of the joystick? Every time the subject presses a joystick button, at
the end of the trial, or every single frame? Note that the text output for cases where you store the joystick data
repeatedly per trial (e.g. every press or every frame) is likely to be very hard to interpret, so you may then need
to analyse your data using the psydat file (with python code) instead. Hopefully in future releases the output of
the text file will be improved.

Time Relative To
Whenever the joystick state is saved (e.g. on button press or at end of trial) a time is saved too. Do you want this
time to be relative to start of the Routine, or the start of the whole experiment?

Clickable Stimulus
A comma-separated list of your stimulus names that ‘can be “clicked” by the participant. e.g. target, foil.

Store params for clicked
The params (e.g. name, text), for which you want to store the current value, for the stimulus that was “clicked”
by the joystick. Make sure that all the clickable objects have all these params.

Allowed Buttons
Joystick buttons accepted for input (blank for any) numbers separated by ‘commas’.

Hardware

Parameters for controlling hardware.

Device Number
If you have multiple joystick/gamepad devices which one do you want (0, 1, 2, . . .).

See also:
API reference for Joystick

Keyboard Component

The Keyboard component can be used to collect responses from a participant.

By not storing the key press and checking the forceEndTrial box it can be used simply to end a Routine

Parameters

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

start
[float or integer] The time that the keyboard should first get checked. See Defining the onset/duration of compo-
nents for details.

stop :
When the keyboard is no longer checked. See Defining the onset/duration of components for details.

force end routine
If this box is checked then the Routine will end as soon as one of the allowed keys is pressed.

6.1. Building experiments in a GUI 92

PsychoPy - Psychology software for Python, Release 2023.2.3

Data

What information to save, how to lay it out and when to save it.

allowed keys
[list] A list of allowed keys can be specified here, e.g. [‘m’,’z’,’1’,’2’], or the name of a variable holding such a
list. If this box is left blank then any key that is pressed will be read. Only allowed keys count as having been
pressed; any other key will not be stored and will not force the end of the Routine. Note that key names (even
for number keys) should be given in single quotes, separated by commas. Cursor control keys can be accessed
with ‘up’, ‘down’, and so on; the space bar is ‘space’. To find other special keys, run the Coder Input demo,
“what_key.py”, press the key, and check the Coder output window.

store
[last key, first key, all keys, nothing] Which key press, if any, should be stored; the first to be pressed, the last to
be pressed or all that have been pressed. If the key press is to force the end of the trial then this setting is unlikely
to be necessary, unless two keys happen to be pressed in the same video frame. The response time will also be
stored if a keypress is recorded. This time will be taken from the start of keyboard checking (e.g. if the keyboard
was initiated 2 seconds into the trial and a key was pressed 3.2s into the trials the response time will be recorded
as 1.2s).

store correct
[bool] Check this box if you wish to store whether or not this key press was correct. If so then fill in the next box
that defines what would constitute a correct answer e.g. left, 1 or $corrAns (note this should not be in inverted
commas). This is given as Python code that should return True (1) or False (0). Often this correct answer will
be defined in the settings of the Loops.

discard previous
[bool] Check this box to ensure that only key presses that occur during this keyboard checking period are used.
If this box is not checked a keyboard press that has occurred before the start of the checking period will be
interpreted as the first keyboard press. For most experiments this box should be checked.

See also:
API reference for psychopy.event

Microphone Component

Enabled for online use in version 2021.2 onwards

The microphone component provides a way to record sound during an experiment. You can even transcribe the record-
ing to text! Take a look at the documentation on Creating a Google Cloud Speech API key to get started with that.

When using a mic recording, specify the starting time relative to the start of the routine (see start below) and a stop
time (= duration in seconds). A blank duration evaluates to recording for 0.000s.

The resulting sound files are saved in .wav format (at the specified sampling frequency), one file per recording. The
files appear in a new folder within the data directory (the subdirectory name ends in _wav). The file names include the
unix (epoch) time of the onset of the recording with milliseconds, e.g., mic-1346437545.759.wav.

It is possible to stop a recording that is in progress by using a code component. Every frame, check for a condition
(such as key ‘q’, or a mouse click), and call the mic.stop() method of the microphone component. The recording will
end at that point and be saved.

6.1. Building experiments in a GUI 93

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters

Basic

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

start
[float or integer] The time that the stimulus should first play. See Defining the onset/duration of components for
details.

stop (duration):
The length of time (sec) to record for. An expected duration can be given for visualisation purposes. See Defining
the onset/duration of components for details; note that only seconds are allowed.

Device:
Which microphone device to use

Transcription

Transcribe Audio: bool
Whether to transcribe audio recordings and store the data

Online Transcription Backend:
What transcription service to use to transcribe audio Google or built in. Note that in our experience Google
has better transcription results, though we highly recommend taking a look at the documentation on Creating a
Google Cloud Speech API key to get started.

Transcription Language: string
The language code for your chosen transcription language e.g. English (United States) is “en-US” see list of
codes here

Expected Words: list of strings
A list of key words that you want to listen for e.g. [“Hello”, “World”] if blank all words will be listened for.

Data

Save onset/offset times: bool
Whether to save the onset and offset times of the component.

Sync timing with screen refresh: bool
Whether to sync the start time of the component with the window refresh.

Output File Type:
File type to save audio as (default is wav).

Speaking Start/Stop Times: bool
Save onset/offset of speech.

Trim Silent: bool
Trim periods of silent from the output file.

6.1. Building experiments in a GUI 94

https://cloud.google.com/speech-to-text
https://cloud.google.com/speech-to-text/docs/languages
https://cloud.google.com/speech-to-text/docs/languages

PsychoPy - Psychology software for Python, Release 2023.2.3

Hardware

Channels:
Record 1 (mono) or 2 (stereo) channels (auto will save as many as the recording device allows).

Sample Rate (Hz):
Sampling rate of recorded audio.

Max Recording Size (kb):
Max recording size to avoid excessively large output files.

See also:
API reference for AdvAudioCapture API reference for transcribe

Mouse Component

The Mouse component can be used to collect responses from a participant. The coordinates of the mouse location are
given in the same coordinates as the Window, with (0,0) in the centre.

Scenarios

This can be used in various ways. Here are some scenarios (email the list if you have other uses for your mouse):

Use the mouse to record the location of a button press

Use the mouse to control stimulus parameters
Imagine you want to use your mouse to make your ‘patch’_ bigger or smaller and save the final size. Call your
mouse ‘mouse’, set it to save its state at the end of the trial and set the button press to end the Routine. Then for
the size setting of your Patch stimulus insert $mouse.getPos()[0] to use the x position of the mouse to control the
size or $mouse.getPos()[1] to use the y position.

Tracking the entire path of the mouse during a period

Parameters

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

start :
The time that the mouse should first be checked. See Defining the onset/duration of components for details.

stop :
When the mouse is no longer checked. See Defining the onset/duration of components for details.

Force End Routine on Press
If this box is checked then the Routine will end as soon as one of the mouse buttons is pressed.

6.1. Building experiments in a GUI 95

PsychoPy - Psychology software for Python, Release 2023.2.3

Data

What information to save, how to lay it out and when to save it.

save mouse state
How often do you need to save the state of the mouse? Every time the subject presses a mouse button, at the end
of the trial, or every single frame? Note that the text output for cases where you store the mouse data repeatedly
per trial (e.g. every press or every frame) is likely to be very hard to interpret, so you may then need to analyse
your data using the psydat file (with python code) instead. Hopefully in future releases the output of the text file
will be improved.

time relative to
Whenever the mouse state is saved (e.g. on button press or at end of trial) a time is saved too. Do you want this
time to be relative to start of the Routine, or the start of the whole experiment?

new clicks only
[bool] Store only new clicks

clickable stimuli
[list] List of stimulus names within the same routine which can be clicked on

store params for clicked
[list] List of parameter names to store from stimuli which are clicked on

See also:
API reference for Mouse

Movie Component

The Movie component allows movie files to be played from a variety of formats (e.g. mpeg, avi, mov).

The movie can be positioned, rotated, flipped and stretched to any size on the screen (using the Units for the window
and stimuli given).

Parameters

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

start :
The time that the stimulus should first appear. See Defining the onset/duration of components for details.

stop :
Governs the duration for which the stimulus is presented (if you want to cut a movie short). Usually you can
leave this blank and insert the Expected duration just for visualisation purposes. See Defining the onset/duration
of components for details.

movie
[string] The filename of the movie, including the path. The path can be absolute or relative to the location of the
experiment (.psyexp) file.

forceEndRoutine :
If checked, when the movie finishes, the routine will be ended.

6.1. Building experiments in a GUI 96

PsychoPy - Psychology software for Python, Release 2023.2.3

Appearance

How should the stimulus look? Colour, borders, etc.

opacity
[float] Vary the transparency, from 0.0 = invisible to 1.0 = opaque

Layout

How should the stimulus be laid out? Padding, margins, size, position, etc.

ori
[degrees] Movies can be rotated in real-time too! This specifies the orientation of the movie in degrees.

pos
[[X,Y]] The position of the centre of the stimulus, in the units specified by the stimulus or window

size
[[sizex, sizey] or a single value (applied to both x and y)] The size of the stimulus in the given units of the
stimulus/window.

spatial units
[deg, cm, pix, norm, or inherit from window] See Units for the window and stimuli

Playback

How should stimulus play? Speed, volume, etc.

backend
[moviepy, avbin, opencv] What Python package should be used to play the movie?

no audio
[bool] Tick to mute audio

loop playback
[bool] Should video loop on completion?

See also:
API reference for MovieStim

Panorama Component

The panorama component provides a way to present panoramic images (e.g. a phone camera in Panorama mode) on
screen. The image used cannot be more than 178956970 pixels.

For a demo in builder mode, after unpacking the demos, click on Demos > Feature Demos > panorama.

6.1. Building experiments in a GUI 97

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters

Basic

Name: string
Everything in a experiment needs a unique name. The name should contain only letters, numbers and underscores
(no punctuation marks or spaces).

Start: float or integer
The time that the stimulus should first play. See Defining the onset/duration of components for details.

Stop (duration):
The length of time (sec) to record for. An expected duration can be given for visualisation purposes. See Defining
the onset/duration of components for details; note that only seconds are allowed.

Image: a filename or default.png
Filenames can be relative or absolute paths and can refer to most image formats (e.g. tif, jpg, bmp, png, etc.). If
this is set to none, the patch will be a flat colour.

Position Control: How to control looking around the panorama scene.
Options include Mouse (movement of mouse), Drag (mouse left click to drag/move around the scene), Keyboard
(Arrow Keys), Keyboard (WASD), Keyboard (Custom keys) and Custom. - If Custom is selected, there will be
options to control the Azimuth (horizontal viewing position) and Elevation (vertical viewing position)

Movement Sensitivity: multiplier value to apply to view change
Default is 1 where:

• If using a mouse, moving the mouse from the center of the screen to the edge of the screen will move
the scene 180°

• If using the keyboard arrow keys, holding down the left/right arrow keys will move the scene 180° in
2 seconds

Note: The bigger the multiplier, the quicker the movement
Zoom Control: How to control zooming in and out of a panoramic scene

Options include Mouse Wheel, Mouse Wheel (inverted), Keyboard (Arrow Keys), Keyboard (+/-), Keyboard
(Custom keys) and Custom (i.e. via code component)

Zoom Sensitivity: multiplier value to apply to zoom changes
Default is 1 where: - If using a mouse, scrolling up/down the mouse wheel zooms in/out of the
panoramic scene - If using the keyboard arrow keys, pressing the zoom in/out key will zoom in/out of
the panoramic scene

Note: The bigger the multiplier, the larger the zoom
Interpolate :

If linear is selected then linear interpolation will be applied when the image is rescaled to the appropriate size
for the screen. Nearest will use a nearest-neighbour rule.

6.1. Building experiments in a GUI 98

PsychoPy - Psychology software for Python, Release 2023.2.3

Data

Save onset/offset times: bool
Whether to save the onset and offset times of the component.

Parallel Port Out Component

This component allows you to send triggers to a parallel port, USB2TTL8, or LabJack U3 device.

An example usage would be in EEG experiments to set the port to 0 when no stimuli are present and then set it to an
identifier value for each stimulus synchronised to the start/stop of that stimulus. In that case you might set the Start
data to be $ID (with ID being a column in your conditions file) and set the Stop Data to be 0.

Properties

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

Start :
The time that the stimulus should first appear. See Defining the onset/duration of components for details.

Stop :
Governs the duration for which the stimulus is presented. See Defining the onset/duration of components for
details.

Data

What information to save, how to lay it out and when to save it.

Start data
[0-255] When the start time/condition occurs this value will be sent to the parallel port. The value is given as a
byte (a value from 0-255) controlling the 8 data pins of the parallel port.

Stop data
[0-255] As with start data but sent at the end of the period.

Sync to screen
[boolean] If true then the parallel port will be sent synchronised to the next screen refresh, which is ideal if
it should indicate the onset of a visual stimulus. If set to False then the data will be set on the parallel port
immediately.

Hardware

Parameters for controlling hardware.

Port address
[select the appropriate option] You need to know the address of the parallel port you wish to write to. The options
that appear in this drop-down list are determined by the application preferences. You can add your particular port
there if you prefer.

Register
[U3 register to write to] When using a LabJack U3, you can select which register is used to write a data byte to.
Register EIO is the default.

6.1. Building experiments in a GUI 99

PsychoPy - Psychology software for Python, Release 2023.2.3

See also:
API reference for U3

Patch (image) Component

The Patch stimulus allows images to be presented in a variety of forms on the screen. It allows the combination of an
image, which can be a bitmap image from a variety of standard file formats, or a synthetic repeating texture such as a
sinusoidal grating. A transparency mask can also be control the shape of the image, and this can also be derived from
either a second image, or mathematical form such as a Gaussian.

Patches can have their position, orientation, size and other settings manipulated on a frame-by-frame basis. There is a
performance advantage (in terms of milliseconds) to using images which are square and powers of two (32, 64, 128,
etc.), however this is slight and would not be noticed in the majority of experiments.

Parameters

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

start :
The time that the stimulus should first appear. See Defining the onset/duration of components for details.

stop :
Governs the duration for which the stimulus is presented. See Defining the onset/duration of components for
details.

image
[a filename, a standard name (‘sin’, ‘sqr’) or a numpy array of dimensions NxNx1 or NxNx3] This specifies the
image that will be used as the texture for the visual patch. The image can be repeated on the patch (in either x
or y or both) by setting the spatial frequency to be high (or can be stretched so that only a subset of the image
appears by setting the spatial frequency to be low). Filenames can be relative or absolute paths and can refer to
most image formats (e.g. tif, jpg, bmp, png, etc.). If this is set to none, the patch will be a flat colour.

mask
[a filename, a standard name (‘gauss’, ‘circle’) or a numpy array of dimensions NxNx1] The mask can define the
shape (e.g. circle will make the patch circular) or something which overlays the patch e.g. noise.

ori
[degrees] The orientation of the entire patch (texture and mask) in degrees.

pos
[[X,Y]] The position of the centre of the stimulus, in the units specified by the stimulus or window

size
[[sizex, sizey] or a single value (applied to x and y)] The size of the stimulus in the given units of the stimu-
lus/window. If the mask is a Gaussian then the size refers to width at 3 standard deviations on either side of the
mean (i.e. sd=size/6)

units
[deg, cm, pix, norm, or inherit from window] See Units for the window and stimuli

6.1. Building experiments in a GUI 100

PsychoPy - Psychology software for Python, Release 2023.2.3

Advanced Settings

colour :
See Color spaces

colour space
[rgb, dkl or lms] See Color spaces

SF
[[SFx, SFy] or a single value (applied to x and y)] The spatial frequency of the texture on the patch. The units are
dependent on the specified units for the stimulus/window; if the units are deg then the SF units will be cycles/deg,
if units are norm then the SF units will be cycles per stimulus. If this is set to none then only one cycle will be
displayed.

phase
[single float or pair of values [X,Y]] The position of the texture within the mask, in both X and Y. If a single value
is given it will be applied to both dimensions. The phase has units of cycles (rather than degrees or radians),
wrapping at 1. As a result, setting the phase to 0,1,2. . . is equivalent, causing the texture to be centered on the
mask. A phase of 0.25 will cause the image to shift by half a cycle (equivalent to pi radians). The advantage of
this is that is if you set the phase according to time it is automatically in Hz.

Texture Resolution
[an integer (power of two)] Defines the size of the resolution of the texture for standard textures such as sin,
sqr etc. For most cases a value of 256 pixels will suffice, but if stimuli are going to be very small then a lower
resolution will use less memory.

interpolate :
If linear is selected then linear interpolation will be applied when the image is rescaled to the appropriate size
for the screen. Nearest will use a nearest-neighbour rule.

See also:
API reference for PatchStim

Polygon (shape) Component

(added in version 1.78.00)

The Polygon stimulus allows you to present a wide range of regular geometric shapes. The basic control comes
from setting the number of vertices:

• 2 vertices give a line

• 3 give a triangle

• 4 give a rectangle etc.

• a large number will approximate a circle/ellipse

The size parameter takes two values. For a line only the first is used (then use ori to specify the orientation). For
triangles and rectangles the size specifies the height and width as expected. Note that for pentagons upwards, however,
the size determines the width/height of the ellipse on which the vertices will fall, rather than the width/height of the
vertices themselves (slightly smaller typically).

6.1. Building experiments in a GUI 101

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

start :
The time that the stimulus should first appear. See Defining the onset/duration of components for details.

stop :
Governs the duration for which the stimulus is presented. See Defining the onset/duration of components for
details.

shape
[line, triangle, rectangle, cross, star, regular polygon] What shape the stimulus is

num vertices
[int] The number of vertices for your shape (2 gives a line, 3 gives a triangle,. . . a large number results in a
circle/ellipse). It is not (currently) possible to vary the number of vertices dynamically.

Appearance

How should the stimulus look? Colour, borders, etc.

fill color
[color] See Color spaces

color space
[rgb, dkl, lms, hsv] See Color spaces

border color
[color] See Color spaces

line width
[int | float] How wide should the line be? Width is specified in chosen spatial units, see Units for the window and
stimuli

opacity :
Vary the transparency, from 0.0 = invisible to 1.0 = opaque

Layout

How should the stimulus be laid out? Padding, margins, size, position, etc.

ori
[degrees] The orientation of the entire patch (texture and mask) in degrees.

pos
[[X,Y]] The position of the centre of the stimulus, in the units specified by the stimulus or window

size
[(width, height)] Size of the stimulus on screen

spatial units
[deg, cm, pix, norm, or inherit from window] See Units for the window and stimuli

6.1. Building experiments in a GUI 102

PsychoPy - Psychology software for Python, Release 2023.2.3

Texture

Control how the stimulus handles textures.

interpolate
[linear, nearest] Should textures be interpolated?

units
[deg, cm, pix, norm, or inherit from window] See Units for the window and stimuli

See also:
API reference for Polygon API reference for Rect API reference for ShapeStim #for arbitrary vertices

Progress Bar Component

(added in version 2023.2.0)

The Progress bar stimulus allows you to present a progress bar within your task.

Parameters

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

start :
The time that the stimulus should first appear. See Defining the onset/duration of components for details.

stop :
Governs the duration for which the stimulus is presented. See Defining the onset/duration of components for
details.

progress
[int | float] from 0.0 = not filled to 1.0 = fully filled

Appearance

How should the stimulus look? Colour, borders, etc.

bar color
[color] See Color spaces

back color
[color] See Color spaces

border color
[color] See Color spaces

color space
[rgb, dkl, lms, hsv] See Color spaces

opacity :
Vary the transparency, from 0.0 = invisible to 1.0 = opaque

contrast
[int | float] Contrast of the stimulus

6.1. Building experiments in a GUI 103

PsychoPy - Psychology software for Python, Release 2023.2.3

line width
[int | float] How wide should the line be? Width is specified in chosen spatial units, see Units for the window and
stimuli

Layout

How should the stimulus be laid out? Padding, margins, size, position, etc.

pos
[[X,Y]] The position of the centre of the stimulus, in the units specified by the stimulus or window

size
[(width, height)] Size of the stimulus on screen

spatial units
[deg, cm, pix, norm, or inherit from window] See Units for the window and stimuli

anchor
[str] Which point of the stimulus should be anchored to its exact location.

ori
[degrees] The orientation of the entire patch (texture and mask) in degrees.

See also:
API reference for Progress

Pump Component

This component allows you to deliver liquid stimuli using a Cetoni neMESYS syringe pump.

Please specify the name of the pump configuration to use in the preferences under Hardware / Qmix pump
configuration. See the readme file of the pyqmix project for details on how to set up your computer and create
the configuration file.

Properties

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

Start :
The time that the stimulus should first appear.

Stop :
Governs the duration for which the stimulus is presented.

Sync to screen
[bool] Whether to synchronize the pump operations (starting, stopping) to the screen refresh. This ensures better
synchronization with visual stimuli.

6.1. Building experiments in a GUI 104

https://github.com/psyfood/pyqmix/blob/master/README.md

PsychoPy - Psychology software for Python, Release 2023.2.3

Hardware

Parameters for controlling hardware.

Pump index
[int] The index of the pump: The first pump’s index is 0, the second pump’s index is 1, etc. You may insert the
name of a variable here to adjust this value dynamically.

Syringe type
[select the appropriate option] Currently, 25 mL and 50 mL glass syringes are supported. This setting ensures
that the pump will operate at the correct flow rate.

Pump action
[aspirate or dispense] Whether to fill (aspirate) or to empty (dispense) the syringe.

Flow rate
[float] The flow rate in the selected flow rate units.

Flow rate unit
[mL/s or mL/min] The unit in which the flow rate values are supplied.

Switch valve after dosing
[bool] Whether to switch the valve osition after the pump operation has finished. This can be used to ensure a
sharp(er) stimulus offset.

RatingScale Component

The Rating Scale Component is in the process of deprecation, if possible we recommend using the newer
Slider component instead. By combining a Slider, Text/TextBox and Button components, a Slider should
be able to perform all the same tasks as a RatingScale Component.

A rating scale is used to collect a numeric rating or a choice from a few alternatives, via the mouse, the keyboard, or
both. Both the response and time taken to make it are returned.

A given routine might involve an image (patch component), along with a rating scale to collect the response. A routine
from a personality questionnaire could have text plus a rating scale.

Three common usage styles are enabled on the first settings page:
‘visual analog scale’: the subject uses the mouse to position a marker on an unmarked line

‘category choices’: choose among verbal labels (categories, e.g., “True, False” or “Yes, No, Not sure”)

‘scale description’: used for numeric choices, e.g., 1 to 7 rating

Complete control over the display options is available as an advanced setting, ‘customize_everything’.

Properties

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

start :
The time that the stimulus should first appear. See Defining the onset/duration of components for details.

stop :
The duration for which the stimulus is presented. See Defining the onset/duration of components for details.

6.1. Building experiments in a GUI 105

PsychoPy - Psychology software for Python, Release 2023.2.3

category choices
[string] Instead of a numeric scale, you can present the subject with words or phrases to choose from. Enter all
the words as a string. (Probably more than 6 or so will not look so great on the screen.) Spaces are assumed to
separate the words. If there are any commas, the string will be interpreted as a list of words or phrases (possibly
including spaces) that are separated by commas.

scaleDescription
[string] Brief instructions, reminding the subject how to interpret the numerical scale, default = “1 = not at all
. . . extremely = 7”

forceEndRoutine
[bool] If checked, when the subject makes a rating the routine will be ended.

Layout

How should the stimulus be laid out? Padding, margins, size, position, etc.

size
[float] The size controls how big the scale will appear on the screen. (Same as “displaySizeFactor”.) Larger than
1 will be larger than the default, smaller than 1 will be smaller than the default.

pos
[[X,Y]] The position of the centre of the stimulus, in the units specified by the stimulus or window. Default is
centered left-right, and somewhat lower than the vertical center (0, -0.4).

Data

What information to save, how to lay it out and when to save it.

visualAnalogScale
[checkbox] If this is checked, a line with no tick marks will be presented using the ‘glow’ marker, and will
return a rating from 0.00 to 1.00 (quasi-continuous). This is intended to bias people away from thinking in
terms of numbers, and focus more on the visual bar when making their rating. This supersedes either choices or
scaleDescription.

low
[str] The lowest number (bottom end of the scale), default = 1. If it’s not an integer, it will be converted to
lowAnchorText (see Advanced).

high
[str] The highest number (top end of the scale), default = 7. If it’s not an integer, it will be converted to highAn-
chorText (see Advanced).

labels
[str] What labels should be applied

marker start :
Where should the marker start at

store history
[bool] Store full record of how participant moved on the slider

store rating
[bool] Save the rating that was selected

store rating time
[bool] Save the time from the beginning of the trial until the participant responds.

6.1. Building experiments in a GUI 106

PsychoPy - Psychology software for Python, Release 2023.2.3

See also:
API reference for RatingScale

Resource Manager Component

(added version 2022.1.0)

Pre-load resources into memory so that components using them can start without having to load first.

This component is only relevant to online studies. If you use this component it will override loading of resources
at the beginning of the experiment. This means that any resources specified in the Experiment Settings > Online
> Additional Resources will not be used, make sure to load all required resources within the experiment.
Most experiments need “resources” in order to run. Be it images, sounds, spreadsheets or movies. When running a
study online through pavlovia.org, these resources are loaded by default at the beginning of the experiment, and you
will usually see a loading bar.

However, sometimes this loading can take a pretty long time. This happens either because you have a very large
number of resources or because individual files are large (e.g. long movies) . In cases like this, it may be preferred
to load these within your experiment, for example whilst your participants are reading through the instructions, in an
inter-trial interval or during a break between blocks. This is where the Resource Manager component and/or the Static
Component come in.

You can find the Resource Manager under “Custom” in the Component Panel. The component has many properties
similar to any other component, a start time, a duration etc. The most important fields in the component are Resources,
indicating the list of resources to load, and Preload Actions, indicating if we are initiating loading (Start), checking
previously initiated loading has completed (Check), or both (Start and Check). For experiments where we might have
several resource manager components, we can also check if the resources from all components currently exist in mem-
ory by selecting “Check All”.

6.1. Building experiments in a GUI 107

https://pavlovia.org/

PsychoPy - Psychology software for Python, Release 2023.2.3

Example: Loading resources in the background of instructions

A common use case for resource manager might be to load resources in the background of instructions (or any routine!),
and only let your participants move forward when the resources are loaded. To do this:

1. Add a resource manager component.

2. Populate the resources field with the resources to be loaded.

3. Set Preload Actions to Start and Check.

4. Add a code component and use this in the “Each Frame” tab (where “resources” refers to the name of your
resource manager component):

if resources.status == FINISHED:
continueRoutine = False

5. Alternatively to step 4, you might want to have an image or text that is clickable, but have Start set to resources.
status == FINISHED. This will make the button “pop-up” when the resources have finished loading!

Note: The resource manager has an attribute “status” and we can check if it has finished using resources.status ==
FINISHED (where resources corresponds to the name of your resource manager component).

Loading resources for blocked or branched designs, or loading trial-by-trial

Sometimes we might have a design where participants only need to be presented with a subset of resources. We might
have 100 movies, but group 1 sees 50 movies and group 2 sees the other 50. In cases like this you might ask “How to I
make the resources in my resource manager conditional?”. Well, for designs like this we actually recommend you use
something a little different, the Static Component - so check it out!.

Reward Component

This component allows you to deliver a water reward to smalls animals (mice, rat) and monitor licks, using the peristaltic
from Labeo Technologies Inc.

Properties

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

Start :
The time that the firt pulse of the water reward occurs.

Stop :
Governs the duration for which the water reward sequence is given.

Sync to screen
[bool] Choose to synchronize the reward operations (pulses) to the screen refresh. This ensures better synchro-
nization with visual stimuli.

Pulse duration (s) :
The duration of the pulse sent to the peristaltic pump. To know exactly the volume of water given, please perform

6.1. Building experiments in a GUI 108

PsychoPy - Psychology software for Python, Release 2023.2.3

a calibration curve, as the quantity depends of your experimental setup. Precision can go as low as 16.6 ms for
a 60 Hz screen.

Number of pulses :
The number of pulses in a burst.

Delay between sequences (s) :
A sequence is a burst sequence, so multiples pulses. This delay is the duration between theses sequences

Number of sequences :
The number of burst sequences occuring during the time the water reward component is enable in the experiment.

Delay between pulses (s) :
The time duration between pulses in a burst sequence.

Save actions of pump and licks to txt file :
Check if you want to save log events (pump ON, OFF, lick) to a .txt file, located in the data folder of the experi-
ment.

COM port :
Please specify the COM port (USB port) on which the pump is connected.

Serial Port Out Component

This component allows you to send triggers to a serial port. For a full tutorial please see :ref: this page <serial>.

An example usage would be in EEG experiments to set the port to 0 when no stimuli are present and then set it to an
identifier value for each stimulus synchronised to the start/stop of that stimulus. In that case you might set the Start
data to be $ID (with ID being a column in your conditions file) and set the Stop Data to be “0”.

Properties

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

Start :
The time that the stimulus should first appear. See Defining the onset/duration of components for details.

Stop :
Governs the duration for which the stimulus is presented. See Defining the onset/duration of components for
details.

Port address
[type the appropriate option] You need to know the address of the serial port you wish to write to. For more
information on how to find out this address please see :ref: this page <serial>.

Start data
[string] When the start time/condition occurs this value will be sent to the serial port. For more information
please see :ref: this page <serial>.

Stop data
[string] As with start data but sent at the end of the period.

6.1. Building experiments in a GUI 109

PsychoPy - Psychology software for Python, Release 2023.2.3

Data

Sync timing with screen refresh
[boolean] If true then the serial port will be sent synchronised to the next screen refresh, which is ideal if it should
indicate the onset of a visual stimulus. If set to False then the data will be set on the serial port immediately.

Get response?
[boolean] If true then PsychoPy reads and records a response from the port after the data has been sent.

Hardware

Parameters for controlling hardware.

Baud rate :
The baud rate, or speed, of the connection.

Data bits :
The size of the bits to be sent.

Stop bits :
The size of the bits ti be sent on stop.

Parity :
The parity mode.

Timeout :
Time at which to give up listening for a repsonse from the serial port.

Slider Component

A Slider uses mouse input to collect ratings, all sliders have the same basic structure (a line, rectangle or series of dots
to indicate the range of values, several tick marks and labels, a marker) but their appearance can be varied significantly
by changing the style parameter. For example, a radio style Slider features several dots and a circular marker, while a
scrollbar style Slider features a translucent rectangle with a long marker like the page scrollbar on a website.

Properties

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

Start :
The time that the stimulus should first appear. See Defining the onset/duration of components for details.

Stop :
The duration for which the stimulus is presented. See Defining the onset/duration of components for details.

Size
[(width, height)] The size controls the width and height of the slider. The slider is oriented horizontally when
the width is greater than the height, and oriented vertically otherwise. Default is (1.0, 0.1)

Position
[(X,Y)] The position of the centre of the stimulus, in the units specified by the stimulus or window. Default is
centered left-right, and somewhat lower than the vertical center (0, -0.4).

6.1. Building experiments in a GUI 110

PsychoPy - Psychology software for Python, Release 2023.2.3

Ticks
[(list or tuple of integers)] The ticks that will be place on the slider scale. The first and last ticks will be placed
on the ends of the slider, and the remaining are spaced between the endpoints corresponding to their values. For
example, (1, 2, 3, 4, 5) will create 5 evenly spaced ticks. (1, 3, 5) will create three ticks, one at each end and one
in the middle.

Labels
[(list or tuple of strings)] The text to go with each tick (or spaced evenly across the ticks). If you give 3 labels
but 5 tick locations then the end and middle ticks will be given labels. If the labels can’t be distributed across
the ticks then an error will be raised. If you want an uneven distribution you should include a list matching the
length of ticks but with some values set to None.

Granularity :
Specifies step size for rating. 0 corresponds to a continuous scale, 1 corresponds to an integer or discrete scale.

Force end of Routine :
If checked, when the subject makes a rating the routine will be ended.

Opacity
[value from 0 to 1 or None] Setting the opacity of the Slider will set the opacity of all of its parts to the same
value, to control these individually set opacity to None

Units :
See Units for the window and stimuli.

Flip :
By default labels are below the scale or left of the scale. By checking this checkbox, the labels are placed above
the scale or to the right of the scale.

Formatting

Font :
Font for labels.

Letter Height :
Font size for labels,

Appearance

Label Color :
Color of the labels. See Color spaces.

Marker Color :
Color of the marker. See Color spaces.

Line Color :
Color of the lines or, for styles such as scrollbar or slider, the backboard. See Color spaces.

Styles :
A selection of pre-defined styles.

Style Tweaks :
Tweaks to the style of the slider which can be applied on top of the overall style - multiple tweaks can be selected.

See also:
API reference for Slider

6.1. Building experiments in a GUI 111

PsychoPy - Psychology software for Python, Release 2023.2.3

Sound Component

Parameters

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

start
[float or integer] The time that the stimulus should first play. See Defining the onset/duration of components for
details.

stop :
For sounds loaded from a file leave this blank and then give the Expected duration below for visualisation pur-
poses. See Defining the onset/duration of components for details.

sound :
This sound can be described in a variety of ways:

• a number can specify the frequency in Hz (e.g. 440)

• a letter gives a note name (e.g. “C”) and sharp or flat can also be added (e.g. “Csh” “Bf”)

• a filename, which can be a relative or absolute path (mid, wav, and ogg are supported).

Playback

How should stimulus play? Speed, volume, etc.

volume
[float or integer] The volume with which the sound should be played. It’s a normalized value between 0 (mini-
mum) and 1 (maximum).

hamming window
[bool] Should there be a hamming window between stimuli?

See also:
API reference for SoundPyo

Static Component

(Added in Version 1.78.00. Made compatible for online use version 2022.1)

The Static Component allows you to have a period where you can preload images or perform other time-consuming
operations that not be possible while the screen is being updated. Static periods are also particularly useful for online
studies to decrease the time taken to load resources at the start (see also Resource Manager Component).

Note: For online studies, if you use a static component this will override the resources loaded at the beginning via
Experiment settings > Online > Additional resources. You might therefore want to combine a static period with a
Resource Manager Component to make sure that all resources your study needs will be loaded and available for the
experiment.

Typically a static period would be something like an inter-trial or inter-stimulus interval (ITI/ISI). During this period
you should not have any other objects being presented that are being updated (this isn’t checked for you - you have
to make that check yourself), but you can have components being presented that are themselves static. For instance a

6.1. Building experiments in a GUI 112

PsychoPy - Psychology software for Python, Release 2023.2.3

fixation point never changes and so it can be presented during the static period (it will be presented and left on-screen
while the other updates are being made).

Fig. 6.6: How to use a static component. 1) To use a static component first select it from the component panel. 2)
highlights in red the time window you are treating as “static”. If you click on the red highlighted window you can edit
the static component. 3) To use the static window to load a resource, select the component where the resource will
be load, and in the dropdown window choose “set during:trial.ISI” - here “trial” refers to the routine where the static
component is and “ISI” refers to the name of the static component.

Any stimulus updates can be made to occur during any static period defined in the experiment (it does not have to be in
the same Routine). This is done in the updates selection box- once a static period exists it will show up here as well as
the standard options of constant and every repeat etc. Many parameter updates (e.g. orientation are made so quickly
that using the static period is of no benefit but others, most notably the loading of images from disk, can take substantial
periods of time and these should always be performed during a static period to ensure good timing.

If the updates that have been requested were not completed by the end of the static period (i.e. there was a timing
overshoot) then you will receive a warning to that effect. In this case you either need a longer static period to perform
the actions or you need to reduce the time required for the action (e.g. use an image with fewer pixels).

Parameters

name :
Everything in a experiment needs a unique name. The name should contain only letters, numbers and underscores
(no punctuation marks or spaces).

start :
The time that the static period begins. See Defining the onset/duration of components for details.

stop :
The time that the static period ends. See Defining the onset/duration of components for details.

6.1. Building experiments in a GUI 113

PsychoPy - Psychology software for Python, Release 2023.2.3

Custom

Parameters for injecting custom code

custom code :
After running the component updates (which are defined in each component, not here) any code inserted here
will also be run

See also:
API reference for StaticPeriod

Text Component

This component can be used to present text to the participant, either instructions or stimuli.

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

start :
The time that the stimulus should first appear. See Defining the onset/duration of components for details.

stop :
The duration for which the stimulus is presented. See Defining the onset/duration of components for details.

text
[string] Text to be shown

Appearance

How should the stimulus look? Colour, borders, etc.

foreground color :
See Color spaces

foreground color space
[rgb, dkl or lms] See Color spaces

opacity :
Vary the transparency, from 0.0 = invisible to 1.0 = opaque

Layout

How should the stimulus be laid out? Padding, margins, size, position, etc.

flip :
Whether to mirror-reverse the text: ‘horiz’ for left-right mirroring, ‘vert’ for up-down mirroring. The flip can
be set dynamically on a per-frame basis by using a variable, e.g., $mirror, as defined in a code component or
conditions file and set to either ‘horiz’ or ‘vert’.

ori
[degrees] The orientation of the stimulus in degrees.

pos
[[X,Y]] The position of the centre of the stimulus, in the units specified by the stimulus or window

6.1. Building experiments in a GUI 114

PsychoPy - Psychology software for Python, Release 2023.2.3

spatial units
[deg, cm, pix, norm, or inherit from window] See Units for the window and stimuli

wrap width
[code] How many characters in should text be wrapped at?

Formatting

Formatting text

font
[string] What font should the text be set in? Must be the name of a font installed on your computer

language style
[LTR, RTL, Arabic] Should text be laid out from left to right (LTR), from right to left (RTL), or laid out like
Arabic script?

letter height
[integer or float] The height of the characters in the given units of the stimulus/window. Note that nearly all
actual letters will occupy a smaller space than this, depending on font, character, presence of accents etc. The
width of the letters is determined by the aspect ratio of the font.

See also:
API reference for TextStim

Textbox Component

This component can be used either to present text to the participant, or to allow free-text answers via the keyboard.

name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces).

start :
The time that the stimulus should first appear. See Defining the onset/duration of components for details.

stop :
The duration for which the stimulus is presented. See Defining the onset/duration of components for details.

editable
[bool] Whether this Textbox can be edited by the participant (text input) or not (static text).

text
[string] Text to be shown

Appearance

How should the stimulus look? Colour, borders, etc.

text color
[color] See Color spaces

fill color
[color] See Color spaces

border color
[color] See Color spaces

6.1. Building experiments in a GUI 115

PsychoPy - Psychology software for Python, Release 2023.2.3

color space
[rgb, dkl, lms, hsv] See Color spaces

border width
[int | float] How wide should the line be? Width is specified in chosen spatial units, see Units for the window and
stimuli

opacity :
Vary the transparency, from 0.0 = invisible to 1.0 = opaque

Layout

How should the stimulus be laid out? Padding, margins, size, position, etc.

flip horizontal
[bool] Whether to mirror-reverse the text horizontally (left-right mirroring)

flip vertical
[bool] Whether to mirror-reverse the text vertically (top-bottom mirroring)

ori
[degrees] The orientation of the stimulus in degrees.

pos
[[X,Y]] The position of the centre of the stimulus, in the units specified by the stimulus or window

size
[(width, height)] Size of the stimulus on screen

spatial units
[deg, cm, pix, norm, or inherit from window] See Units for the window and stimuli

padding
[float] How much space should there be between the box edge and the text?

anchor
[center, center-left, center-right, top-left, top-center, top-right, bottom-left, bottom-center, bottom-right] What
point on the textbox should be anchored to its position? For example, if the position of the TextBox is (0, 0),
should the middle of the textbox be in the middle of the screen, should its top left corner be in the middle of the
screen, etc.?

Formatting

Formatting text

font
[string] What font should the text be set in? Can be a font installed on your computer, saved to the “fonts” folder
in your user folder or (if you are connected to the internet), a font from Google Fonts.

language style
[LTR, RTL, Arabic] Should text be laid out from left to right (LTR), from right to left (RTL), or laid out like
Arabic script?

letter height
[integer or float] The height of the characters in the given units of the stimulus/window. Note that nearly all
actual letters will occupy a smaller space than this, depending on font, character, presence of accents etc. The
width of the letters is determined by the aspect ratio of the font.

6.1. Building experiments in a GUI 116

PsychoPy - Psychology software for Python, Release 2023.2.3

line spacing
[float] How tall should each line be, proportional to the size of the font?

See also:
API reference for TextBox

Variable Component

A variable can hold quantities or values in memory that can be referenced using a variable name. You can store values
in a variable to use in your experiments.

Parameters

Name
[string] Everything in a experiment needs a unique name. The name should contain only letters, numbers and
underscores (no punctuation marks or spaces). The variable name references the value stored in memory, so that
your stored values can be used in your experiments.

Start
[int, float or bool] The time or condition from when you want your variable to be defined. The default value is
None, and so will be defined at the beginning of the experiment, trial or frame. See Defining the onset/duration
of components for details.

Stop
[int, float or bool] The duration for which the variable is defined/updated. See Defining the onset/duration of
components for details.

Experiment start value: any
The variable can take any value at the beginning of the experiment, so long as you define you variables using
literals or existing variables.

Routine start value
[any] The variable can take any value at the beginning of a routine/trial, and can remain a constant, or be de-
fined/updated on every routine.

Frame start value
[any] The variable can take any value at the beginning of a frame, or during a condition bases on Start and/or
Stop.

Data

What information to save, how to lay it out and when to save it.

Save exp start value
[bool] Choose whether or not to save the experiment start value to your data file.

Save routine start value
[bool] Choose whether or not to save the routine start value to your data file.

Save frame value
[bool and drop=down menu] Frame values are contained within a list for each trial, and discarded at the end of
each trial. Choose whether or not to take the first, last or average variable values from the frame container, and
save to your data file.

Save routine end value
[bool] Choose whether or not to save the routine end value to your data file.

6.1. Building experiments in a GUI 117

PsychoPy - Psychology software for Python, Release 2023.2.3

Save exp end value
[bool] Choose whether or not to save the experiment end value to your data file.

Entering parameters

Most of the entry boxes for Component parameters simply receive text or numeric values or lists (sequences of values
surrounded by square brackets) as input. In addition, the user can insert variables and code into most of these, which
will be interpreted either at the beginning of the experiment or at regular intervals within it.

To indicate to that the value represents a variable or python code, rather than literal text, it should be preceded by a $.
For example, inserting intensity into the text field of the Text Component will cause that word literally to be presented,
whereas $intensity will cause python to search for the variable called intensity in the script.

Variables associated with Loops can also be entered in this way (see accessingParams for further details). But it can
also be used to evaluate arbitrary python code.

For example:

• $random(2) will generate a pair of random numbers

• $"yn"[randint(2)] will randomly choose the first or second character (y or n)

• $globalClock.getTime() will insert the current time in secs of the globalClock object

• $[sin(angle), cos(angle)] will insert the sin and cos of an angle (e.g. into the x,y coords of a stimulus)

How often to evaluate the variable/code

If you do want the parameters of a stimulus to be evaluated by code in this way you need also to decide how often it
should be updated. By default, the parameters of Components are set to be constant; the parameter will be set at the
beginning of the experiment and will remain that way for the duration. Alternatively, they can be set to change either
on every repeat in which case the parameter will be set at the beginning of the Routine on each repeat of it. Lastly
many parameters can even be set on every frame, allowing them to change constantly on every refresh of the screen.

6.1.9 Experiment settings

The settings menu can be accessed by clicking the icon at the top of the window. It allows the user to set various
aspects of the experiment, such as the size of the window to be used or what information is gathered about the subject
and determine what outputs (data files) will be generated.

Settings

Basic

Experiment name
A name that will be stored in the metadata of the data file.

Use PsychoPy version
Which version of was the task created in? if you are using a more recently installed version of this can compile
using an archived, older version to run previously created tasks.

Show info dlg
If this box is checked then a dialog will appear at the beginning of the experiment allowing the Experiment Info
to be changed.

6.1. Building experiments in a GUI 118

PsychoPy - Psychology software for Python, Release 2023.2.3

Enable escape
If ticked then the Esc key can be used to exit the experiment at any time (even without a keyboard component)

Experiment Info
This information will be presented in a dialog box at the start and will be saved with any data files and so can
be used for storing information about the current run of the study. The information stored here can also be used
within the experiment. For example, if the Experiment Info included a field called ori then Builder Components
could access expInfo[‘ori’] to retrieve the orientation set here. Obviously this is a useful way to run essentially the
same experiment, but with different conditions set at run-time. If you are running a study online, we recommend
keeping the field “participant” because this is used to name data output files.

Screen

Monitor
The name of the monitor calibration. Must match one of the monitor names from Monitor Center.

Screen:
If multiple screens are available (and if the graphics card is not an intel integrated graphics chip) then the user
can choose which screen they use (e.g. 1 or 2).

Full-screen window:
If this box is checked then the experiment window will fill the screen (overriding the window size setting and
using the size that the screen is currently set to in the operating system settings).

Window size:
The size of the window in pixels, if this is not to be a full-screen window.

Units
The default units of the window (see Units for the window and stimuli). These can be overridden by individual
Components.

Audio

Audio library
Choice of audio library to use to present sound, default uses preferences (see Preferences).

Audio latency priority
Latency mode for PsychToolbox audio (see Preferences) (because this applies to the PTB sound backend, this
only applies for local, not online studies)

Force stereo
Force audio to stereo (2-channel) output

Online

Output path
Where to export the compiled javascript experiment and associated html files. (note that in earlier versions of
this was html by default, this is not necissary as it will duplicate your resources, associated discourse threads
with this suggestion might now be outdated)

Export html
When to export a html file and compile a javascript version of the experiment. This is on sync by default,
meaning these files will be generated when a project is pushed/synced to . Alternatively this can be “on save” or
“manually” the latter might be used if you are making manual edits to the exported javascript file, though this is
not recommended as changes will not be reflected back in your builder file.

6.1. Building experiments in a GUI 119

PsychoPy - Psychology software for Python, Release 2023.2.3

Completed URL
The URL to direct participants to upon completion (when they select “OK” in the green thank-you message
online)

Incomplete URL
The URL to direct participants to if they exit the task early (e.g. by pressing the escape key).

Additional resources
Resources that your task will require (e.g. image files, excel sheets). Note that will attempt to populate this
automatically, though if you encounter an “Unknown resource” error online, it is possible that you need to add
resources to this list.

Eyetracking

Eyetracker Device
Specify what kind of eye tracker you are using. If you are creating your paradigm out-of-lab (i.e. with no eye
tracker) we suggest using MouseGaze, which will use your mouse to simulate eye movements and blinks. Alter-
natively, you can select which device you are currently using and set-up those parameters (see ioHub Common
Eye Tracker Interface)

Data

Data filename:
A formatted string to control the base filename and path, often based on variables such as the date and/or the par-
ticipant. This base filename will be given the various extensions for the different file types as needed. Examples:

all in data folder relative to experiment file: data/JWP_memoryTask_2014_Feb_15_
→˓1648
'data/%s_%s_%s' %(expInfo['participant'], expName, expInfo['date'])

group by participant folder: data/JWP/memoryTask-2014_Feb_15_1648
'data/%s/%s-%s' %(expInfo['participant'], expName, expInfo['date'])

put into dropbox: ~/dropbox/data/memoryTask/JWP-2014_Feb_15_1648
os.path.expanduser replaces '~' with the path to your home directory,
os.path.join joins the path components together correctly, regardless of OS
os.path.relpath creates a relative path between the specified path and the␣
→˓current directory
'$os.path.relpath(os.path.join(os.path.expanduser('~'), 'dropbox', 'data', expName,␣
→˓expInfo['participant'] + '-' + expInfo['date']))

Data file delimiter
What delimiter should your data file use to separate the columns

Save Excel file
If this box is checked an Excel data file (.xlsx) will be stored.

Save csv file (summaries)
If this box is checked a summary file will be created with one row corresponding to the entire loop. If a keyboard
response is used the mean and dtandard deviations of responses across trials will also be stored.

Save csv file (trial-by-trial)
If this box is checked a comma separated variable (.csv) will be stored. Each trial will be stored as a new row.

6.1. Building experiments in a GUI 120

PsychoPy - Psychology software for Python, Release 2023.2.3

Save psydat file
If this box is checked a data file (.psydat) will be stored. This is a Python specific format (.pickle files) which
contains more information that .xlsx or .csv files that can be used with data analysis and plotting scripts written in
Python. Whilst you may not wish to use this format it is recommended that you always save a copy as it contains
a complete record of the experiment at the time of data collection.

Save hdf5 file
If this box is checked data will be stored to a hdf5 file, this is mainly applicable if a component is implemented
that requires a complex data structure e.g. eyetracking.

Save log file
A log file provides a record of what occurred during the experiment in chronological order, including information
about any errors or warnings that may have occurred.

Logging level
How much detail do you want to be output to the log file, if it is being saved. The lowest level is error, which
only outputs error messages; warning outputs warnings and errors; info outputs all info, warnings and errors;
debug outputs all info that can be logged. This system enables the user to get a great deal of information while
generating their experiments, but then reducing this easily to just the critical information needed when actually
running the study. If your experiment is not behaving as you expect it to, this is an excellent place to begin to
work out what the problem is.

6.1.10 Defining the onset/duration of components

As of version 1.70.00, the onset and offset times of stimuli can be defined in several ways.

Start and stop times can be entered in terms of seconds (time (s)), by frame number (frameN) or in relation to another
stimulus (condition). Condition would be used to make Components start or stop depending on the status of something
else, for example when a sound has finished. Duration can also be varied using a Code Component.

If you need very precise timing (particularly for very brief stimuli for instance) then it is best to control your on-
set/duration by specifying the number of frames the stimulus will be presented for.

Measuring duration in seconds (or milliseconds) is not very precise because it doesn’t take into account the fact that
your monitor has a fixed frame rate. For example if the screen has a refresh rate of 60Hz you cannot present your
stimulus for 120ms; the frame rate would limit you to 116.7ms (7 frames) or 133.3ms (8 frames). The duration of a
frame (in seconds) is simply 1/refresh rate in Hz.

Condition would be used to make Components start or stop depending on the status of something else, for example
when a movie has finished. Duration can also be varied using a code component.

In cases where cannot determine the start/endpoint of your Component (e.g. because it is a variable) you can enter an
‘Expected’ start/duration. This simply allows components with variable durations to be drawn in the Routine window.
If you do not enter the approximate duration it will not be drawn, but this will not affect experimental performance.

For more details of how to achieve good temporal precision see Timing Issues and synchronisation

6.1. Building experiments in a GUI 121

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

• Use time(s) or frameN and simply enter numeric values into the start and duration boxes.

• Use time(s) or frameN and enter a numeric value into the start time and set the duration to a variable name by
preceding it with a $. Then set expected time to see an approximation in your routine

• Use condition to cause the stimulus to start immediately after a movie component called myMovie, by entering
$myMovie.status==FINISHED into the start time.

6.1.11 Generating outputs (datafiles)

There are 4 main forms of output file from :
• Excel 2007 files (.xlsx) see Excel Data Files for more details

• text data files (.csv, .tsv, or .txt) see Delimited Text Files for more details

• binary data files (.psydat) see |PsychoPy| Data Files for more details

• log files (.log) see Log Files for more details

6.1.12 Common Mistakes (aka Gotcha’s)

General Advice

• Python and therefore is CASE SENSITIVE

• To use a dollar sign ($) for anything other than to indicate a code snippet for example in a text, precede it with a
backslash \$ (the backslash won’t be printed)

• Have you entered your the settings for your monitor? If you are using degrees as a unit of measurement and have
not entered your monitor settings, the size of stimuli will not be accurate.

• If your experiment is not behaving in the way that you expect. Have you looked at the log file? This can point
you in the right direction. Did you know you can change the type of information that is stored in the log file in
preferences by changing the logging level.

• Have you tried compiling the script and running it. Does this produce a particular error message that points you
at a particular problem area? You can also change things in a more detailed way in the coder view and if you
are having problems, reading through the script can highlight problems. Reading a compiled script can also help
with the creation of a Code Component

My stimulus isn’t appearing, there’s only the grey background

• Have you checked the size of your stimulus? If it is 0.5x0.5 pixels you won’t be able to see it!

• Have you checked the position of your stimulus? Is it positioned off the screen?

6.1. Building experiments in a GUI 122

PsychoPy - Psychology software for Python, Release 2023.2.3

The loop isn’t using my Excel spreadsheet

• Have you remembered to specify the file you want to use when setting up the loop?

• Have you remembered to add the variables proceeded by the $ symbol to your stimuli?

I just want a plain square, but it’s turning into a grating

• If you don’t want your stimulus to have a texture, you need Image to be None

The code snippet I’ve entered doesn’t do anything

• Have you remembered to put a $ symbol at the beginning (this isn’t necessary, and should be avoided in a Code
Component)?

• A dollar sign as the first character of a line indicates to that the rest of the line is code. It does not indicate
a variable name (unlike in perl or php). This means that if you are, for example, using variables to determine
position, enter $[x,y]. The temptation is to use [$x,$y], which will not work.

My stimulus isn’t changing as I progress through the loop

• Have you changed the setting for the variable that you want to change to ‘change every repeat’ (or ‘change every
frame’)?

I’m getting the error message AttributeError: ‘unicode object has no attribute ‘XXXX’

• This type of error is usually caused by a naming conflict. Whilst we have made every attempt to make sure that
these conflicts produce a warning message it is possible that they may still occur.

• The most common source of naming conflicts in an external file which has been imported to be used in a loop
i.e. .xlsx, .csv.

• Check to make sure that all of the variable names are unique. There can be no repeated variable names anywhere
in your experiment.

The window opens and immediately closes

• Have you checked all of your variable entries are accepted commands e.g. gauss but not Gauss

• If you compile your experiment and run it from the coder window what does the error message say? Does it
point you towards a particular variable which may be incorrectly formatted?

If you are having problems getting the application to run please see Troubleshooting

6.1. Building experiments in a GUI 123

PsychoPy - Psychology software for Python, Release 2023.2.3

6.1.13 Compiling a Script

If you click the compile script icon this will display the script for your experiment in the Coder window.

This can be used for debugging experiments, entering small amounts of code and learning a bit about writing scripts
amongst other things.

The code is fully commented and so this can be an excellent introduction to writing your own code.

6.1.14 Set up your monitor properly

It’s a really good idea to tell about the set up of your monitor, especially the size in cm and pixels and its distance, so
that can present your stimuli in units that will be consistent in another lab with a different set up (e.g. cm or degrees of
visual angle).

You should do this in Monitor Center which can be opened from Builder by clicking on the icon that shows two
monitors. In Monitor Center you can create settings for multiple configurations, e.g. different viewing distances or
different physical devices and then select the appropriate one by name in your experiments or scripts.

Having set up your monitor settings you should then tell which of your monitor setups to use for this experiment by
going to the Experiment settings dialog.

6.1. Building experiments in a GUI 124

CHAPTER

SEVEN

CODER

The coder view is designed for those wishing to make scripts from scratch, either to make their experiments or do other
things. Coder view does not teach you about Python per se, and you are recommended also to learn about that (Python
has many excellent tutorials for programmers and non-programmers alike). In particular, dictionaries, lists and numpy
arrays are used a great deal in most experiments.

You can program experiments in any python development environment (e.g. PyCharm, Spyder would be excellent ex-
amples of full-featured editors). So, why use Coder view in PsychoPy? The answer is that the PsychoPy as a standalone
package also includes several common python libraries you would use when making experiments in python. In general
there will therefore be fewer steps to take to configure your python environment in coder. So if you are teaching python,
there should be less work to set up the environment for each student! However if you are teaching python for many
purposes beyond making experiments, you might want to move to another IDE (Integrated Development Environment),
because coder won’t have everything you need imported.

You can learn to use the scripting interface to in several ways, and you should probably follow a combination of them:

• Check the content of our PsychoPy workshops (we currently focus on coding concepts on day 3).

• Basic Concepts: some of the logic of scripting

• tutorials: walk you through the development of some semi-complete experiments

• demos: in the demos menu of Coder view.

• use the Builder to compile a script and see how it works (you can actually compile to Python or Javascript to
learn a bit of both!). This is also useful for understanding the Code Component, you can write a snippet in a code
component in builder and compile to see where it is written in the script (but remember exporting to coder is a
one way street, you can’t make edits in coder and hope that is reflected back in the builder experiment).

You should check the Reference Manual (API) for further details and, ultimately, go into PsychoPy and start examining
the source code. It’s just regular python!

7.1 Basic Concepts

7.1.1 Presenting Stimuli

Note: Before you start, tell about your monitor(s) using the Monitor Center. That way you get to use units (like
degrees of visual angle) that will transfer easily to other computers.

125

http://www.python.org/
https://www.jetbrains.com/pycharm/
https://www.spyder-ide.org/
https://workshops.psychopy.org/3days/index.html
https://github.com/psychopy/psychopy

PsychoPy - Psychology software for Python, Release 2023.2.3

Stimulus objects

Python is an ‘object-oriented’ programming language, meaning that most stimuli in are represented by python objects,
with various associated methods and information.

Typically you should create your stimulus with the initial desired attributes once, at the beginning of the script, and
then change select attributes later (see section below on setting stimulus attributes). For instance, create your text and
then change its color any time you like:

from psychopy import visual, core
win = visual.Window([400,400])
message = visual.TextStim(win, text='hello')
message.autoDraw = True # Automatically draw every frame
win.flip()
core.wait(2.0)
message.text = 'world' # Change properties of existing stim
win.flip()
core.wait(2.0)

Setting stimulus attributes

Stimulus attributes are typically set using either:

• a string, which is just some characters (as message.text = ‘world’ above)

• a scalar (a number; see below)

• an x,y-pair (two numbers; see below)

x,y-pair:
is very flexible in terms of input. You can specify the widely used x,y-pairs using these types:

• A Tuple (x, y) with two elements

• A List [x, y] with two elements

• A numpy array([x, y]) with two elements

However, always converts the x,y-pairs to numpy arrays internally. For example, all three assignments of pos are
equivalent here:

stim.pos = (0.5, -0.2) # Right and a bit up from the center
print(stim.pos) # array([0.5, -0.2])

stim.pos = [0.5, -0.2]
print(stim.pos) # array([0.5, -0.2])

stim.pos = numpy.array([0.5, -0.2])
print(stim.pos) # array([0.5, -0.2])

Choose your favorite :-) However, you can’t assign elementwise:

stim.pos[1] = 4 # has no effect

Scalar:
Int or Float.

Mostly, scalars are no-brainers to understand. E.g.:

7.1. Basic Concepts 126

PsychoPy - Psychology software for Python, Release 2023.2.3

stim.ori = 90 # Rotate stimulus 90 degrees
stim.opacity = 0.8 # Make the stimulus slightly transparent.

However, scalars can also be used to assign x,y-pairs. In that case, both x and y get the value of the scalar. E.g.:

stim.size = 0.5
print(stim.size) # array([0.5, 0.5])

Operations on attributes:
Operations during assignment of attributes are a handy way to smoothly alter the appearance of your stimuli in
loops.

Most scalars and x,y-pairs support the basic operations:

stim.attribute += value # addition
stim.attribute -= value # subtraction
stim.attribute *= value # multiplication
stim.attribute /= value # division
stim.attribute %= value # modulus
stim.attribute **= value # power

They are easy to use and understand on scalars:

stim.ori = 5 # 5.0, set rotation
stim.ori += 3.8 # 8.8, rotate clockwise
stim.ori -= 0.8 # 8.0, rotate counterclockwise
stim.ori /= 2 # 4.0, home in on zero
stim.ori **= 3 # 64.0, exponential increase in rotation
stim.ori %= 10 # 4.0, modulus 10

However, they can also be used on x,y-pairs in very flexible ways. Here you can use both scalars and x,y-pairs
as operators. In the latter case, the operations are element-wise:

stim.size = 5 # array([5.0, 5.0]), set quadratic size
stim.size +=2 # array([7.0, 7.0]), increase size
stim.size /= 2 # array([3.5, 3.5]), downscale size
stim.size += (0.5, 2.5) # array([4.0, 6.0]), a little wider and much taller
stim.size *= (2, 0.25) # array([8.0, 1.5]), upscale horizontal and downscale␣
→˓vertical

Operations are not meaningful for strings.

Timing

There are various ways to measure and control timing in :
• using frame refresh periods (most accurate, least obvious)

• checking the time on Clock objects

• using core.wait() commands (most obvious, least flexible/accurate)

Using core.wait(), as in the above example, is clear and intuitive in your script. But it can’t be used while something is
changing. For more flexible timing, you could use a Clock() object from the core module:

7.1. Basic Concepts 127

PsychoPy - Psychology software for Python, Release 2023.2.3

from psychopy import visual, core

Setup stimulus
win = visual.Window([400, 400])
gabor = visual.GratingStim(win, tex='sin', mask='gauss', sf=5, name='gabor')
gabor.autoDraw = True # Automatically draw every frame
gabor.autoLog = False # Or we'll get many messages about phase change

Let's draw a stimulus for 2s, drifting for middle 0.5s
clock = core.Clock()
while clock.getTime() < 2.0: # Clock times are in seconds

if 0.5 <= clock.getTime() < 1.0:
gabor.phase += 0.1 # Increment by 10th of cycle

win.flip()

Clocks are accurate to around 1ms (better on some platforms), but using them to time stimuli is not very accurate
because it fails to account for the fact that one frame on your monitor has a fixed frame rate. In the above, the stimulus
does not actually get drawn for exactly 0.5s (500ms). If the screen is refreshing at 60Hz (16.7ms per frame) and the
getTime() call reports that the time has reached 1.999s, then the stimulus will draw again for a frame, in accordance with
the while loop statement and will ultimately be displayed for 2.0167s. Alternatively, if the time has reached 2.001s,
there will not be an extra frame drawn. So using this method you get timing accurate to the nearest frame period
but with little consistent precision. An error of 16.7ms might be acceptable to long-duration stimuli, but not to a brief
presentation. It also might also give the false impression that a stimulus can be presented for any given period. At 60Hz
refresh you can not present your stimulus for, say, 120ms; the frame period would limit you to a period of 116.7ms (7
frames) or 133.3ms (8 frames).

As a result, the most precise way to control stimulus timing is to present them for a specified number of frames. The
frame rate is extremely precise, much better than ms-precision. Calls to Window.flip() will be synchronised to the frame
refresh; the script will not continue until the flip has occurred. As a result, on most cards, as long as frames are not
being ‘dropped’ (see Detecting dropped frames) you can present stimuli for a fixed, reproducible period.

Note: Some graphics cards, such as Intel GMA graphics chips under win32, don’t support frame sync. Avoid integrated
graphics for experiment computers wherever possible.

Using the concept of fixed frame periods and flip() calls that sync to those periods we can time stimulus presentation
extremely precisely with the following:

from psychopy import visual, core

Setup stimulus
win = visual.Window([400, 400])
gabor = visual.GratingStim(win, tex='sin', mask='gauss', sf=5,

name='gabor', autoLog=False)
fixation = visual.GratingStim(win, tex=None, mask='gauss', sf=0, size=0.02,

name='fixation', autoLog=False)

Let's draw a stimulus for 200 frames, drifting for frames 50:100
for frameN in range(200): # For exactly 200 frames

if 10 <= frameN < 150: # Present fixation for a subset of frames
fixation.draw()

if 50 <= frameN < 100: # Present stim for a different subset
gabor.phase += 0.1 # Increment by 10th of cycle

(continues on next page)

7.1. Basic Concepts 128

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

gabor.draw()
win.flip()

Using autoDraw

Stimuli are typically drawn manually on every frame in which they are needed, using the draw() function. You can also
set any stimulus to start drawing every frame using stim.autoDraw = True or stim.autoDraw = False. If you use these
commands on stimuli that also have autoLog=True, then these functions will also generate a log message on the frame
when the first drawing occurs and on the first frame when it is confirmed to have ended.

7.1.2 Logging data

TrialHandler and StairHandler can both generate data outputs in which responses are stored, in relation to the stimulus
conditions. In addition to those data outputs, can create detailed chronological log files of events during the experiment.

Log levels and targets

Log messages have various levels of severity:
ERROR, WARNING, DATA, EXP, INFO and DEBUG

Multiple targets can also be created to receive log messages. Each target has a particular critical level and receives
all logged messages greater than that. For example, you could set the console (visual output) to receive only warnings
and errors, have a central log file that you use to store warning messages across studies (with file mode append), and
another to create a detailed log of data and events within a single study with level=INFO:

from psychopy import logging
logging.console.setLevel(logging.WARNING)
overwrite (filemode='w') a detailed log of the last run in this dir
lastLog = logging.LogFile("lastRun.log", level=logging.INFO, filemode='w')
also append warnings to a central log file
centralLog = logging.LogFile("C:\\psychopyExps.log", level=logging.WARNING, filemode='a')

Updating the logs

For performance purposes log files are not actually written when the log commands are ‘sent’. They are stored in a
list and processed automatically when the script ends. You might also choose to force a flush of the logged messages
manually during the experiment (e.g. during an inter-trial interval):

from psychopy import logging

...

logging.flush() # write messages out to all targets

This should only be necessary if you want to see the logged information as the experiment progresses.

7.1. Basic Concepts 129

PsychoPy - Psychology software for Python, Release 2023.2.3

AutoLogging

New in version 1.63.00
Certain events will log themselves automatically by default. For instance, visual stimuli send log messages every
time one of their parameters is changed, and when autoDraw is toggled they send a message that the stimulus has
started/stopped. All such log messages are timestamped with the frame flip on which they take effect. To avoid this
logging, for stimuli such as fixation points that might not be critical to your analyses, or for stimuli that change constantly
and will flood the logging system with messages, the autoLogging can be turned on/off at initialisation of the stimulus
and can be altered afterwards with .setAutoLog(True/False)

Manual methods

In addition to a variety of automatic logging messages, you can create your own, of various levels. These can be
timestamped immediately:

from psychopy import logging
logging.log(level=logging.WARN, msg='something important')
logging.log(level=logging.EXP, msg='something about the conditions')
logging.log(level=logging.DATA, msg='something about a response')
logging.log(level=logging.INFO, msg='something less important')

There are additional convenience functions for the above: logging.warn(‘a warning’) etc.

For stimulus changes you probably want the log message to be timestamped based on the frame flip (when the stimulus
is next presented) rather than the time that the log message is sent:

from psychopy import logging, visual
win = visual.Window([400,400])
win.flip()
logging.log(level=logging.EXP, msg='sent immediately')
win.logOnFlip(level=logging.EXP, msg='sent on actual flip')
win.flip()

Using a custom clock for logs

New in version 1.63.00
By default times for log files are reported as seconds after the very beginning of the script (often it takes a few seconds
to initialise and import all modules too). You can set the logging system to use any given core.Clock object (actually,
anything with a getTime() method):

from psychopy import core, logging
globalClock = core.Clock()
logging.setDefaultClock(globalClock)

7.1. Basic Concepts 130

PsychoPy - Psychology software for Python, Release 2023.2.3

7.1.3 Handling Trials and Conditions

TrialHandler

This is what underlies the random and sequential loop types in Builder, they work using the method of constants. The
trialHandler presents a predetermined list of conditions in either a sequential or random (without replacement) order.

see TrialHandler for more details.

TrialHandlerExt (For oddball paradigms)

For handling trial sequences in a non-counterbalanced design (i.e. oddball paradigms, https://en.wikipedia.org/wiki/
Oddball_paradigm). The oddball paradigm is very popular in EEG research.

Its functions are a superset of the class TrialHandler, and as such, can also be used for normal trial handling.

see TrialHandlerExt for more details.

StairHandler

This generates the next trial using an adaptive staircase. The conditions are not predetermined and are generated based
on the participant’s responses.

Staircases are predominately used in psychophysics to measure the discrimination and detection thresholds. However
they can be used in any experiment which varies a numeric value as a result of a 2 alternative forced choice (2AFC)
response.

The StairHandler systematically generates numbers based on staircase parameters. These can then be used to define a
stimulus parameter e.g. spatial frequency, stimulus presentation duration. If the participant gives the incorrect response
the number generated will get larger and if the participant gives the correct response the number will get smaller.

see StairHandler for more details

7.1.4 Global Event Keys

Global event keys are single keys (or combinations of a single key and one or more “modifier” keys such as Ctrl, Alt, etc.)
with an associated Python callback function. This function will be executed if the key (or key/modifiers combination)
was pressed.

Note: Global event keys only work with the pyglet backend, which is the default.

fully automatically monitors and processes key presses during most portions of the experimental run, for example
during core.wait() periods, or when calling win.flip(). If a global event key press is detected, the specified function will
be run immediately. You are not required to manually poll and check for key presses. This can be particularly useful to
implement a global “shutdown” key, or to trigger laboratory equipment on a key press when testing your experimental
script – without cluttering the code. But of course the application is not limited to these two scenarios. In fact, you can
associate any Python function with a global event key.

All active global event keys are stored in event.globalKeys.

7.1. Basic Concepts 131

https://en.wikipedia.org/wiki/Oddball_paradigm
https://en.wikipedia.org/wiki/Oddball_paradigm

PsychoPy - Psychology software for Python, Release 2023.2.3

Adding a global event key (simple)

First, let’s ensure no global event keys are currently set by calling func:event.globalKeys.clear.

>>> from psychopy import event
>>> event.globalKeys.clear()

To add a new global event key, you need to invoke func:event.globalKeys.add. This function has two required arguments:
the key name, and the function to associate with that key.

>>> key = 'a'
>>> def myfunc():
... pass
...
>>> event.globalKeys.add(key=key, func=myfunc)

Look at event.globalKeys, we can see that the global event key has indeed been created.

>>> event.globalKeys
<_GlobalEventKeys :

[A] -> 'myfunc' <function myfunc at 0x10669ba28>
>

Your output should look similar. You may happen to spot We can take a closer look at the specific global key event we
added.

>>> event.globalKeys['a']
_GlobalEvent(func=<function myfunc at 0x10669ba28>, func_args=(), func_kwargs={}, name=
→˓'myfunc')

This output tells us that

• our key a is associated with our function myfunc

• myfunc will be called without passing any positional or keyword arguments (func_args and func_kwargs, respec-
tively)

• the event name was automatically set to the name of the function.

Note: Pressing the key won’t do anything unless a psychopy.visual.Window is created and and its
:func:~`psychopy.visual.Window.flip` method or psychopy.core.wait() are called.

Adding a global event key (advanced)

We are going to associate a function with a more complex calling signature (with positional and keyword arguments)
with a global event key. First, let’s create the dummy function:

>>> def myfunc2(*args, **kwargs):
... pass
...

Next, compile some positional and keyword arguments and a custom name for this event. Positional arguments must
be passed as tists or uples, and keyword arguments as dictionaries.

7.1. Basic Concepts 132

PsychoPy - Psychology software for Python, Release 2023.2.3

>>> args = (1, 2)
>>> kwargs = dict(foo=3, bar=4)
>>> name = 'my name'

Note: Even when intending to pass only a single positional argument, args must be a list or tuple, e.g., args = [1] or
args = (1,).

Finally, specify the key and a combination of modifiers. While key names are just strings, modifiers are lists or tuples
of modifier names.

>>> key = 'b'
>>> modifiers = ['ctrl', 'alt']

Note: Even when specifying only a single modifier key, modifiers must be a list or tuple, e.g., modifiers = [‘ctrl’] or
modifiers = (‘ctrl’,).

We are now ready to create the global event key.

>>> event.globalKeys.add(key=key, modifiers=modifiers,
... func=myfunc2, func_args=args, func_kwargs=kwargs,
... name=name)

Check that the global event key was successfully added.

>>> event.globalKeys
<_GlobalEventKeys :

[A] -> 'myfunc' <function myfunc at 0x10669ba28>
[CTRL] + [ALT] + [B] -> 'my name' <function myfunc2 at 0x112eecb90>

>

The key combination [CTRL] + [ALT] + [B] is now associated with the function myfunc2, which will be called in the
following way:

myfunc2(1, 2, foo=2, bar=4)

Indexing

event.globalKeys can be accessed like an ordinary dictionary. The index keys are (key, modifiers) namedtuples.

>>> event.globalKeys.keys()
[_IndexKey(key='a', modifiers=()), _IndexKey(key='b', modifiers=('ctrl', 'alt'))]

To access the global event associated with the key combination [CTRL] + [ALT] + [B], we can do

>>> event.globalKeys['b', ['ctrl', 'alt']]
_GlobalEvent(func=<function myfunc2 at 0x112eecb90>, func_args=(1, 2), func_kwargs={'foo
→˓': 3, 'bar': 4}, name='my name')

To make access more convenient, specifying the modifiers is optional in case none were passed to psychopy.event.
globalKeys.add() when the global event key was added, meaning the following commands are identical.

7.1. Basic Concepts 133

PsychoPy - Psychology software for Python, Release 2023.2.3

>>> event.globalKeys['a', ()]
_GlobalEvent(func=<function myfunc at 0x10669ba28>, func_args=(), func_kwargs={}, name=
→˓'myfunc')
>>> event.globalKeys['a']
_GlobalEvent(func=<function myfunc at 0x10669ba28>, func_args=(), func_kwargs={}, name=
→˓'myfunc')

All elements of a global event can be accessed directly.

>>> index = ('b', ['ctrl', 'alt'])
>>> event.globalKeys[index].func
<function myfunc2 at 0x112eecb90>
>>> event.globalKeys[index].func_args
(1, 2)
>>> event.globalKeys[index].func_kwargs
{'foo': 3, 'bar': 4}
>>> event.globalKeys[index].name
'my name'

Number of active event keys

The number of currently active event keys can be retrieved by passing event.globalKeys to the len() function.

>>> len(event.globalKeys)
2

Removing global event keys

There are three ways to remove global event keys:

• using psychopy.event.globalKeys.remove(),

• using del, and

• using psychopy.event.globalKeys.pop().

psychopy.event.globalKeys.remove()

To remove a single key, pass the key name and modifiers (if any) to psychopy.event.globalKeys.remove().

>>> event.globalKeys.remove(key='a')

A convenience method to quickly delete all global event keys is to pass key=’all’

>>> event.globalKeys.remove(key='all')

7.1. Basic Concepts 134

PsychoPy - Psychology software for Python, Release 2023.2.3

del

Like with other dictionaries, items can be removed from event.globalKeys by using the del statement. The provided
index key must be specified as described in Indexing.

>>> index = ('b', ['ctrl', 'alt'])
>>> del event.globalKeys[index]

psychopy.event.globalKeys.pop()

Again, as other dictionaries, event.globalKeys provides a pop method to retrieve an item and remove it from the dict.
The first argument to pop is the index key, specified as described in Indexing. The second argument is optional. Its
value will be returned in case no item with the matching indexing key could be found, for example if the item had
already been removed previously.

>>> r = event.globalKeys.pop('a', None)
>>> print(r)
_GlobalEvent(func=<function myfunc at 0x10669ba28>, func_args=(), func_kwargs={}, name=
→˓'myfunc')
>>> r = event.globalKeys.pop('a', None)
>>> print(r)
None

Global shutdown key

The preferences for shutdownKey and shutdownKeyModifiers (both unset by default) will be used to automatically create
a global shutdown key. To demonstrate this automated behavior, let us first change the preferences programmatically
(these changes will be lost when quitting the current Python session).

>>> from psychopy.preferences import prefs
>>> prefs.general['shutdownKey'] = 'q'

We can now check if a global shutdown key has been automatically created.

>>> from psychopy import event
>>> event.globalKeys
<_GlobalEventKeys :

[Q] -> 'shutdown (auto-created from prefs)' <function quit at 0x10c171938>
>

And indeed, it worked!

What happened behind the scenes? When importing the psychopy.event module, the initialization of event.globalKeys
checked for valid shutdown key preferences and automatically initialized a shutdown key accordingly. This key is
associated with the :func:~`psychopy.core.quit` function, which will shut down .

>>> from psychopy.core import quit
>>> event.globalKeys['q'].func == quit
True

Of course you can very easily add a global shutdown key manually, too. You simply have to associate a key with
:func:~`psychopy.core.quit`.

7.1. Basic Concepts 135

PsychoPy - Psychology software for Python, Release 2023.2.3

>>> from psychopy import core, event
>>> event.globalKeys.add(key='q', func=core.quit, name='shutdown')

That’s it!

A working example

In the above code snippets, our global event keys were not actually functional, as we didn’t create a window, which is
required to actually collect the key presses. Our working example will thus first create a window and then add global
event keys to change the window color and quit the experiment, respectively.

#!/usr/bin/env python
-*- coding: utf-8 -*-

from __future__ import print_function
from psychopy import core, event, visual

def change_color(win, log=False):
win.color = 'blue' if win.color == 'gray' else 'gray'
if log:

print('Changed color to %s' % win.color)

win = visual.Window(color='gray')
text = visual.TextStim(win,

text='Press C to change color,\n CTRL + Q to quit.')

Global event key to change window background color.
event.globalKeys.add(key='c',

func=change_color,
func_args=[win],
func_kwargs=dict(log=True),
name='change window color')

Global event key (with modifier) to quit the experiment ("shutdown key").
event.globalKeys.add(key='q', modifiers=['ctrl'], func=core.quit)

while True:
text.draw()
win.flip()

7.1. Basic Concepts 136

PsychoPy - Psychology software for Python, Release 2023.2.3

7.2 Tutorials

7.2.1 Tutorial 1: Generating your first stimulus

A tutorial to get you going with your first stimulus display.

Know your monitor

has been designed to handle your screen calibrations for you. It is also designed to operate (if possible) in the final
experimental units that you like to use e.g. degrees of visual angle.

In order to do this needs to know a little about your monitor. There is a GUI to help with this (select MonitorCenter
from the tools menu of |PsychoPy|IDE or run . . . site-packages/monitors/MonitorCenter.py).

In the MonitorCenter window you can create a new monitor name, insert values that describe your monitor and run
calibrations like gamma corrections. For now you can just stick to the [testMonitor] but give it correct values for your
screen size in number of pixels and width in cm.

Now, when you create a window on your monitor you can give it the name ‘testMonitor’ and stimuli will know how
they should be scaled appropriately.

Your first stimulus

Building stimuli is extremely easy. All you need to do is create a Window, then some stimuli. Draw those stimuli, then
update the window. has various other useful commands to help with timing too. Here’s an example. Type it into a
coder window, save it somewhere and press run.

1 from psychopy import visual, core # import some libraries from PsychoPy
2 from psychopy.hardware import keyboard
3

4 #create a window
5 mywin = visual.Window([800,600], monitor="testMonitor", units="deg")
6

7 #create some stimuli
8 grating = visual.GratingStim(win=mywin, mask="circle", size=3, pos=[-4,0], sf=3)
9 fixation = visual.GratingStim(win=mywin, size=0.5, pos=[0,0], sf=0, rgb=-1)

10

11 #create a keyboard component
12 kb = keyboard.Keyboard()
13

14 #draw the stimuli and update the window
15 grating.draw()
16 fixation.draw()
17 mywin.update()
18

19 #pause, so you get a chance to see it!
20 core.wait(5.0)

Note: For those new to Python. Did you notice that the grating and the fixation stimuli both call GratingStim
but have different arguments? One of the nice features about python is that you can select which arguments to set.
GratingStim has over 15 arguments that can be set, but the others just take on default values if they aren’t needed.

7.2. Tutorials 137

PsychoPy - Psychology software for Python, Release 2023.2.3

That’s a bit easy though. Let’s make the stimulus move, at least! To do that we need to create a loop where we change
the phase (or orientation, or position. . .) of the stimulus and then redraw. Add this code in place of the drawing code
above:

for frameN in range(200):
grating.setPhase(0.05, '+') # advance phase by 0.05 of a cycle
grating.draw()
fixation.draw()
mywin.update()

That ran for 200 frames (and then waited 5 seconds as well). Maybe it would be nicer to keep updating until the user
hits a key instead. That’s easy to add too. In the first line add event to the list of modules you’ll import. Then replace
the line:

for frameN in range(200):

with the line:

while True: #this creates a never-ending loop

Then, within the loop (make sure it has the same indentation as the other lines) add the lines:

if len(kb.getKeys()) > 0:
break

event.clearEvents()

the first line counts how many keys have been pressed since the last frame. If more than zero are found then we break
out of the never-ending loop. The second line clears the event buffer and should always be called after you’ve collected
the events you want (otherwise it gets full of events that we don’t care about like the mouse moving around etc. . .).

Your finished script should look something like this:

1 from psychopy import visual, core, event #import some libraries from PsychoPy
2 from psychopy.hardware import keyboard
3

4 #create a window
5 mywin = visual.Window([800,600],monitor="testMonitor", units="deg")
6

7 #create some stimuli
8 grating = visual.GratingStim(win=mywin, mask='circle', size=3, pos=[-4,0], sf=3)
9 fixation = visual.GratingStim(win=mywin, size=0.2, pos=[0,0], sf=0, rgb=-1)

10

11 #create a keyboard component
12 kb = keyboard.Keyboard()
13

14 #draw the stimuli and update the window
15 while True: #this creates a never-ending loop
16 grating.setPhase(0.05, '+')#advance phase by 0.05 of a cycle
17 grating.draw()
18 fixation.draw()
19 mywin.flip()
20

21 if len(kb.getKeys()) > 0:
22 break

(continues on next page)

7.2. Tutorials 138

https://raw.githubusercontent.com/psychopy/psychopy/master/docs/source/coder/tutorial1.py

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

23 event.clearEvents()
24

25 #cleanup
26 mywin.close()
27 core.quit()

There are several more simple scripts like this in the demos menu of the Coder and Builder views and many more to
download. If you’re feeling like something bigger then go to Tutorial 2: Measuring a JND using a staircase procedure
which will show you how to build an actual experiment.

7.2.2 Tutorial 2: Measuring a JND using a staircase procedure

This tutorial builds an experiment to test your just-noticeable-difference (JND) to orientation, that is it determines the
smallest angular deviation that is needed for you to detect that a gabor stimulus isn’t vertical (or at some other reference
orientation). The method presents a pair of stimuli at once with the observer having to report with a key press whether
the left or the right stimulus was at the reference orientation (e.g. vertical).

You can download the full code here. Note that the entire experiment is constructed of less than 100 lines of code,
including the initial presentation of a dialogue for parameters, generation and presentation of stimuli, running the
trials, saving data and outputting a simple summary analysis for feedback. Not bad, eh?

There are a great many modifications that can be made to this code, however this example is designed to demonstrate
how much can be achieved with very simple code. Modifying existing is an excellent way to begin writing your own
scripts, for example you may want to try changing the appearance of the text or the stimuli.

Get info from the user

The first lines of code import the necessary libraries. We need lots of the modules for a full experiment, as well as
numpy (which handles various numerical/mathematical functions):

1 """measure your JND in orientation using a staircase method"""
2 from psychopy import core, visual, gui, data, event
3 from psychopy.tools.filetools import fromFile, toFile
4 import numpy, random

Also note that there are two ways to insert comments in Python (and you should do this often!). Using triple quotes, as
in “””Here’s my comment”””, allows you to write a comment that can span several lines. Often you need that at the
start of your script to leave yourself a note about the implementation and history of what you’ve written. For single-line
comments, as you’ll see below, you can use a simple # to indicate that the rest of the line is a comment.

The try:...except:... lines allow us to try and load a parameter file from a previous run of the experiment. If that
fails (e.g. because the experiment has never been run) then create a default set of parameters. These are easy to store
in a python dictionary that we’ll call expInfo:

6 try: # try to get a previous parameters file
7 expInfo = fromFile('lastParams.pickle')
8 except: # if not there then use a default set
9 expInfo = {'observer':'jwp', 'refOrientation':0}

10 expInfo['dateStr'] = data.getDateStr() # add the current time

The last line adds the current date to to the information, whether we loaded from a previous run or created default
values.

7.2. Tutorials 139

https://raw.githubusercontent.com/psychopy/psychopy/master/docs/source/coder/tutorial2.py
http://docs.python.org/tut/node7.html#SECTION007500000000000000000

PsychoPy - Psychology software for Python, Release 2023.2.3

So having loaded those parameters, let’s allow the user to change them in a dialogue box (which we’ll call dlg). This is
the simplest form of dialogue, created directly from the dictionary above. the dialogue will be presented immediately
to the user and the script will wait until they hit OK or Cancel.

If they hit OK then dlg.OK=True, in which case we’ll use the updated values and save them straight to a parameters
file (the one we try to load above).

If they hit Cancel then we’ll simply quit the script and not save the values.

11 # present a dialogue to change params
12 dlg = gui.DlgFromDict(expInfo, title='simple JND Exp', fixed=['dateStr'])
13 if dlg.OK:
14 toFile('lastParams.pickle', expInfo) # save params to file for next time
15 else:
16 core.quit() # the user hit cancel so exit

Setup the information for trials

We’ll create a file to which we can output some data as text during each trial (as well as outputting a binary file at
the end of the experiment). actually has supporting functions to do this automatically, but here we’re showing you the
manual way to do it.

We’ll create a filename from the subject+date+”.csv” (note how easy it is to concatenate strings in python just by
‘adding’ them). csv files can be opened in most spreadsheet packages. Having opened a text file for writing, the last
line shows how easy it is to send text to this target document.

18 # make a text file to save data
19 fileName = expInfo['observer'] + expInfo['dateStr']
20 dataFile = open(fileName+'.csv', 'w') # a simple text file with 'comma-separated-values'
21 dataFile.write('targetSide,oriIncrement,correct\n')

allows us to set up an object to handle the presentation of stimuli in a staircase procedure, the StairHandler. This
will define the increment of the orientation (i.e. how far it is from the reference orientation). The staircase can be
configured in many ways, but we’ll set it up to begin with an increment of 20deg (very detectable) and home in on the
80% threshold value. We’ll step up our increment every time the subject gets a wrong answer and step down if they get
three right answers in a row. The step size will also decrease after every 2 reversals, starting with an 8dB step (large)
and going down to 1dB steps (smallish). We’ll finish after 50 trials.

23 # create the staircase handler
24 staircase = data.StairHandler(startVal = 20.0,
25 stepType = 'db', stepSizes=[8,4,4,2],
26 nUp=1, nDown=3, # will home in on the 80% threshold
27 nTrials=1)

7.2. Tutorials 140

PsychoPy - Psychology software for Python, Release 2023.2.3

Build your stimuli

Now we need to create a window, some stimuli and timers. We need a ~psychopy.visual.Window in which to draw our
stimuli, a fixation point and two ~psychopy.visual.GratingStim stimuli (one for the target probe and one as the foil).
We can have as many timers as we like and reset them at any time during the experiment, but I generally use one to
measure the time since the experiment started and another that I reset at the beginning of each trial.

29 # create window and stimuli
30 win = visual.Window([800,600],allowGUI=True,
31 monitor='testMonitor', units='deg')
32 foil = visual.GratingStim(win, sf=1, size=4, mask='gauss',
33 ori=expInfo['refOrientation'])
34 target = visual.GratingStim(win, sf=1, size=4, mask='gauss',
35 ori=expInfo['refOrientation'])
36 fixation = visual.GratingStim(win, color=-1, colorSpace='rgb',
37 tex=None, mask='circle', size=0.2)
38 # and some handy clocks to keep track of time
39 globalClock = core.Clock()
40 trialClock = core.Clock()

Once the stimuli are created we should give the subject a message asking if they’re ready. The next two lines create
a pair of messages, then draw them into the screen and then update the screen to show what we’ve drawn. Finally we
issue the command event.waitKeys() which will wait for a keypress before continuing.

42 # display instructions and wait
43 message1 = visual.TextStim(win, pos=[0,+3],text='Hit a key when ready.')
44 message2 = visual.TextStim(win, pos=[0,-3],
45 text="Then press left or right to identify the %.1f deg probe." %expInfo[

→˓'refOrientation'])
46 message1.draw()
47 message2.draw()
48 fixation.draw()
49 win.flip()#to show our newly drawn 'stimuli'
50 #pause until there's a keypress
51 event.waitKeys()

Control the presentation of the stimuli

OK, so we have everything that we need to run the experiment. The following uses a for-loop that will iterate over
trials in the experiment. With each pass through the loop the staircase object will provide the new value for the
intensity (which we will call thisIncrement). We will randomly choose a side to present the target stimulus using
numpy.random.random(), setting the position of the target to be there and the foil to be on the other side of the
fixation point.

53 for thisIncrement in staircase: # will continue the staircase until it terminates!
54 # set location of stimuli
55 targetSide= random.choice([-1,1]) # will be either +1(right) or -1(left)
56 foil.setPos([-5*targetSide, 0])
57 target.setPos([5*targetSide, 0]) # in other location

Then set the orientation of the foil to be the reference orientation plus thisIncrement, draw all the stimuli (including
the fixation point) and update the window.

7.2. Tutorials 141

https://numpy.org/doc/stable/reference/random/generated/numpy.random.random.html#numpy.random.random

PsychoPy - Psychology software for Python, Release 2023.2.3

59 # set orientation of probe
60 foil.setOri(expInfo['refOrientation'] + thisIncrement)
61

62 # draw all stimuli
63 foil.draw()
64 target.draw()
65 fixation.draw()
66 win.flip()

Wait for presentation time of 500ms and then blank the screen (by updating the screen after drawing just the fixation
point).

68 # wait 500ms; but use a loop of x frames for more accurate timing
69 core.wait(0.5)

(This is not the most precise way to time your stimuli - you’ll probably overshoot by one frame - but its easy to un-
derstand. allows you to present a stimulus for acertian number of screen refreshes instead which is better for short
stimuli.)

Get input from the subject

Still within the for-loop (note the level of indentation is the same) we need to get the response from the subject. The
method works by starting off assuming that there hasn’t yet been a response and then waiting for a key press. For each
key pressed we check if the answer was correct or incorrect and assign the response appropriately, which ends the trial.
We always have to clear the event buffer if we’re checking for key presses like this

75 # get response
76 thisResp=None
77 while thisResp==None:
78 allKeys=event.waitKeys()
79 for thisKey in allKeys:
80 if thisKey=='left':
81 if targetSide==-1: thisResp = 1 # correct
82 else: thisResp = -1 # incorrect
83 elif thisKey=='right':
84 if targetSide== 1: thisResp = 1 # correct
85 else: thisResp = -1 # incorrect
86 elif thisKey in ['q', 'escape']:
87 core.quit() # abort experiment
88 event.clearEvents() # clear other (eg mouse) events - they clog the buffer

Now we must tell the staircase the result of this trial with its addData() method. Then it can work out whether the
next trial is an increment or decrement. Also, on each trial (so still within the for-loop) we may as well save the data as
a line of text in that .csv file we created earlier.

90 # add the data to the staircase so it can calculate the next level
91 staircase.addData(thisResp)
92 dataFile.write('%i,%.3f,%i\n' %(targetSide, thisIncrement, thisResp))
93 core.wait(1)

7.2. Tutorials 142

PsychoPy - Psychology software for Python, Release 2023.2.3

Output your data and clean up

OK! We’re basically done! We’ve reached the end of the for-loop (which occurred because the staircase terminated)
which means the trials are over. The next step is to close the text data file and also save the staircase as a binary file (by
‘pickling’ the file in Python speak) which maintains a lot more info than we were saving in the text file.

95 # staircase has ended
96 dataFile.close()
97 staircase.saveAsPickle(fileName) # special python binary file to save all the info

While we’re here, it’s quite nice to give some immediate feedback to the user. Let’s tell them the intensity values at the
all the reversals and give them the mean of the last 6. This is an easy way to get an estimate of the threshold, but we
might be able to do a better job by trying to reconstruct the psychometric function. To give that a try see the staircase
analysis script of Tutorial 3.

Having saved the data you can give your participant some feedback and quit!

99 # give some output to user in the command line in the output window
100 print('reversals:')
101 print(staircase.reversalIntensities)
102 approxThreshold = numpy.average(staircase.reversalIntensities[-6:])
103 print('mean of final 6 reversals = %.3f' % (approxThreshold))
104

105 # give some on-screen feedback
106 feedback1 = visual.TextStim(
107 win, pos=[0,+3],
108 text='mean of final 6 reversals = %.3f' % (approxThreshold))
109

110 feedback1.draw()
111 fixation.draw()
112 win.flip()
113 event.waitKeys() # wait for participant to respond
114

115 win.close()
116 core.quit()

7.2.3 Tutorial 3: Analysing data in Python

You could simply output your data as tab- or comma-separated text files and analyse the data in some spreadsheet
package. But the matplotlib library in Python also allows for very neat and simple creation of publication-quality plots.

This script shows you how to use a couple of functions from to open some data files (psychopy.gui.fileOpenDlg())
and create a psychometric function out of some staircase data (psychopy.data.functionFromStaircase()).

Matplotlib is then used to plot the data.

Note: Matplotlib and pylab. Matplotlib is a python library that has similar command syntax to most of the plotting
functions in Matlab(tm). In can be imported in different ways; the import pylab line at the beginning of the script is
the way to import matploblib as well as a variety of other scientific tools (that aren’t strictly to do with plotting per se).

1 #This analysis script takes one or more staircase datafiles as input
2 #from a GUI. It then plots the staircases on top of each other on

(continues on next page)

7.2. Tutorials 143

http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

3 #the left and a combined psychometric function from the same data
4 #on the right
5

6 from psychopy import data, gui, core
7 from psychopy.tools.filetools import fromFile
8 import pylab
9

10 #Open a dialog box to select files from
11 files = gui.fileOpenDlg('.')
12 if not files:
13 core.quit()
14

15 #get the data from all the files
16 allIntensities, allResponses = [],[]
17 for thisFileName in files:
18 thisDat = fromFile(thisFileName)
19 allIntensities.append(thisDat.intensities)
20 allResponses.append(thisDat.data)
21

22 #plot each staircase
23 pylab.subplot(121)
24 colors = 'brgkcmbrgkcm'
25 lines, names = [],[]
26 for fileN, thisStair in enumerate(allIntensities):
27 #lines.extend(pylab.plot(thisStair))
28 #names = files[fileN]
29 pylab.plot(thisStair, label=files[fileN])
30 #pylab.legend()
31

32 #get combined data
33 combinedInten, combinedResp, combinedN = \
34 data.functionFromStaircase(allIntensities, allResponses, 5)
35 #fit curve - in this case using a Weibull function
36 fit = data.FitWeibull(combinedInten, combinedResp, guess=[0.2, 0.5])
37 smoothInt = pylab.arange(min(combinedInten), max(combinedInten), 0.001)
38 smoothResp = fit.eval(smoothInt)
39 thresh = fit.inverse(0.8)
40 print(thresh)
41

42 #plot curve
43 pylab.subplot(122)
44 pylab.plot(smoothInt, smoothResp, '-')
45 pylab.plot([thresh, thresh],[0,0.8],'--'); pylab.plot([0, thresh],\
46 [0.8,0.8],'--')
47 pylab.title('threshold = %0.3f' %(thresh))
48 #plot points
49 pylab.plot(combinedInten, combinedResp, 'o')
50 pylab.ylim([0,1])
51

52 pylab.show()

7.2. Tutorials 144

CHAPTER

EIGHT

RUNNING AND SHARING STUDIES ONLINE

Online studies are realized via PsychoJS; the online counterpart of . To run your study online, these are the basic steps:

• Check the features supported by PsychoJS to ensure the components you need will work online.

• Make your experiment in Builder.

• Configure the online settings of your experiment.

• Launch your study on Pavlovia.org.

When making an experiment to run online, there are a few important considerations to make and we highly recommend
reading through the considerations below, as they could save a lot of time in the long run!

• Using resources in online studies.

• Multisession testing, Counterbalancing, checking existing IDs, mulitplayer games and in-game leaderboard.

• Caveats and cautions (timing accuracy and web-browser support).

8.1 Related links

8.1.1 Troubleshooting Online Studies

Sometimes experiments might work perfectly locally, when created and run in the PsychoPy application, but the same
experiment might not behave as you expect when you try to run them online, through pavlovia.org. While this page
cannot hope to address all of the possible issues you may encounter, it should help you understand the different types
of errors and help you give more detailed information if you ask for support on the PsychoPy forums.

Getting Started

PsychoPy Builder is your friend

1. Check whether the features you are using are supported online via our onlineStatus page.

2. Don’t try to code in PsychoJS directly.

3. Don’t try to edit JavaScript files on Pavlovia directly. Make changes via Builder.

4. Each Builder (psyexp) file should be in its own dedicated local folder, which should not be in an area currently
under version control (e.g.a github project, Google drive or Onedrive). This folder should only contain subfolders
that pertain to the experiment.

5. Upload your files to Gitlab by synchronising using PsychoPy Builder, rather than using Git commands.

145

https://github.com/psychopy/psychojs

PsychoPy - Psychology software for Python, Release 2023.2.3

6. Code components should be set to Auto translate (“Code Type” > Auto > JS) unless you know why you need to
use different code for Python and JavaScript.

7. Code components should normally be moved to the top of their respective routines. Your code is executed in
order from left to right (in the flow) and from top to bottom (within each routine).

8. Experiment Settings / Online / Output path should be blank.

9. Resources (spreadsheets, images, etc.) should be in the same folder as the psyexp file or a sub-folder. Resources
that are selected via code components should be added via Experiment Settings / Online / Additional Resources
(see how to configureOnline) or a Resource Manager Component. See handlingOnlineResources for more infor-
mation.

Running the latest version of your experiment

When you synchronise changes to your experiment, you may need to clear your browser cache to see those changes
online (using Ctrl-F5, Ctrl-Shift-R or equivalent). If this does not work use an incognito browser tab. A participant
will not need to do this, so long as they have not already tried a previous version of your experiment.

Developer Tools

Use Developer Tools (Ctl-Shift-I in Windows/Chrome, Cmd-Opt-J or Cmd-Opt-I in Mac/Chrome, F12 in IE/Edge,
Ctrl-Shift-J in Windows/Safari, Ctrl-Opt-J in Mac/Safari) to view errors via the browser console if you aren’t getting
sufficient information from PsychoPy. You can also add print(X) (which translates to console.log(X); where X
refers to the name of your variable) to check the value of a variable X at a particular point.

Tutorial tutorial_js_console_log

Types of Errors

Errors in your experiment can manifest in multiple ways. The easiest way to categorise the different types of error
message is based on where they appear.

• Builder Errors
– Python syntax errors

– Builder runtime errors

– Synchronisation errors

• Browser Errors
– Launch errors

– Resource errors

– Semantic errors

• Unexpected Behaviour

8.1. Related links 146

https://gitlab.pavlovia.org/tpronk/tutorial_js_console_log

PsychoPy - Psychology software for Python, Release 2023.2.3

Python Syntax Errors (seen in Auto-translate code components)

Fig. 8.1: A code component used in PsychoPy Builder. In this example, “Code Type” is set to “Auto > JS” meaning
python code (on the left) will transpile to JavaScript (on the right). In this example there is a python coding error, which
means the transpilation cannot occur.

One of the advantages of using auto translate code components is that the transpiler is continuously checking your code
in order to translate it to JavaScript. If you have a syntax error in your Python code, the JavaScript translation will be
/* Syntax Error: Fix Python code */. If you get this type of error then your Python code probably won’t run
locally, and no translated code will be added to the JavaScript version.

Note: “Old style” string formatting (using a % operator) works in Python but gives a syntax error in JavaScript but
string interpolation (f-strings) is fine.

Synchronisation Errors (seen in the PsychoPy Runner Stdout)

Errors that occur here during synchronisation are often related to the connection to the gitlab repository on Pavlovia.
The Stdout will contain a number of messages. Focus on errors (not warnings) which appear near the top or bottom
of the output that has just been generated. If you need to recreate a new project then you may need to delete the local
hidden .git folder to sever the old connection. If the error message is not related to the git connection, this flow chart
might be helpful.

8.1. Related links 147

https://i.imgur.com/WRuJV6r.png

PsychoPy - Psychology software for Python, Release 2023.2.3

Fig. 8.2: An example “synchronisation error” as shown in PsychoPy Runner. In this example the experimenter is
attempting to synchronise an experiment while logged into a different Pavlovia account in PsychoPy Builder.

8.1. Related links 148

PsychoPy - Psychology software for Python, Release 2023.2.3

Synchronisation Errors (seen in a pop-up when synchronising)

Fig. 8.3: An example “synchronisation error” as shown in PsychoPy Builder. In this example the experimenter has set
the Allowed keys of a keyboard component as a variable, which is not yet supported in PsychoJS.

Errors occur here when PsychoPy is unable to create a JavaScript file from your Builder file. They are usually related
to your custom code components, but can be caused by unexpected parameters in your other components. These errors
will prevent your JavaScript files from being created and therefore stop you making any changes to previous versions
you may have successfully synchronised. See usingPavlovia for more information.

Launch Errors (stuck on “initialising the experiment”)

Fig. 8.4: The “initialising the experiment” message shown when launching and experiment in pavlovia.org.

If, when you try to launch your experiment, it is stuck on “initialising the experiment” then Pavlovia has encountered a
syntax error in your JavaScript file that wasn’t caught by the checks during synchronisation. The most common cause

8.1. Related links 149

PsychoPy - Psychology software for Python, Release 2023.2.3

for this error is that you are trying to import a Python library, such as random or numpy, which don’t exist in JavaScript.
Use Developer Tools to look for more information.

Tutorial tutorial_js_syntax_error experiment

Resource Errors

Fig. 8.5: An example “unknown resource” error message as shown in pavlovia.org. In this example the experiment
cannot locate an image.

To understand resource errors it is really important to understand handlingOnlineResources - and we recommend you
check out this information to understand how to properly load resources in your experiment. This occurs when an addi-
tional resource such as a spreadsheet or image file hasn’t been made available to the experiment. This can either occur
because the file couldn’t be found when requested, or because there was an attempt to use the file without downloading
it first. These errors are often referred to as network errors, but this does not mean that they are caused by general
connectivity issues.

Tutorial tutorial_js_network_error experiment

Semantic Errors

Fig. 8.6: An example “semantic error” where something is not defined (Typically a variable name).

8.1. Related links 150

https://gitlab.pavlovia.org/tpronk/tutorial_js_syntax_error
https://gitlab.pavlovia.org/tpronk/tutorial_js_network_error

PsychoPy - Psychology software for Python, Release 2023.2.3

These errors occur when a variable has not been defined or declared in the JavaScript version of your experiment. There
are typically two reasons for this error.

1. You may have used a python library of PsychoPy object that does not exist, and is therefore not defined, in
JavaScript. For example if you used np.average([1, 2, 3]) in a code component, you would get the error
message “np is not defined” (to avoid this specific error use average([1, 2, 3]) - dropping the reference to
numpy).

2. To define a variable in simply add something like X = 1 in the Begin Experiment or Begin Routine tab of an
auto translate code component.

Most semantic errors can be solved by searching for the text of the error message on the discourse forum. You can also
use the Developer Tools to help identify which command is causing the error.

Tutorial tutorial_js_semantic_error experiment

Unexpected Behaviour

Sometimes your experiment will run without any error messages but something will be missing or wrong. This can
occur if:

1. you try to use a component that doesn’t yet work online

2. you have code components set to Python only.

3. you use a python function that might work subtly differently in python and JavaScript (for example pop(0) will
remove the first thing from a list in python, but the last thing from a list in Javascript.

If you’re using code components, it’s useful to think about the positions of your code components and how they are
executed relative to your other components. Since Begin Routine code tabs are executed at the same time as set every
repeat component parameters in top to bottom order. Did you set the parameter before or after it was used? If you
something to change during a routine, it needs to be in an Each Frame code tab or a set every frame component
parameter.

Getting Help

Once you have identified the error message or behaviour you are trying to fix, search the PsychoPy forum for other
threads discussing the same issue, using keywords from your error message or issue. Some threads are marked with a
tick before the name to indicate that they contain a solution. You may also find the solution in Wakefield Morys-Carter’s
PsychoPy to JS crib sheet.

If your issue is solved thanks to a solution you found in a thread, we recommend adding a +1 or like reaction to the post
that helped you (remember many of those who support our forum are volunteers! so it’s useful to show appreciation
and indicate to others seeking help which answer was used by others). If a post you create is solved by a suggestion
please mark that response with as the “solution”.

If you are unable to solve the problem with existing solutions already posted on the forum then either add a post to a
thread which refers to the same issue and doesn’t have a solution or start a new thread and include a link to the solution
you tried or the most similar thread you have come across in your search.

8.1. Related links 151

discourse.psychopy.org
https://gitlab.pavlovia.org/tpronk/tutorial_js_semantic_error
discourse.psychopy.org
https://docs.google.com/document/d/183xmwDgSbnJZHMGf3yWpieV9Bx8y7fOCm3QKkMOOXFQ/edit?usp=sharing

PsychoPy - Psychology software for Python, Release 2023.2.3

Creating a New Topic on the forum

Select an appropriate category:

• Online experiments if you are planning to run your experiment online.

• Builder if you are using PsychoPy Builder for a local experiment.

• Coding if you are using PsychoPy Coder for a local experiment.

• Other if you are having issues that aren’t related to a particular experiment.

Give your new topic a useful title such as the text of the error message and/or a short clear description of what is going
wrong.

Include the version of PsychoPy you are using and a usable link to your experiment.

If you have a Browser error near the beginning of your experiment, it is helpful to allow people to try it for themselves.
Since Pilot tokens expire, the easiest way to allow others to view your experiment is to set it to RUNNING and allocate
it a small number of credits. Add a final routine with a text component that doesn’t end (possibly unless you press a
key such as = which isn’t typically used). You should also set your experiment not to save incomplete results using the
Dashboard entry for your project so no credits are consumed during testing.

Since most of the JavaScript code is generated automatically, either from Builder components or by Auto translations
in code components it is most useful to show screen shots from Builder (the flow and the relevant routine, plus the
contents of the component with the issue). If the issue is with an Auto code component, then you should paste the
contents of the Python side as preformatted text, as well as showing the screenshot. Only paste JavaScript from Both
and JS only code components to clarify that these have been manually edited.

What next?

We will try to give as much support as possible for free in the public space. However if you are still stuck we can
offer paid consultancy options to help debug. You can contact our team directly at consultancy@opensciencetools.org.
Consultancy is part of our sustainable model for Open Source Tools and allows us to keep creating free and accessible
tools (see Overview and read more on Open Science Tools). Our Science team will be happy to help via one-to-one
technical support hours or larger consultancy projects.

contains a collection of experiments that you can use as a starting point for your own experiment. Below we explain
how you can search for experiments in this collection and contribute your own experiment.

8.1.2 Searching for experiments on Pavlovia

You can search for experiments via the website and from within the PsychoPy Builder.

Via the website

From the home page, you can explore your own existing projects, or other users’ public projects. To find a project, go
to Pavlovia’s Explore page (see Fig. 8.7).

When exploring studies online, you are presented with a series of thumbnail images for all of the projects on . See Fig.
8.8.

From the “Explore” page, you can filter projects by setting the filter buttons to a) Public or Private, b) Active or Inactive,
and c) sort by number of forks, name, date and number of stars. The default sorting method is Stars. You can also
search for projects using the search tool using keywords describing your area of interest, e.g., Stroop, or attention.

8.1. Related links 152

mailto:consultancy@opensciencetools.org
https://opensciencetools.org/
https://pavlovia.org/explore

PsychoPy - Psychology software for Python, Release 2023.2.3

Fig. 8.7: The home page

8.1. Related links 153

PsychoPy - Psychology software for Python, Release 2023.2.3

Fig. 8.8: Exploring projects on

8.1. Related links 154

PsychoPy - Psychology software for Python, Release 2023.2.3

Via the PsychoPy Builder

If you wish to search for your own existing projects on , or other users’ public projects, you can also do this via the
Builder interface. To search for a project, click button (3) on the Builder Frame in Fig. 8.9.

Fig. 8.9: Buttons for running an online study from the PsychoPy Builder.

Following this, a search dialog will appear, see Fig. 8.10. The search dialog presents several options that allow users
to search, fork and synchronize projects.

Fig. 8.10: The search dialog in Builder

To search for a project (see Fig. 8.10, Box A), type in search terms in the text box and click the “Search” button to
find related projects on . Use the search filters (e.g., “My group”, “Public” etc) above the text box to filter the search
output. The output of your search will be listed in the search panel below the search button, where you can select your
project of interest.

8.1. Related links 155

PsychoPy - Psychology software for Python, Release 2023.2.3

To fork and sync a project is to take your own copy of a project from (fork) and copy a version to your local desktop
or laptop computer (sync). To fork a project, select the local folder to download the project using the “Browse” button,
and then click “Sync” when you are ready - (see Fig. 8.10, Box B). You should now have a local copy of the project
from ready to run in PsychoPy!

8.1.3 Contributing an experiment to Pavlovia

If you contribute an experiment to Pavlovia, other researchers can access it. Besides contributing to open science, this
can be handy if you’ve got an issue with your experiment and would like other researchers to take a look.

Making an experiment public

A public experiment is visible to anyone to clone and fork. To make your experiment public navigate to your experi-
ments’ GitLab page, then select > View code <> > Settings > Permissions (set to public). See Fig. 8.11.

Fig. 8.11: Setting a GitLab project to public access

Adding a team member

If you’d like to share your experiment only with specific researchers, navigate to your experiment, then select > View
code <> > settings > Members. At this page: select a member, give them a role (to be able to fork your experiment,
they should at least be Developer), optionally an access expiration date, and then add them. See Fig. 8.12.

8.1. Related links 156

PsychoPy - Psychology software for Python, Release 2023.2.3

Fig. 8.12: Adding a user to a GitLab project

8.1. Related links 157

PsychoPy - Psychology software for Python, Release 2023.2.3

8.1.4 Recruiting participants and daisy-chaining with other platforms

We have now moved our updated documentation on daisy-chaining participants to Pavlovia. Click here to find out
more.

8.1.5 Counterbalancing online

If you are manually recruiting your participants (i.e. sending our your experiment URL to a unique population or
group) the methods described in Blocks of trials and counterbalancing will also work online, and can be used in the
same way. However, if you have your experiment URL advertised on a recruitment website, it could be that 10s or
hundreds of participants click your link. Manually assigning participants and keeping track of participant groupings in
these situations is going to be difficult. So, what do we do?

At the moment and don’t have an internal method for keeping track of how many participants have already completed
your task (and this is needed for counterbalancing). However, some core contributors have developed some excellent
tools to help out, in particular this tool developed by Wakefield Morys Carter that generates sequential participant IDs
for your task. Although not a counterbalance tool per se, we can use this to assign out participants to specific groups.

Add a code component to the beginning of your task that looks something like this:

Here we are checking if your participant ID is divisible by 2 (i.e. odd of even) and creating the variable ‘group’ using
that. We would then use the same methods outlined previously in Blocks of trials and counterbalancing except this
time we replace any instance of: `expInfo['group']` with `group`

So the conditions files used is selected based on the participant ID!

8.1. Related links 158

https://pavlovia.org/
https://pavlovia.org/docs/experiments/recruiting
https://moryscarter.com/vespr/pavlovia.php

PsychoPy - Psychology software for Python, Release 2023.2.3

8.1.6 How does it work?

The first stage of this is that there is now a JavaScript library, PsychoJS, that mirrors the PsychoPy Python library
classes and functions.

PsychoPy Builder is effectively just writing a script for you based on the visual representation of your study so the new
feature is for it simply to write a html/JavaScript/PsychoJS page instead.

Modern browsers are remarkably powerful. Most browsers released since 2011 have allowed HTML5 which supports
more flexible rendering of web pages (images and text can be positioned precisely enough to run “proper” behavioural
experiments). Since 2013 most have supported WebGL. That allows graphics to be rendered really quickly using
“hardware acceleration” on your graphics card. The result is rich pages that can be updated very rapidly and can be
forced to sync to screen refresh, which is critical for stimulus timing.

All this means we can do great things with online experiments that actually have good temporal precision!

The way it works is that you have a web page containing JavaScript (generated by PsychoPy Builder). You upload that
to a web server. The participant of your study uses their web browser to visit the page you’ve created with a standard
URL you send them.

Now, JavaScript executes on their computer (as opposed to scripts like PHP that operate on the server and aren’t directly
visible to the viewer/browser). In this case the PsychoJS script will present a dialog box at the start of the study to get
the participant ID and any other basic information you need. While that dialog box is presented the script will be
downloading all your stimuli and files to the local computer and storing them in memory. When all the necessary files
are downloaded the participant can press “OK” and the experiment will start.

The experiment supports all the standard timing aspects of any PsychoPy Builder experiment; you can specify your
stimuli in terms of time presented or number of screen refreshes etc (and the actual refresh rate of your participant’s
computer will be stored in your data file). When it’s finished it saves the data into a comma-separated-value (CSV) file
in the “data” folder on the web server. This looks very much like the standard CSV outputs of your same PsychoPy
experiment run locally.

Not all components are currently supported. Keep an eye on the onlineStatus page to see what objects you can use
already.

How does this compare with jsPsych?

In jsPsych you use one of the pre-programmed “types” of trial (like single stimulus or 2-alternative-forced-choice) and
you have rather little flexibility over how that gets conducted. If you wanted to alter the positioning of the stimuli, for
instance, in a 2-alternative-force-choice task or you wanted a stimulus to change in time (appear gradually or move
location) then you would need to write a new trial “type” using raw javascript.

PsychoPy, by comparison, is designed to give you total flexibility. You decide what constitutes a “trial” and how things
should operate in time. We think that control is very important to creating a wide range of studies.

8.1.7 Manual coding of PsychoJS studies

Note that PsychoJS is very much under development and all parts of the API are subject to change
Some people may want to write a JS script from scratch or convert their PsychoPy Python script into `PsychoJS`_.
However, supporting this approach is beyond the scope of our documentation and our forum.

8.1. Related links 159

https://github.com/psychopy/psychojs
https://discourse.psychopy.org/c/online/14

PsychoPy - Psychology software for Python, Release 2023.2.3

Working with JS Code Components

Code components can automatically convert Python to JavaScript. However, this doesn’t always work. Below are some
pointers to help you out:

• For common JS functions, see the PsychoPy to JS crib sheet by Wakefield Morys-Carter

• For finding out how to manipulate PsychoJS components via code, see the PsychoJS API. The tuto-
rial_js_expose_psychojs experiment shows how to expose PsychoJS objects to the web browser, so that you
can access them via the browser console, and try things out in order to see what works (or not).

• If you’re looking for a JS equivalent of a Python function, try searching ‘JS equivalent/version of function X’ on
stack overflow or Google

• Still stuck? Try asking for help on the forum. For giving researchers access to the repository of your experiment,
see Contributing an experiment to Pavlovia

Adding JS functions

If you have a function you want to use, and you find the equivalent on the crib sheet or stack overflow, add an ‘initial-
ization’ code component to the start of your experiment. Set code type to be ‘JS’ and copy and paste the function(s)
you want there in the ‘Begin experiment’ tab. These functions will then be available to be called throughout the rest of
the task.

8.1. Related links 160

https://docs.google.com/document/d/183xmwDgSbnJZHMGf3yWpieV9Bx8y7fOCm3QKkMOOXFQ/edit?usp=sharing
https://twitter.com/Psych_Stats/
https://psychopy.github.io/psychojs/
https://gitlab.pavlovia.org/tpronk/tutorial_js_expose_psychojs
https://gitlab.pavlovia.org/tpronk/tutorial_js_expose_psychojs
https://stackoverflow.com/
https://google.com
https://discourse.psychopy.org/c/online/14

PsychoPy - Psychology software for Python, Release 2023.2.3

Don’t change the generated JS file

When you export an experiment to HTML from the PsychoPy builder, it generates a JS file. We recommend not to edit
this JS file, for the reasons below:

• Changes you make in your .js file will not be reflected back in your builder file; it is a one way street.

• It becomes more difficult to sync your experiment with from the builder

• Researchers that would like to replicate your experiment but aren’t very JavaScript-savvy might be better off
using the PsychoPy Builder

The first generation of PsychoJS was realized by a Wellcome Trust grant, awarded in January 2018. to make online
studies possible from . This is what we call PsychoPy3 - the 3rd major phase of PsychoPy’s development.

8.1. Related links 161

https://wellcome.org/

CHAPTER

NINE

COMMUNICATING WITH EXTERNAL HARDWARE USING PSYCHOPY

PsychoPy is able to communicate with a range of external hardware, like EEG recording devices and eye trackers.

This page provides step-by-step instructions on how to communicate with some of the more commonly used hardware.
The page is being updated regularly so if you don’t see your device listed here please do post in the forum as we keep
an eye on commonly-faced issues (and solutions!) there.

9.1 Communicating with EEG

Before getting started with an EEG study in PsychoPy, we highly recommend reading relevant information on how
to measure and understand Timing Issues and synchronisation. Although these guides will talk you through how to
communicate with EEG hardware, they can really be used to communicate with any device that is connected via the
same method:

• parallel

• serial

• egi

• Communicating with Emotiv please also see this video tutorial.

Note: If you’d like to use a Parallel Port to record responses (for example from a button box) please read this excellent
thread from our Discourse Forum user jtseng.

9.2 Communicating with an eye-tracker

• eyetracking

9.3 Communicating with other devices

• fmri

• arduino

• To communicate with fNIRS, please watch this super-clear video tutorial from NIRx.

162

https://www.psychopy.org/builder/components/emotiv_record.html
https://www.youtube.com/watch?v=rRoqGa4PoN8
https://discourse.psychopy.org/t/issue-reading-parallel-port-pin-for-button-box/9759
https://discourse.psychopy.org/t/issue-reading-parallel-port-pin-for-button-box/9759
https://discourse.psychopy.org/u/jtseng
https://www.youtube.com/watch?v=o-WzXhwESa8

CHAPTER

TEN

REFERENCE MANUAL (API)

Contents:

10.1 psychopy.core - basic functions (clocks etc.)

Basic functions, including timing, rush (imported), quit

class psychopy.core.Clock(format=<class 'float'>)
A convenient class to keep track of time in your experiments. You can have as many independent clocks as you
like (e.g. one to time responses, one to keep track of stimuli . . .)

This clock is identical to the MonotonicClock except that it can also be reset to 0 or another value at any point.

add(t)
DEPRECATED: use .addTime() instead

This function adds time TO THE BASE (t0) which, counterintuitively, reduces the apparent time on the
clock

addTime(t)
Add more time to the Clock/Timer

e.g.:

timer = core.Clock()
timer.addTime(5)
while timer.getTime() > 0:

do something

reset(newT=0.0)
Reset the time on the clock. With no args time will be set to zero. If a float is received this will be the new
time on the clock

class psychopy.core.CountdownTimer(start=0)
Similar to a Clock except that time counts down from the time of last reset.

Parameters
start (float or int) – Starting time in seconds to countdown on.

163

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Create a countdown clock with a 5 second duration:

timer = core.CountdownTimer(5)
while timer.getTime() > 0: # after 5s will become negative

do stuff

addTime(t)
Add more time to the CountdownTimer

e.g.:
countdownTimer = core.CountdownTimer() countdownTimer.addTime(1)

while countdownTimer.getTime() > 0:
do something

getTime()

Returns the current time left on this timer in seconds with sub-ms precision (float).

reset(t=None)
Reset the time on the clock.

Parameters
t (float, int or None) – With no args (None), time will be set to the time used for last
reset (or start time if no previous resets). If a number is received, this will be the new time on
the clock.

class psychopy.core.MonotonicClock(start_time=None, format=<class 'float'>)
A convenient class to keep track of time in your experiments using a sub-millisecond timer.

Unlike the Clock this cannot be reset to arbitrary times. For this clock t=0 always represents the time that the
clock was created.

Don’t confuse this class with core.monotonicClock which is an instance of it that got created when PsychoPy.core
was imported. That clock instance is deliberately designed always to return the time since the start of the study.

Version Notes: This class was added in PsychoPy 1.77.00

getLastResetTime()

Returns the current offset being applied to the high resolution timebase used by Clock.

getTime(applyZero=True, format=<class 'float'>)
Returns the current time on this clock in secs (sub-ms precision).

Parameters
• applyZero (bool) – If applying zero then this will be the time since the clock was created

(typically the beginning of the script). If not applying zero then it is whatever the underlying
clock uses as its base time but that is system dependent. e.g. can be time since reboot, time
since Unix Epoch etc.

Only applies when format is float.

• format (type, str or None) – Format in which to show timestamp when convert-
ing to a string. Can be either: - time format codes: Time will return as a string in that
format, as in time.strftime - str: Time will return as a string in ISO 8601 (YYYY-MM-
DD_HH:MM:SS.mmmmmmZZZZ) - None: Will use this clock’s format attribute

Returns
Time with format requested.

10.1. psychopy.core - basic functions (clocks etc.) 164

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Return type
Timestamp

class psychopy.core.StaticPeriod(screenHz=None, win=None, name='StaticPeriod')
A class to help insert a timing period that includes code to be run.

Parameters
• screenHz (int or None) –

• you (the frame rate of the monitor (leave as None if) – don’t want this ac-
counted for)

• win (Window) – If a Window is given then StaticPeriod will also pause/restart frame
interval recording.

• name (str) – Give this StaticPeriod a name for more informative logging messages.

Examples

Typical usage for the static period:

fixation.draw()
win.flip()
ISI = StaticPeriod(screenHz=60)
ISI.start(0.5) # start a period of 0.5s
stim.image = 'largeFile.bmp' # could take some time
ISI.complete() # finish the 0.5s, taking into account one 60Hz frame

stim.draw()
win.flip() # the period takes into account the next frame flip
time should now be at exactly 0.5s later than when ISI.start()
was called

complete()

Completes the period, using up whatever time is remaining with a call to wait().

Returns
1 for success, 0 for fail (the period overran).

Return type
float

start(duration)
Start the period. If this is called a second time, the timer will be reset and starts again

Parameters
duration (float or int) – The duration of the period, in seconds.

psychopy.core.getAbsTime()

Get the absolute time.

This uses the same clock-base as the other timing features, like getTime(). The time (in seconds) ignores the
time-zone (like time.time() on linux). To take the timezone into account, use int(time.mktime(time.gmtime())).

Absolute times in seconds are especially useful to add to generated file names for being unique, informative (= a
meaningful time stamp), and because the resulting files will always sort as expected when sorted in chronological,
alphabetical, or numerical order, regardless of locale and so on.

Version Notes: This method was added in PsychoPy 1.77.00

10.1. psychopy.core - basic functions (clocks etc.) 165

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Returns
Absolute Unix time (i.e., whole seconds elapsed since Jan 1, 1970).

Return type
float

psychopy.core.getTime(applyZero=True)
Get the current time since psychopy.core was loaded.

Version Notes: Note that prior to PsychoPy 1.77.00 the behaviour of getTime() was platform dependent (on
OSX and linux it was equivalent to psychopy.core.getAbsTime() whereas on windows it returned time
since loading of the module, as now)

psychopy.core.wait(secs, hogCPUperiod=0.2)
Wait for a given time period.

This function halts execution of the program for the specified duration.

Precision of this function is usually within 1 millisecond of the specified time, this may vary depending on factors
such as system load and the Python version in use. Window events are periodically dispatched during the wait
to keep the application responsive, to avoid the OS complaining that the process is unresponsive.

If secs=10 and hogCPU=0.2 then for 9.8s Python’s time.sleep function will be used, which is not especially
precise, but allows the cpu to perform housekeeping. In the final hogCPUperiod the more precise method of
constantly polling the clock is used for greater precision.

If you want to obtain key-presses during the wait, be sure to use pyglet and then call psychopy.event.
getKeys() after calling wait()

If you want to suppress checking for pyglet events during the wait, do this once:

core.checkPygletDuringWait = False

and from then on you can do:

core.wait(sec)

This will preserve terminal-window focus during command line usage.

Parameters
• secs (float or int) – Number of seconds to wait before continuing the program.

• hogCPUperiod (float or int) – Number of seconds to hog the CPU. This causes the
thread to enter a ‘tight’ loop when the remaining wait time is less than the specified interval.
This is set to 200ms (0.2s) by default. It is recommended that this interval is kept short to
avoid stalling the processor for too long which may result in poorer timing.

10.2 psychopy.clock - Clocks and timers

Created on Tue Apr 23 11:28:32 2013

Provides the high resolution timebase used by psychopy, and defines some time related utility Classes.

Moved functionality from core.py so a common code base could be used in core.py and logging.py; vs. duplicating the
getTime and Clock logic.

@author: Sol @author: Jon

10.2. psychopy.clock - Clocks and timers 166

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

class psychopy.clock.Clock(format=<class 'float'>)
A convenient class to keep track of time in your experiments. You can have as many independent clocks as you
like (e.g. one to time responses, one to keep track of stimuli . . .)

This clock is identical to the MonotonicClock except that it can also be reset to 0 or another value at any point.

add(t)
DEPRECATED: use .addTime() instead

This function adds time TO THE BASE (t0) which, counterintuitively, reduces the apparent time on the
clock

addTime(t)
Add more time to the Clock/Timer

e.g.:

timer = core.Clock()
timer.addTime(5)
while timer.getTime() > 0:

do something

reset(newT=0.0)
Reset the time on the clock. With no args time will be set to zero. If a float is received this will be the new
time on the clock

class psychopy.clock.CountdownTimer(start=0)
Similar to a Clock except that time counts down from the time of last reset.

Parameters
start (float or int) – Starting time in seconds to countdown on.

Examples

Create a countdown clock with a 5 second duration:

timer = core.CountdownTimer(5)
while timer.getTime() > 0: # after 5s will become negative

do stuff

addTime(t)
Add more time to the CountdownTimer

e.g.:
countdownTimer = core.CountdownTimer() countdownTimer.addTime(1)

while countdownTimer.getTime() > 0:
do something

getTime()

Returns the current time left on this timer in seconds with sub-ms precision (float).

reset(t=None)
Reset the time on the clock.

10.2. psychopy.clock - Clocks and timers 167

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
t (float, int or None) – With no args (None), time will be set to the time used for last
reset (or start time if no previous resets). If a number is received, this will be the new time on
the clock.

class psychopy.clock.MonotonicClock(start_time=None, format=<class 'float'>)
A convenient class to keep track of time in your experiments using a sub-millisecond timer.

Unlike the Clock this cannot be reset to arbitrary times. For this clock t=0 always represents the time that the
clock was created.

Don’t confuse this class with core.monotonicClock which is an instance of it that got created when PsychoPy.core
was imported. That clock instance is deliberately designed always to return the time since the start of the study.

Version Notes: This class was added in PsychoPy 1.77.00

getLastResetTime()

Returns the current offset being applied to the high resolution timebase used by Clock.

getTime(applyZero=True, format=<class 'float'>)
Returns the current time on this clock in secs (sub-ms precision).

Parameters
• applyZero (bool) – If applying zero then this will be the time since the clock was created

(typically the beginning of the script). If not applying zero then it is whatever the underlying
clock uses as its base time but that is system dependent. e.g. can be time since reboot, time
since Unix Epoch etc.

Only applies when format is float.

• format (type, str or None) – Format in which to show timestamp when convert-
ing to a string. Can be either: - time format codes: Time will return as a string in that
format, as in time.strftime - str: Time will return as a string in ISO 8601 (YYYY-MM-
DD_HH:MM:SS.mmmmmmZZZZ) - None: Will use this clock’s format attribute

Returns
Time with format requested.

Return type
Timestamp

class psychopy.clock.StaticPeriod(screenHz=None, win=None, name='StaticPeriod')
A class to help insert a timing period that includes code to be run.

Parameters
• screenHz (int or None) –

• you (the frame rate of the monitor (leave as None if) – don’t want this ac-
counted for)

• win (Window) – If a Window is given then StaticPeriod will also pause/restart frame
interval recording.

• name (str) – Give this StaticPeriod a name for more informative logging messages.

10.2. psychopy.clock - Clocks and timers 168

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Typical usage for the static period:

fixation.draw()
win.flip()
ISI = StaticPeriod(screenHz=60)
ISI.start(0.5) # start a period of 0.5s
stim.image = 'largeFile.bmp' # could take some time
ISI.complete() # finish the 0.5s, taking into account one 60Hz frame

stim.draw()
win.flip() # the period takes into account the next frame flip
time should now be at exactly 0.5s later than when ISI.start()
was called

complete()

Completes the period, using up whatever time is remaining with a call to wait().

Returns
1 for success, 0 for fail (the period overran).

Return type
float

start(duration)
Start the period. If this is called a second time, the timer will be reset and starts again

Parameters
duration (float or int) – The duration of the period, in seconds.

psychopy.clock.getAbsTime()

Get the absolute time.

This uses the same clock-base as the other timing features, like getTime(). The time (in seconds) ignores the
time-zone (like time.time() on linux). To take the timezone into account, use int(time.mktime(time.gmtime())).

Absolute times in seconds are especially useful to add to generated file names for being unique, informative (= a
meaningful time stamp), and because the resulting files will always sort as expected when sorted in chronological,
alphabetical, or numerical order, regardless of locale and so on.

Version Notes: This method was added in PsychoPy 1.77.00

Returns
Absolute Unix time (i.e., whole seconds elapsed since Jan 1, 1970).

Return type
float

psychopy.clock.getTime()

Copyright (c) 2018 Mario Kleiner. Licensed under MIT license.

For detailed help on a subfunction SUBFUNCTIONNAME, type GetSecs(‘SUBFUNCTIONNAME?’) ie. the
name with a question mark appended. E.g., for detailed help on the subfunction called Version, type this: Get-
Secs(‘Version?’)

[GetSecsTime, WallTime, syncErrorSecs, MonotonicTime] = GetSecs(‘AllClocks’ [, maxError=0.000020]);

10.2. psychopy.clock - Clocks and timers 169

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.clock.wait(secs, hogCPUperiod=0.2)
Wait for a given time period.

This function halts execution of the program for the specified duration.

Precision of this function is usually within 1 millisecond of the specified time, this may vary depending on factors
such as system load and the Python version in use. Window events are periodically dispatched during the wait
to keep the application responsive, to avoid the OS complaining that the process is unresponsive.

If secs=10 and hogCPU=0.2 then for 9.8s Python’s time.sleep function will be used, which is not especially
precise, but allows the cpu to perform housekeeping. In the final hogCPUperiod the more precise method of
constantly polling the clock is used for greater precision.

If you want to obtain key-presses during the wait, be sure to use pyglet and then call psychopy.event.
getKeys() after calling wait()

If you want to suppress checking for pyglet events during the wait, do this once:

core.checkPygletDuringWait = False

and from then on you can do:

core.wait(sec)

This will preserve terminal-window focus during command line usage.

Parameters
• secs (float or int) – Number of seconds to wait before continuing the program.

• hogCPUperiod (float or int) – Number of seconds to hog the CPU. This causes the
thread to enter a ‘tight’ loop when the remaining wait time is less than the specified interval.
This is set to 200ms (0.2s) by default. It is recommended that this interval is kept short to
avoid stalling the processor for too long which may result in poorer timing.

10.3 psychopy.session - for running a session with multiple experi-
ments

Session

class psychopy.session.Session(root, dataDir=None, clock='iso', win=None, experiments=None,
loggingLevel='info', priorityThreshold=-9, inputs=None, params=None,
liaison=None)

A Session is from which you can run multiple PsychoPy experiments, so long as they are stored within the same
folder. Session uses a persistent Window and inputs across experiments, meaning that you don’t have to keep
closing and reopening windows to run multiple experiments.

Through the use of multithreading, an experiment running via a Session can be sent commands and have variables
changed while running. Methods of Session can be called from a second thread, meaning they don’t have to wait
for runExperiment to return on the main thread. For example, you could pause an experiment after 10s like so:

``` # define a function to run in a second thread def stopAfter10s(thisSession):

# wait 10s time.sleep(10) # pause thisSession.pauseExperiment()

# create a second thread thread = threading.Thread(

target=stopAfter10s, args=(thisSession,)

10.3. psychopy.session - for running a session with multiple experiments 170

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int


PsychoPy - Psychology software for Python, Release 2023.2.3

) # start the second thread thread.start() # run the experiment (in main thread) thisSes-
sion.runExperiment(“testExperiment”) ```
When calling methods of Session which have the parameter blocking from outside of the main thread, you can
use blocking=False to force them to return immediately and, instead of executing, add themselves to a queue
to be executed in the main thread by a while loop within the start function. This is important for methods like
runExperiment or setupWindowFromParams which use OpenGL and so need to be run in the main thread. For
example, you could alternatively run the code above like this:

``` # define a function to run in a second thread def stopAfter10s(thisSession):

start the experiment in the main thread thisSession.runExperiment(“testExperiment”, block-
ing=False) # wait 10s time.sleep(10) # pause thisSession.pauseExperiment()

create a second thread thread = threading.Thread(

target=stopAfter10s, args=(thisSession,)

) # start the second thread thread.start() # start the Session so that non-blocking methods are executed thisSes-
sion.start() ```

Parameters
• root (str or pathlib.Path) – Root folder for this session - should contain all of the

experiments to be run.

• liaison (liaison.WebSocketServer) – Liaison server from which to receive run com-
mands, if running via a liaison setup.

• loggingLevel (str) –

How much output do you want in the log files? Should be one of the following:
– ’error’

– ’warning’

– ’data’

– ’exp’

– ’info’

– ’debug’

(‘error’ is fewest messages, ‘debug’ is most)

• inputs (dict, str or None) – Dictionary of input objects for this session. Leave as
None for a blank dict, or supply the name of an experiment to use the setupInputs method
from that experiment.

• win (psychopy.visual.Window, str or None) – Window in which to run experiments
this session. Supply a dict of parameters to make a Window from them, or supply the name
of an experiment to use the setupWindow method from that experiment.

• experiments (dict or None) – Dict of name:experiment pairs which this Session can
run. Each should be the file path of a .psyexp file, contained somewhere within the folder
supplied for root. Paths can be absolute or relative to the root folder. Leave as None for a
blank dict, experiments can be added later on via addExperiment().

addAnnotation(value)
Add an annotation in the data file at the current point in the experiment and to the log.

Parameters
value (str) – Value of the annotation

10.3. psychopy.session - for running a session with multiple experiments 171

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Returns
True if completed successfully

Return type
bool

addData(name, value, row=None, priority=None)
Add data in the data file at the current point in the experiment, and to the log.

Parameters
• name (str) – Name of the column to add data as.

• value (any) – Value to add

• row (int or None) – Row in which to add this data. Leave as None to add to the current
entry.

• priority (int) – Priority value to set the column to - higher priority columns appear
nearer to the start of the data file. Use values from constants.priority as landmark values:
- CRITICAL: Always at the start of the data file, generally reserved for Routine start times
- HIGH: Important columns which are near the front of the data file - MEDIUM: Possibly
important columns which are around the middle of the data file - LOW: Columns unlikely
to be important which are at the end of the data file - EXCLUDE: Always at the end of the
data file, actively marked as unimportant

Returns
True if completed successfully

Return type
bool

addExperiment(file, key=None, folder=None)
Register an experiment with this Session object, to be referred to later by a given key.

Parameters
• file (str, Path) – Path to the experiment (psyexp) file or script (py) of a Python exper-

iment.

• key (str) – Key to refer to this experiment by once added. Leave as None to use file path
relative to session root.

• folder (str, Path) – Folder for this project, if adding from outside of the root folder
this entire folder will be moved. Leave as None to use the parent folder of file.

Returns
True if the operation completed successfully

Return type
bool or None

addKeyboardFromParams(name, params, blocking=True)
Add a keyboard to this session’s inputs dict from a dict of params.

Parameters
• name (str) – Name of this input, what to store it under in the inputs dict.

• params (dict) – Dict of parameters to create the keyboard from, keys should be from the
__init__ signature of psychopy.hardware.keyboard.Keyboard

10.3. psychopy.session - for running a session with multiple experiments 172

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

• blocking (bool) – Should calling this method block the current thread?

If True (default), the method runs as normal and won’t return until completed. If False, the
method is added to a queue and will be run by the while loop within Session.start. This
will block the main thread, but won’t block the thread this method was called from.

If not using multithreading, this value is ignored. If you don’t know what multithreading
is, you probably aren’t using it - it’s difficult to do by accident!

Returns
True if the operation completed/queued successfully

Return type
bool or None

close()

Safely close the current session. This will end the Python instance.

getExpInfoFromExperiment(key, sessionParams=True)
Get the global-level expInfo object from one of this Session’s experiments. This will contain all of the keys
needed for this experiment, alongside their default values.

Parameters
• key (str) – Key by which the experiment is stored (see .addExperiment).

• sessionParams (bool) – Should expInfo be extended with params from the Session, over-
riding experiment params where relevant (True, default)? Or return expInfo as it is in the
experiment (False)?

Returns
Experiment info dict

Return type
dict

getStatus()

Get an overall status flag for this Session. Will be one of either:

Returns
A value psychopy.constants, either: - NOT_STARTED: If no experiment is running -
STARTED: If an experiment is running - PAUSED: If an experiment is paused - FINISHED:
If an experiment is in the process of terminating

Return type
int

getTime(format=<class 'str'>)
Get time from this Session’s clock object.

Parameters
format (type, str or None) – Can be either: - float: Time will return as a float
as number of seconds - time format codes: Time will return as a string in that for-
mat, as in time.strftime - str: Time will return as a string in ISO 8601 (YYYY-MM-
DD_HH:MM:SS.mmmmmmZZZZ) - None: Will use the Session clock object’s defaultStyle
attribute

Returns
Time in format requested.

Return type
str or float

10.3. psychopy.session - for running a session with multiple experiments 173

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

pauseExperiment()

Pause the currently running experiment.

Returns
True if the operation completed successfully

Return type
bool or None

resumeExperiment()

Resume the currently paused experiment.

Returns
True if the operation completed successfully

Return type
bool or None

runExperiment(key, expInfo=None, blocking=True)
Run the setupData and run methods from one of this Session’s experiments.

Parameters
• key (str) – Key by which the experiment is stored (see .addExperiment).

• expInfo (dict) – Information about the experiment, created by the setupExpInfo function.

• blocking (bool) – Should calling this method block the current thread?

If True (default), the method runs as normal and won’t return until completed. If False, the
method is added to a queue and will be run by the while loop within Session.start. This
will block the main thread, but won’t block the thread this method was called from.

If not using multithreading, this value is ignored. If you don’t know what multithreading
is, you probably aren’t using it - it’s difficult to do by accident!

Returns
True if the operation completed/queued successfully

Return type
bool or None

saveCurrentExperimentData(blocking=True)
Call .saveExperimentData on the currently running experiment - if there is one.

Parameters
blocking (bool) – Should calling this method block the current thread?

If True (default), the method runs as normal and won’t return until completed. If False, the
method is added to a queue and will be run by the while loop within Session.start. This will
block the main thread, but won’t block the thread this method was called from.

If not using multithreading, this value is ignored. If you don’t know what multithreading is,
you probably aren’t using it - it’s difficult to do by accident!

Returns
True if the operation completed/queued successfully, False if there was no current experiment
running

Return type
bool or None

10.3. psychopy.session - for running a session with multiple experiments 174

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

saveExperimentData(key, thisExp=None, blocking=True)
Run the saveData method from one of this Session’s experiments, on a given ExperimentHandler.

Parameters
• key (str) – Key by which the experiment is stored (see .addExperiment).

• thisExp (psychopy.data.ExperimentHandler) – ExperimentHandler object to save
the data from. If None, save the last run of the given experiment.

• blocking (bool) – Should calling this method block the current thread?

If True (default), the method runs as normal and won’t return until completed. If False, the
method is added to a queue and will be run by the while loop within Session.start. This
will block the main thread, but won’t block the thread this method was called from.

If not using multithreading, this value is ignored. If you don’t know what multithreading
is, you probably aren’t using it - it’s difficult to do by accident!

Returns
True if the operation completed/queued successfully

Return type
bool or None

sendExperimentData(key=None)
Send last ExperimentHandler for an experiment to liaison. If no experiment is given, sends the currently
running experiment.

Parameters
key (str or None) – Name of the experiment whose data to send, or None to send the
current experiment’s data.

Returns
True if data was sent, otherwise False

Return type
bool

sendToLiaison(value)
Send data to this Session’s Liaison object.

Parameters
value (str, dict, psychopy.data.ExperimentHandler) – Data to send - this can ei-
ther be a single string, a dict of strings, or an ExperimentHandler (whose data will be sent)

Returns
True if the operation completed successfully

Return type
bool or None

setupInputsFromExperiment(key, expInfo=None, thisExp=None, blocking=True)
Setup inputs for this Session via the ‘setupInputs` method from one of this Session’s experiments.

Parameters
• key (str) – Key by which the experiment is stored (see .addExperiment).

• expInfo (dict) – Information about the experiment, created by the setupExpInfo function.

• thisExp (psychopy.data.ExperimentHandler) – Handler object for this experiment,
contains the data to save and information about where to save it to.

10.3. psychopy.session - for running a session with multiple experiments 175

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

• blocking (bool) – Should calling this method block the current thread?

If True (default), the method runs as normal and won’t return until completed. If False, the
method is added to a queue and will be run by the while loop within Session.start. This
will block the main thread, but won’t block the thread this method was called from.

If not using multithreading, this value is ignored. If you don’t know what multithreading
is, you probably aren’t using it - it’s difficult to do by accident!

Returns
True if the operation completed/queued successfully

Return type
bool or None

setupWindowFromExperiment(key, expInfo=None, blocking=True)
Setup the window for this Session via the ‘setupWindow` method from one of this Session’s experiments.

Parameters
• key (str) – Key by which the experiment is stored (see .addExperiment).

• expInfo (dict) – Information about the experiment, created by the setupExpInfo function.

• blocking (bool) – Should calling this method block the current thread?

If True (default), the method runs as normal and won’t return until completed. If False, the
method is added to a queue and will be run by the while loop within Session.start. This
will block the main thread, but won’t block the thread this method was called from.

If not using multithreading, this value is ignored. If you don’t know what multithreading
is, you probably aren’t using it - it’s difficult to do by accident!

Returns
True if the operation completed/queued successfully

Return type
bool or None

setupWindowFromParams(params, blocking=True)
Create/setup a window from a dict of parameters

Parameters
• params (dict) – Dict of parameters to create the window from, keys should be from the

__init__ signature of psychopy.visual.Window

• blocking (bool) – Should calling this method block the current thread?

If True (default), the method runs as normal and won’t return until completed. If False, the
method is added to a queue and will be run by the while loop within Session.start. This
will block the main thread, but won’t block the thread this method was called from.

If not using multithreading, this value is ignored. If you don’t know what multithreading
is, you probably aren’t using it - it’s difficult to do by accident!

Returns
True if the operation completed/queued successfully

Return type
bool or None

10.3. psychopy.session - for running a session with multiple experiments 176

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

showExpInfoDlgFromExperiment(key, expInfo=None)
Update expInfo for this Session via the ‘showExpInfoDlg` method from one of this Session’s experiments.

Parameters
• key (str) – Key by which the experiment is stored (see .addExperiment).

• expInfo (dict) – Information about the experiment, created by the setupExpInfo function.

Returns
True if the operation completed successfully

Return type
bool or None

start()

Start this Session running its queue. Not recommended unless running across multiple threads.

Returns
True if this Session was stopped safely.

Return type
bool

stop()

Stop this Session running its queue. Not recommended unless running across multiple threads.

stopExperiment()

Stop the currently running experiment.

Returns
True if the operation completed successfully

Return type
bool or None

10.4 psychopy.visual - many visual stimuli

10.4.1 Aperture

Attributes

Aperture(win[, size, pos, anchor, ori, ...]) Restrict a stimulus visibility area to a basic shape or list
of vertices.

Aperture.size Set the size (diameter) of the Aperture.
Aperture.pos Set the pos (centre) of the Aperture.
Aperture.ori Set the orientation of the Aperture.
Aperture.inverted True / False.
Aperture.name The name (str) of the object to be using during logged

messages about this stim.
Aperture.autoLog Whether every change in this stimulus should be auto

logged.

10.4. psychopy.visual - many visual stimuli 177

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

class psychopy.visual.Aperture(win, size=1, pos=(0, 0), anchor=None, ori=0, nVert=120, shape='circle',
inverted=False, units=None, name=None, depth=0, autoLog=None)

Restrict a stimulus visibility area to a basic shape or list of vertices.

When enabled, any drawing commands will only operate on pixels within the Aperture. Once disabled, subse-
quent draw operations affect the whole screen as usual.

Supported shapes:

• ‘square’, ‘triangle’, ‘circle’ or None: a polygon with appropriate nVerts will be used (120 for ‘circle’)

• integer: a polygon with that many vertices will be used

• list or numpy array (Nx2): it will be used directly as the vertices to a ShapeStim

• a filename then it will be used to load and image as a ImageStim . Note that transparent parts in the image
(e.g. in a PNG file) will not be included in the mask shape. The color of the image will be ignored.

See demos/stimuli/aperture.py for example usage

Author
2011, Yuri Spitsyn 2011, Jon Peirce added units options, Jeremy Gray added shape & orientation
2014, Jeremy Gray added .contains() option 2015, Thomas Emmerling added ImageStim option

_reset()

Internal method to rebuild the shape - shouldn’t be called by the user. You have to explicitly turn resetting
off by setting self._needReset = False

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

property anchor

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

contains(x, y=None, units=None)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

10.4. psychopy.visual - many visual stimuli 178

PsychoPy - Psychology software for Python, Release 2023.2.3

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

disable()

Use Aperture.enabled = False instead.

enable()

Use Aperture.enabled = True instead.

enabled

True / False. Enable or disable the aperture. Determines whether it is used in future drawing operations.

NB. The Aperture is enabled by default, when created.

property flip

invert()

Use Aperture.inverted = True instead.

inverted

True / False. Set to true to invert the aperture. A non-inverted aperture masks everything BUT the selected
shape. An inverted aperture masks the selected shape.

NB. The Aperture is not inverted by default, when created.

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

ori

Set the orientation of the Aperture.

This essentially controls a ShapeStim so see documentation for ShapeStim.ori.

Operations supported here as well as ShapeStim.

Use setOri() if you want to control logging and resetting.

overlaps(polygon)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

See coder demo, shapeContains.py

property pos

Set the pos (centre) of the Aperture. Operations supported.

This essentially controls a ShapeStim so see documentation for ShapeStim.pos.

Operations supported here as well as ShapeStim.

10.4. psychopy.visual - many visual stimuli 179

PsychoPy - Psychology software for Python, Release 2023.2.3

Use setPos() if you want to control logging and resetting.

property posPix

The position of the aperture in pixels

setAnchor(value, log=None)

setAutoDraw(value, log=None)
Sets autoDraw. Usually you can use ‘stim.attribute = value’ syntax instead, but use this method to suppress
the log message.

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setOri(ori, needReset=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setPos(pos, needReset=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setSize(size, needReset=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

property size

Set the size (diameter) of the Aperture.

This essentially controls a ShapeStim so see documentation for ShapeStim.size.

Operations supported here as well as ShapeStim.

Use setSize() if you want to control logging and resetting.

property sizePix

The size of the aperture in pixels

property vertices

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

10.4.2 BoundingBox

Attributes

BoundingBox([extents]) Class for representing object bounding boxes.

10.4. psychopy.visual - many visual stimuli 180

PsychoPy - Psychology software for Python, Release 2023.2.3

Details

class psychopy.visual.BoundingBox(extents=None)
Class for representing object bounding boxes.

A bounding box is a construct which represents a 3D rectangular volume about some pose, defined by its mini-
mum and maximum extents in the reference frame of the pose. The axes of the bounding box are aligned to the
axes of the world or the associated pose.

Bounding boxes are primarily used for visibility testing; to determine if the extents of an object associated with a
pose (eg. the vertices of a model) falls completely outside of the viewing frustum. If so, the model can be culled
during rendering to avoid wasting CPU/GPU resources on objects not visible to the viewer.

_computeCorners()

Compute the corners of the bounding box.

These values are cached to speed up computations if extents hasn’t been updated.

clear()

Clear a bounding box, invalidating it.

property extents

fit(verts)
Fit the bounding box to vertices.

property isValid

True if the bounding box is valid.

10.4.3 BoxStim

Attributes

BoxStim(win[, size, flipFaces, pos, ori, ...]) Class for drawing 3D boxes.

Details

class psychopy.visual.BoxStim(win, size=(0.5, 0.5, 0.5), flipFaces=False, pos=(0.0, 0.0, 0.0), ori=(0.0, 0.0,
0.0, 1.0), color=(0.0, 0.0, 0.0), colorSpace='rgb', contrast=1.0, opacity=1.0,
useMaterial=None, textureScale=None, name='', autoLog=True)

Class for drawing 3D boxes.

Draws a rectangular box with dimensions specified by size (length, width, height) in scene units.

Calling the draw method will render the box to the current buffer. The render target (FBO or back buffer) must
have a depth buffer attached to it for the object to be rendered correctly. Shading is used if the current window
has light sources defined and lighting is enabled (by setting useLights=True before drawing the stimulus).

Warning: This class is experimental and may result in undefined behavior.

Parameters

10.4. psychopy.visual - many visual stimuli 181

PsychoPy - Psychology software for Python, Release 2023.2.3

• win (~psychopy.visual.Window) – Window this stimulus is associated with. Stimuli cannot
be shared across windows unless they share the same context.

• size (tuple or float) – Dimensions of the mesh. If a single value is specified, the box
will be a cube. Provide a tuple of floats to specify the width, length, and height of the box
(eg. size=(0.2, 1.3, 2.1)) in scene units.

• flipFaces (bool, optional) – If True, normals and face windings will be set to point
inward towards the center of the box. Texture coordinates will remain the same. Default is
False.

• pos (array_like) – Position vector [x, y, z] for the origin of the rigid body.

• ori (array_like) – Orientation quaternion [x, y, z, w] where x, y, z are imaginary and
w is real. If you prefer specifying rotations in axis-angle format, call setOriAxisAngle after
initialization.

• useMaterial (PhongMaterial, optional) – Material to use. The material can be con-
figured by accessing the material attribute after initialization. If not material is specified,
the diffuse and ambient color of the shape will track the current color specified by glColor.
color : array_like Diffuse and ambient color of the stimulus if useMaterial is not specified.
Values are with respect to colorSpace.

• colorSpace (str) – Colorspace of color to use.

• contrast (float) – Contrast of the stimulus, value modulates the color.

• opacity (float) – Opacity of the stimulus ranging from 0.0 to 1.0. Note that transparent
objects look best when rendered from farthest to nearest.

• textureScale (array_like or float, optional) – Scaling factors for texture coor-
dinates (sx, sy). By default, a factor of 1 will have the entire texture cover the surface of the
mesh. If a single number is provided, the texture will be scaled uniformly.

• name (str) – Name of this object for logging purposes.

• autoLog (bool) – Enable automatic logging on attribute changes.

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

_createVAO(vertices, textureCoords, normals, faces)
Create a vertex array object for handling vertex attribute data.

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

property anchor

10.4. psychopy.visual - many visual stimuli 182

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property backgroundColor

Alternative way of setting fillColor

property borderColor

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

borderWidth

property color

Alternative way of setting foreColor.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

10.4. psychopy.visual - many visual stimuli 183

PsychoPy - Psychology software for Python, Release 2023.2.3

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

draw(win=None)
Draw the stimulus.

This should work for stimuli using a single VAO and material. More complex stimuli with multiple materials
should override this method to correctly handle that case.

Parameters
win (~psychopy.visual.Window) – Window this stimulus is associated with. Stimuli cannot
be shared across windows unless they share the same context.

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property flipHoriz

property flipVert

property fontColor

Alternative way of setting foreColor.

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

10.4. psychopy.visual - many visual stimuli 184

PsychoPy - Psychology software for Python, Release 2023.2.3

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':

a blue stimulus using rgb255 space
stim.color = 255 # interpreted as (255, 255, 255)

which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

getOri()

getOriAxisAngle(degrees=True)
Get the axis and angle of rotation for the 3D stimulus. Converts the orientation defined by the ori quaternion
to and axis-angle representation.

Parameters
degrees (bool, optional) – Specify True if angle is in degrees, or else it will be treated
as radians. Default is True.

10.4. psychopy.visual - many visual stimuli 185

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Returns
Axis [rx, ry, rz] and angle.

Return type
tuple

getPos()

getRayIntersectBounds(rayOrig, rayDir)
Get the point which a ray intersects the bounding box of this mesh.

Parameters
• rayOrig (array_like) – Origin of the ray in space [x, y, z].

• rayDir (array_like) – Direction vector of the ray [x, y, z], should be normalized.

Returns
Coordinate in world space of the intersection and distance in scene units from rayOrig. Re-
turns None if there is no intersection.

Return type
tuple

property height

isVisible()

Check if the object is visible to the observer.

Test if a pose’s bounding box or position falls outside of an eye’s view frustum.

Poses can be assigned bounding boxes which enclose any 3D models associated with them. A model is not
visible if all the corners of the bounding box fall outside the viewing frustum. Therefore any primitives
(i.e. triangles) associated with the pose can be culled during rendering to reduce CPU/GPU workload.

Returns
True if the object’s bounding box is visible.

Return type
bool

Examples

You can avoid running draw commands if the object is not visible by doing a visibility test first:

if myStim.isVisible():
myStim.draw()

property lineColor

Alternative way of setting borderColor.

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

10.4. psychopy.visual - many visual stimuli 186

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

lineWidth

property ori

Orientation quaternion (X, Y, Z, W).

property pos

Position vector (X, Y, Z).

setAnchor(value, log=None)

setBackColor(color, colorSpace=None, operation='', log=None)

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setBackgroundColor(color, colorSpace=None, operation='', log=None)

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setBorderWidth(newWidth, operation='', log=None)

setColor(color, colorSpace=None, operation='', log=None)

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setFontColor(color, colorSpace=None, operation='', log=None)

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setLineColor(color, colorSpace=None, operation='', log=None)

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

10.4. psychopy.visual - many visual stimuli 187

PsychoPy - Psychology software for Python, Release 2023.2.3

setLineWidth(newWidth, operation='', log=None)

setOri(ori)

setOriAxisAngle(axis, angle, degrees=True)
Set the orientation of the 3D stimulus using an axis and angle. This sets the quaternion at ori.

Parameters
• axis (array_like) – Axis of rotation [rx, ry, rz].

• angle (float) – Angle of rotation.

• degrees (bool, optional) – Specify True if angle is in degrees, or else it will be treated
as radians. Default is True.

setPos(pos)

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

property size

property thePose

The pose of the rigid body. This is a class which has pos and ori attributes.

units

None, ‘norm’, ‘cm’, ‘deg’, ‘degFlat’, ‘degFlatPos’, or ‘pix’

If None then the current units of the Window will be used. See Units for the window and stimuli for expla-
nation of other options.

Note that when you change units, you don’t change the stimulus parameters and it is likely to change ap-
pearance. Example:

This stimulus is 20% wide and 50% tall with respect to window
stim = visual.PatchStim(win, units='norm', size=(0.2, 0.5)

This stimulus is 0.2 degrees wide and 0.5 degrees tall.
stim.units = 'deg'

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

property vertices

property width

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2

(continues on next page)

10.4. psychopy.visual - many visual stimuli 188

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

win1.flip(waitBlanking=False) # do not wait for next
monitor update

win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.4 BufferImageStim

Attributes

BufferImageStim(win[, buffer, rect, ...]) Take a "screen-shot", save as an ImageStim (RBGA ob-
ject).

BufferImageStim.win The Window object in which the stimulus will be ren-
dered by default.

BufferImageStim.mask The alpha mask that can be used to control the outer
shape of the stimulus

BufferImageStim.units

BufferImageStim.pos The position of the center of the stimulus in the stimulus
units

BufferImageStim.ori The orientation of the stimulus (in degrees).
BufferImageStim.size The size (width, height) of the stimulus in the stimulus

units
BufferImageStim.contrast A value that is simply multiplied by the color.
BufferImageStim.color Alternative way of setting foreColor.
BufferImageStim.colorSpace The name of the color space currently being used
BufferImageStim.opacity Determines how visible the stimulus is relative to back-

ground.
BufferImageStim.interpolate Whether to interpolate (linearly) the texture in the stim-

ulus.
BufferImageStim.name The name (str) of the object to be using during logged

messages about this stim.
BufferImageStim.autoLog Whether every change in this stimulus should be auto

logged.
BufferImageStim.draw([win]) Draws the BufferImage on the screen, similar to

ImageStim .draw().
BufferImageStim.autoDraw Determines whether the stimulus should be automati-

cally drawn on every frame flip.

10.4. psychopy.visual - many visual stimuli 189

PsychoPy - Psychology software for Python, Release 2023.2.3

Details

class psychopy.visual.BufferImageStim(win, buffer='back', rect=(-1, 1, 1, -1), sqPower2=False, stim=(),
interpolate=True, flipHoriz=False, flipVert=False, mask='None',
pos=(0, 0), name=None, autoLog=None)

Take a “screen-shot”, save as an ImageStim (RBGA object).

The screen-shot is a single collage image composed of static elements that you can treat as being a single stimulus.
The screen-shot can be of the visible screen (front buffer) or hidden (back buffer).

BufferImageStim aims to provide fast rendering, while still allowing dynamic orientation, position, and opacity.
It’s fast to draw but slower to init (same as an ImageStim).

You specify the part of the screen to capture (in norm units), and optionally the stimuli themselves (as a list of
items to be drawn). You get a screenshot of those pixels. If your OpenGL does not support arbitrary sizes, the
image will be larger, using square powers of two if needed, with the excess image being invisible (using alpha).
The aim is to preserve the buffer contents as rendered.

Checks for OpenGL 2.1+, or uses square-power-of-2 images.

Example:

define lots of stimuli, make a list:
mySimpleImageStim = ...
myTextStim = ...
stimList = [mySimpleImageStim, myTextStim]

draw stim list items & capture (slow; see EXP log for times):
screenshot = visual.BufferImageStim(myWin, stim=stimList)

render to screen (very fast, except for the first draw):
while <conditions>:

screenshot.draw() # fast; can vary .ori, .pos, .opacity
other_stuff.draw() # dynamic
myWin.flip()

See coder Demos > stimuli > bufferImageStim.py for a demo, with timing stats.

Author
• 2010 Jeremy Gray, with on-going fixes

Parameters
buffer :

the screen buffer to capture from, default is ‘back’ (hidden). ‘front’ is the buffer in view after
win.flip()

rect :
a list of edges [left, top, right, bottom] defining a screen rectangle which is the area to capture
from the screen, given in norm units. default is fullscreen: [-1, 1, 1, -1]

stim :
a list of item(s) to be drawn to the back buffer (in order). The back buffer is first cleared
(without the win being flip()ed), then stim items are drawn, and finally the buffer (or part of
it) is captured. Each item needs to have its own .draw() method, and have the same window
as win.

10.4. psychopy.visual - many visual stimuli 190

PsychoPy - Psychology software for Python, Release 2023.2.3

interpolate :
whether to use interpolation (default = True, generally good, especially if you change the
orientation)

sqPower2 :
• False (default) = use rect for size if OpenGL = 2.1+

• True = use square, power-of-two image sizes

flipHoriz :
horizontally flip (mirror) the captured image, default = False

flipVert :
vertically flip (mirror) the captured image; default = False

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

_calcPosRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix.

_calcSizeRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix

_createTexture(tex, id, pixFormat, stim, res=128, maskParams=None, forcePOW2=True, dataType=None,
wrapping=True)

Create a new OpenGL 2D image texture.

Parameters
• tex (Any) – Texture data. Value can be anything that resembles image data.

• id (int or GLint) – Texture ID.

• pixFormat (GLenum or int) – Pixel format to use, values can be GL_ALPHA or GL_RGB.

• stim (Any) – Stimulus object using the texture.

• res (int) – The resolution of the texture (unless a bitmap image is used).

• maskParams (dict or None) – Additional parameters to configure the mask used with
this texture.

• forcePOW2 (bool) – Force the texture to be stored in a square memory area. For grating
stimuli (anything that needs multiple cycles) forcePOW2 should be set to be True. Other-
wise the wrapping of the texture will not work.

• dataType (class:~pyglet.gl.GLenum, int or None) – None, GL_UNSIGNED_BYTE,
GL_FLOAT. Only affects image files (numpy arrays will be float).

• wrapping (bool) – Enable wrapping of the texture. A texture will be set to repeat (or tile).

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_getPolyAsRendered()

DEPRECATED. Return a list of vertices as rendered.

10.4. psychopy.visual - many visual stimuli 191

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

_movieFrameToTexture(movieSrc)
Convert a movie frame to a texture and use it.

This method is used internally to copy pixel data from a camera object into a texture. This enables the
ImageStim to be used as a ‘viewfinder’ of sorts for the camera to view a live video stream on a window.

Parameters
movieSrc (~psychopy.hardware.camera.Camera) – Movie source object.

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_set(attrib, val, op='', log=None)
DEPRECATED since 1.80.04 + 1. Use setAttribute() and val2array() instead.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

_updateListShaders()

The user shouldn’t need this method since it gets called after every call to .set() Basically it updates the
OpenGL representation of your stimulus if some parameter of the stimulus changes. Call it if you change
a property manually rather than using the .set() command

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

property anchor

property aspectRatio

Aspect ratio of original image, before taking into account the .size attribute of this object.

returns :
Aspect ratio as a (w, h) tuple, simplified using the smallest common denominator (e.g. 1080x720
pixels becomes (3, 2))

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

10.4. psychopy.visual - many visual stimuli 192

PsychoPy - Psychology software for Python, Release 2023.2.3

property backgroundColor

Alternative way of setting fillColor

property borderColor

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

borderWidth

clearTextures()

Clear all textures associated with the stimulus.

As of v1.61.00 this is called automatically during garbage collection of your stimulus, so doesn’t need
calling explicitly by the user.

property color

Alternative way of setting foreColor.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

contains(x, y=None, units=None)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

10.4. psychopy.visual - many visual stimuli 193

PsychoPy - Psychology software for Python, Release 2023.2.3

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

depth

DEPRECATED, depth is now controlled simply by drawing order.

doDragging()

If this stimulus is draggable, do the necessary actions on a frame flip to drag it.

draggable

Can this stimulus be dragged by a mouse click?

draw(win=None)
Draws the BufferImage on the screen, similar to ImageStim .draw(). Allows dynamic position, size, rota-
tion, mirroring, and opacity. Limitations / bugs: not sure what happens with shaders and self._updateList()

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

10.4. psychopy.visual - many visual stimuli 194

PsychoPy - Psychology software for Python, Release 2023.2.3

flipHoriz

If set to True then the image will be flipped horizontally (left-to-right). Note that this is relative to the
original image, not relative to the current state.

flipVert

If set to True then the image will be flipped vertically (left-to-right). Note that this is relative to the original
image, not relative to the current state.

property fontColor

Alternative way of setting foreColor.

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':

a blue stimulus using rgb255 space
stim.color = 255 # interpreted as (255, 255, 255)

which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to

(continues on next page)

10.4. psychopy.visual - many visual stimuli 195

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

property height

image

The image file to be presented (most formats supported).

This can be a path-like object to an image file, or a numpy array of shape [H, W, C] where C are channels.
The third dim will usually have length 1 (defining an intensity-only image), 3 (defining an RGB image) or
4 (defining an RGBA image).

If passing a numpy array to the image attribute, the size attribute of ImageStim must be set explicitly.

interpolate

Whether to interpolate (linearly) the texture in the stimulus.

If set to False then nearest neighbour will be used when needed, otherwise some form of interpolation will
be used.

isDragging = False

property lineColor

Alternative way of setting borderColor.

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

lineWidth

mask

The alpha mask that can be used to control the outer shape of the stimulus

• None, ‘circle’, ‘gauss’, ‘raisedCos’

• or the name of an image file (most formats supported)

• or a numpy array (1xN or NxN) ranging -1:1

maskParams

Various types of input. Default to None.

This is used to pass additional parameters to the mask if those are needed.

10.4. psychopy.visual - many visual stimuli 196

PsychoPy - Psychology software for Python, Release 2023.2.3

• For ‘gauss’ mask, pass dict {‘sd’: 5} to control
standard deviation.

• For the ‘raisedCos’ mask, pass a dict: {‘fringeWidth’:0.2},
where ‘fringeWidth’ is a parameter (float, 0-1), determining the proportion of the patch that will
be blurred by the raised cosine edge.

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

property opacity

Determines how visible the stimulus is relative to background.

The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent). Operations are supported.
Precisely how this is used depends on the Blend Mode.

ori

The orientation of the stimulus (in degrees).

Should be a single value (scalar). Operations are supported.

Orientation convention is like a clock: 0 is vertical, and positive values rotate clockwise. Beyond 360 and
below zero values wrap appropriately.

overlaps(polygon)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

See coder demo, shapeContains.py

property pos

The position of the center of the stimulus in the stimulus units

value should be an x,y-pair. Operations are also supported.

Example:

stim.pos = (0.5, 0) # Set slightly to the right of center
stim.pos += (0.5, -1) # Increment pos rightwards and upwards.

Is now (1.0, -1.0)
stim.pos *= 0.2 # Move stim towards the center.

Is now (0.2, -0.2)

Tip: If you need the position of stim in pixels, you can obtain it like this:

from psychopy.tools.monitorunittools import posToPix
posPix = posToPix(stim)

setAnchor(value, log=None)

10.4. psychopy.visual - many visual stimuli 197

PsychoPy - Psychology software for Python, Release 2023.2.3

setAutoDraw(value, log=None)
Sets autoDraw. Usually you can use ‘stim.attribute = value’ syntax instead, but use this method to suppress
the log message.

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setBackColor(color, colorSpace=None, operation='', log=None)

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setBackgroundColor(color, colorSpace=None, operation='', log=None)

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setBorderWidth(newWidth, operation='', log=None)

setColor(color, colorSpace=None, operation='', log=None)

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setDepth(newDepth, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setFlipHoriz(newVal=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setFlipVert(newVal=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setFontColor(color, colorSpace=None, operation='', log=None)

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

10.4. psychopy.visual - many visual stimuli 198

PsychoPy - Psychology software for Python, Release 2023.2.3

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setImage(value, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setLineColor(color, colorSpace=None, operation='', log=None)

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setLineWidth(newWidth, operation='', log=None)

setMask(value, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setOpacity(newOpacity, operation='', log=None)
Hard setter for opacity, allows the suppression of log messages and calls the update method

setOri(newOri, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setPos(newPos, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setSize(newSize, operation='', units=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

property size

The size (width, height) of the stimulus in the stimulus units

Value should be x,y-pair, scalar (applies to both dimensions) or None (resets to default). Operations are
supported.

Sizes can be negative (causing a mirror-image reversal) and can extend beyond the window.

Example:

stim.size = 0.8 # Set size to (xsize, ysize) = (0.8, 0.8)
print(stim.size) # Outputs array([0.8, 0.8])
stim.size += (0.5, -0.5) # make wider and flatter: (1.3, 0.3)

Tip: if you can see the actual pixel range this corresponds to by looking at stim._sizeRendered

texRes

Power-of-two int. Sets the resolution of the mask and texture. texRes is overridden if an array or image is
provided as mask.

Operations supported.

10.4. psychopy.visual - many visual stimuli 199

PsychoPy - Psychology software for Python, Release 2023.2.3

property units

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

updateOpacity()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox.

property vertices

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

property width

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.5 psychopy.visual.Circle

Stimulus class for drawing circles.

10.4. psychopy.visual - many visual stimuli 200

PsychoPy - Psychology software for Python, Release 2023.2.3

Overview

Circle(win[, radius, edges, units, ...]) Creates a Circle with a given radius as a special case of
a ShapeStim

Circle.radius float, int, tuple, list or 2x1 array Radius of the Polygon
(distance from the center to the corners).

Circle.edges Number of edges of the polygon.
Circle.units

Circle.lineWidth Width of the line in pixels.
Circle.lineColor Alternative way of setting borderColor.
Circle.lineColorSpace Deprecated, please use colorSpace to set color space for

the entire object
Circle.fillColor Set the fill color for the shape.
Circle.fillColorSpace Deprecated, please use colorSpace to set color space for

the entire object.
Circle.pos The position of the center of the stimulus in the stimulus

units
Circle.size The size (width, height) of the stimulus in the stimulus

units
Circle.ori The orientation of the stimulus (in degrees).
Circle.opacity Determines how visible the stimulus is relative to back-

ground.
Circle.contrast A value that is simply multiplied by the color.
Circle.depth DEPRECATED, depth is now controlled simply by

drawing order.
Circle.interpolate If True the edge of the line will be anti-aliased.
Circle.lineRGB Legacy property for setting the border color of a stimulus

in RGB, instead use obj._borderColor.rgb
Circle.fillRGB Legacy property for setting the fill color of a stimulus in

RGB, instead use obj._fillColor.rgb
Circle.name The name (str) of the object to be using during logged

messages about this stim.
Circle.autoLog Whether every change in this stimulus should be auto

logged.
Circle.autoDraw Determines whether the stimulus should be automati-

cally drawn on every frame flip.
Circle.color Set the color of the shape.
Circle.colorSpace The name of the color space currently being used

Details

class psychopy.visual.circle.Circle(win, radius=0.5, edges='circle', units='', lineWidth=1.5,
lineColor=False, fillColor=False, colorSpace='rgb', pos=(0, 0),
size=1.0, anchor=None, ori=0.0, opacity=None, contrast=1.0,
depth=0, interpolate=True, draggable=False, lineRGB=False,
fillRGB=False, name=None, autoLog=None, autoDraw=False,
color=False, fillColorSpace=None, lineColorSpace=None)

Creates a Circle with a given radius as a special case of a ShapeStim

Parameters

10.4. psychopy.visual - many visual stimuli 201

PsychoPy - Psychology software for Python, Release 2023.2.3

• win (Window) – Window this shape is being drawn to. The stimulus instance will allocate its
required resources using that Windows context. In many cases, a stimulus instance cannot be
drawn on different windows unless those windows share the same OpenGL context, which
permits resources to be shared between them.

• edges (int) – Number of edges to use to define the outline of the circle. The greater the
number of edges, the ‘rounder’ the circle will appear.

• radius (float) – Initial radius of the circle in units.

• units (str) – Units to use when drawing. This will affect how parameters and attributes
pos, size and radius are interpreted.

• lineWidth (float) – Width of the circle’s outline.

• lineColor (array_like, str, Color or None) – Color of the circle’s outline and fill. If None,
a fully transparent color is used which makes the fill or outline invisible.

• fillColor (array_like, str, Color or None) – Color of the circle’s outline and fill. If None,
a fully transparent color is used which makes the fill or outline invisible.

• lineColorSpace (str) – Colorspace to use for the outline and fill. These change how the
values passed to lineColor and fillColor are interpreted. Deprecated. Please use colorSpace
to set both outline and fill colorspace. These arguments may be removed in a future version.

• fillColorSpace (str) – Colorspace to use for the outline and fill. These change how the
values passed to lineColor and fillColor are interpreted. Deprecated. Please use colorSpace
to set both outline and fill colorspace. These arguments may be removed in a future version.

• pos (array_like) – Initial position (x, y) of the circle on-screen relative to the origin located
at the center of the window or buffer in units (unless changed by specifying viewPos). This
can be updated after initialization by setting the pos property. The default value is (0.0, 0.0)
which results in no translation.

• size (float or array_like) – Initial scale factor for adjusting the size of the circle. A
single value (float) will apply uniform scaling, while an array (sx, sy) will result in anisotropic
scaling in the horizontal (sx) and vertical (sy) direction. Providing negative values to size
will cause the shape being mirrored. Scaling can be changed by setting the size property
after initialization. The default value is 1.0 which results in no scaling.

• ori (float) – Initial orientation of the circle in degrees about its origin. Positive values will
rotate the shape clockwise, while negative values will rotate counterclockwise. The default
value for ori is 0.0 degrees.

• opacity (float) – Opacity of the shape. A value of 1.0 indicates fully opaque and 0.0 is
fully transparent (therefore invisible). Values between 1.0 and 0.0 will result in colors being
blended with objects in the background. This value affects the fill (fillColor) and outline
(lineColor) colors of the shape.

• contrast (float) – Contrast level of the shape (0.0 to 1.0). This value is used to modulate
the contrast of colors passed to lineColor and fillColor.

• depth (int) – Depth layer to draw the stimulus when autoDraw is enabled.

• interpolate (bool) – Enable smoothing (anti-aliasing) when drawing shape outlines. This
produces a smoother (less-pixelated) outline of the shape.

• draggable (bool) – Can this stimulus be dragged by a mouse click?

• lineRGB (array_like, Color or None) – Deprecated. Please use lineColor and fillColor.
These arguments may be removed in a future version.

10.4. psychopy.visual - many visual stimuli 202

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

• fillRGB (array_like, Color or None) – Deprecated. Please use lineColor and fillColor.
These arguments may be removed in a future version.

• name (str) – Optional name of the stimuli for logging.

• autoLog (bool) – Enable auto-logging of events associated with this stimuli. Useful for
debugging and to track timing when used in conjunction with autoDraw.

• autoDraw (bool) – Enable auto drawing. When True, the stimulus will be drawn every
frame without the need to explicitly call the draw() method.

• color (array_like, str, Color or None) – Sets both the initial lineColor and fillColor of the
shape.

• colorSpace (str) – Sets the colorspace, changing how values passed to lineColor and
fillColor are interpreted.

radius

Radius of the shape. Avoid using size for adjusting figure dimensions if radius != 0.5 which will result in
undefined behavior.

Type
float or int

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

static _calcEquilateralVertices(edges, radius=0.5)
Get vertices for an equilateral shape with a given number of sides, will assume radius is 0.5 (relative) but
can be manually specified

_calcPosRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix.

_calcSizeRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix

static _calculateMinEdges(lineWidth, threshold=180)
Calculate how many points are needed in an equilateral polygon for the gap between line rects to be < 1px
and for corner angles to exceed a threshold.

In other words, how many edges does a polygon need to have to appear smooth?

lineWidth
[int, float, np.ndarray] Width of the line in pixels

threshold
[int] Maximum angle (degrees) for corners of the polygon, useful for drawing a circle. Supply 180 for
no maximum angle.

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_getPolyAsRendered()

DEPRECATED. Return a list of vertices as rendered.

10.4. psychopy.visual - many visual stimuli 203

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_set(attrib, val, op='', log=None)
DEPRECATED since 1.80.04 + 1. Use setAttribute() and val2array() instead.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property backgroundColor

Alternative way of setting fillColor

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

closeShape

Should the last vertex be automatically connected to the first?

If you’re using Polygon, Circle or Rect, closeShape=True is assumed and shouldn’t be changed.

color

Set the color of the shape. Sets both fillColor and lineColor simultaneously if applicable.

10.4. psychopy.visual - many visual stimuli 204

PsychoPy - Psychology software for Python, Release 2023.2.3

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

contains(x, y=None, units=None)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

10.4. psychopy.visual - many visual stimuli 205

PsychoPy - Psychology software for Python, Release 2023.2.3

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

depth

DEPRECATED, depth is now controlled simply by drawing order.

doDragging()

If this stimulus is draggable, do the necessary actions on a frame flip to drag it.

draggable

Can this stimulus be dragged by a mouse click?

draw(win=None, keepMatrix=False)
Draw the stimulus in its relevant window.

You must call this method after every MyWin.flip() if you want the stimulus to appear on that frame and
then update the screen again.

edges

Number of edges of the polygon. Floats are rounded to int.

Operations supported.

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property fontColor

Alternative way of setting foreColor.

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

10.4. psychopy.visual - many visual stimuli 206

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':

a blue stimulus using rgb255 space
stim.color = 255 # interpreted as (255, 255, 255)

which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

interpolate

If True the edge of the line will be anti-aliased.

property lineColor

Alternative way of setting borderColor.

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

10.4. psychopy.visual - many visual stimuli 207

PsychoPy - Psychology software for Python, Release 2023.2.3

lineWidth

Width of the line in pixels.
Operations supported.

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

property opacity

Determines how visible the stimulus is relative to background.

The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent). Operations are supported.
Precisely how this is used depends on the Blend Mode.

ori

The orientation of the stimulus (in degrees).

Should be a single value (scalar). Operations are supported.

Orientation convention is like a clock: 0 is vertical, and positive values rotate clockwise. Beyond 360 and
below zero values wrap appropriately.

overlaps(polygon)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

See coder demo, shapeContains.py

property pos

The position of the center of the stimulus in the stimulus units

value should be an x,y-pair. Operations are also supported.

Example:

stim.pos = (0.5, 0) # Set slightly to the right of center
stim.pos += (0.5, -1) # Increment pos rightwards and upwards.

Is now (1.0, -1.0)
stim.pos *= 0.2 # Move stim towards the center.

Is now (0.2, -0.2)

Tip: If you need the position of stim in pixels, you can obtain it like this:

from psychopy.tools.monitorunittools import posToPix
posPix = posToPix(stim)

radius

float, int, tuple, list or 2x1 array Radius of the Polygon (distance from the center to the corners). May be a
-2tuple or list to stretch the polygon asymmetrically.

10.4. psychopy.visual - many visual stimuli 208

PsychoPy - Psychology software for Python, Release 2023.2.3

Operations supported.

Usually there’s a setAttribute(value, log=False) method for each attribute. Use this if you want to disable
logging.

setAutoDraw(value, log=None)
Sets autoDraw. Usually you can use ‘stim.attribute = value’ syntax instead, but use this method to suppress
the log message.

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setColor(color, colorSpace=None, operation='', log=None)
Sets both the line and fill to be the same color.

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setDepth(newDepth, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setEdges(edges, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

10.4. psychopy.visual - many visual stimuli 209

PsychoPy - Psychology software for Python, Release 2023.2.3

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setNVertices(nVerts, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setOpacity(newOpacity, operation='', log=None)
Hard setter for opacity, allows the suppression of log messages and calls the update method

setOri(newOri, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setPos(newPos, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setRadius(radius, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setSize(newSize, operation='', units=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setVertices(value=None, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

property size

The size (width, height) of the stimulus in the stimulus units

Value should be x,y-pair, scalar (applies to both dimensions) or None (resets to default). Operations are
supported.

Sizes can be negative (causing a mirror-image reversal) and can extend beyond the window.

Example:

stim.size = 0.8 # Set size to (xsize, ysize) = (0.8, 0.8)
print(stim.size) # Outputs array([0.8, 0.8])
stim.size += (0.5, -0.5) # make wider and flatter: (1.3, 0.3)

Tip: if you can see the actual pixel range this corresponds to by looking at stim._sizeRendered

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

updateOpacity()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox.

10.4. psychopy.visual - many visual stimuli 210

PsychoPy - Psychology software for Python, Release 2023.2.3

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.6 CustomMouse

class psychopy.visual.CustomMouse(*args, **kwargs)
Class for more control over the mouse, including the pointer graphic and bounding box.

Seems to work with pyglet or pygame. Not completely tested.

Known limitations:

• only norm units are working

• getRel() always returns [0,0]

• mouseMoved() is always False; maybe due to self.mouse.visible == False -> held at [0,0]

• no idea if clickReset() works

Author: Jeremy Gray, 2011

Class for customizing the appearance and behavior of the mouse.

Use a custom mouse for extra control over the pointer appearance and function. It’s probably slower to render
than the regular system mouse. Create your visual.Window before creating a CustomMouse.

Parameters
• win (required, visual.Window) – the window to which this mouse is attached

• visible (True or False) – makes the mouse invisible if necessary

• newPos (None or [x,y]) – gives the mouse a particular starting position

• leftLimit – left edge of a virtual box within which the mouse can move

• topLimit – top edge of virtual box

10.4. psychopy.visual - many visual stimuli 211

PsychoPy - Psychology software for Python, Release 2023.2.3

• rightLimit – right edge of virtual box

• bottomLimit – lower edge of virtual box

• showLimitBox (default is False) – display the boundary within which the mouse can
move.

• pointer – The visual display item to use as the pointer; must have .draw() and setPos()
methods. If your item has .setOpacity(), you can alter the mouse’s opacity.

• clickOnUp (when to count a mouse click as having occurred) – default is
False, record a click when the mouse is first pressed down. True means record a click when
the mouse button is released.

10.4.7 DotStim

class psychopy.visual.DotStim(*args, **kwargs)
This stimulus class defines a field of dots with an update rule that determines how they change on every call to
the .draw() method.

This single class can be used to generate a wide variety of dot motion types. For a review of possible types
and their pros and cons see Scase, Braddick & Raymond (1996). All six possible motions they describe can be
generated with appropriate choices of the signalDots (which determines whether signal dots are the ‘same’ or
‘different’ on each frame), noiseDots (which determines the locations of the noise dots on each frame) and the
dotLife (which determines for how many frames the dot will continue before being regenerated).

The default settings (as of v1.70.00) is for the noise dots to have identical velocity but random direction and
signal dots remain the ‘same’ (once a signal dot, always a signal dot).

For further detail about the different configurations see Dots (RDK) Component in the Builder Components
section of the documentation.

If further customisation is required, then the DotStim should be subclassed and its _update_dotsXY and _new-
DotsXY methods overridden.

The maximum number of dots that can be drawn is limited by system performance.

fieldShape

‘sqr’ or ‘circle’. Defines the envelope used to present the dots. If changed while drawing, dots outside new
envelope will be respawned.

Type
str

dotSize

Dot size specified in pixels (overridden if element is specified). operations are supported.

Type
float

dotLife

Number of frames each dot lives for (-1=infinite). Dot lives are initiated randomly from a uniform distri-
bution from 0 to dotLife. If changed while drawing, the lives of all dots will be randomly initiated again.

Type
int

signalDots

If ‘same’ then the signal and noise dots are constant. If ‘different’ then the choice of which is signal and
which is noise gets randomised on each frame. This corresponds to Scase et al’s (1996) categories of RDK.

10.4. psychopy.visual - many visual stimuli 212

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Type
str

noiseDots

Determines the behaviour of the noise dots, taken directly from Scase et al’s (1996) categories. For ‘po-
sition’, noise dots take a random position every frame. For ‘direction’ noise dots follow a random, but
constant direction. For ‘walk’ noise dots vary their direction every frame, but keep a constant speed.

Type
str

element

This can be any object that has a .draw() method and a .setPos([x,y]) method (e.g. a GratingStim,
TextStim. . .)!! DotStim assumes that the element uses pixels as units. None defaults to dots.

Type
object

fieldPos

Specifying the location of the centre of the stimulus using a x,y-pair. See e.g. ShapeStim for more
documentation/examples on how to set position. operations are supported.

Type
array_like

fieldSize

Specifying the size of the field of dots using a x,y-pair. See e.g. ShapeStim for more documenta-
tion/examples on how to set position. operations are supported.

Type
array_like

coherence

Change the coherence (%) of the DotStim. This will be rounded according to the number of dots in the
stimulus.

Type
float

dir

Direction of the coherent dots in degrees. operations are supported.

Type
float

speed

Speed of the dots (in units/frame). operations are supported.

Type
float

Parameters
• win (window.Window) – Window this stimulus is associated with.

• units (str) – Units to use.

• nDots (int) – Number of dots to present in the field.

• coherence (float) – Proportion of dots which are coherent. This value can be set using
the coherence property after initialization.

10.4. psychopy.visual - many visual stimuli 213

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

• fieldPos (array_like) – (x,y) or [x,y] position of the field. This value can be set using
the fieldPos property after initialization.

• fieldSize (array_like, int or float) – (x,y) or [x,y] or single value (applied to both
dimensions). Sizes can be negative and can extend beyond the window. This value can be
set using the fieldSize property after initialization.

• fieldShape (str) – Defines the envelope used to present the dots. If changed while drawing
by setting the fieldShape property, dots outside new envelope will be respawned., valid values
are ‘square’, ‘sqr’ or ‘circle’.

• dotSize (array_like or float) – Size of the dots. If given an array, the sizes of indi-
vidual dots will be set. The array must have length nDots. If a single value is given, all dots
will be set to the same size.

• dotLife (int) – Lifetime of a dot in frames. Dot lives are initiated randomly from a uniform
distribution from 0 to dotLife. If changed while drawing, the lives of all dots will be randomly
initiated again. A value of -1 results in dots having an infinite lifetime. This value can be set
using the dotLife property after initialization.

• dir (float) – Direction of the coherent dots in degrees. At 0 degrees, coherent dots will
move from left to right. Increasing the angle will rotate the direction counter-clockwise. This
value can be set using the dir property after initialization.

• speed (float) – Speed of the dots (in units per frame). This value can be set using the
speed property after initialization.

• rgb (array_like, optional) – Color of the dots in form (r, g, b) or [r, g, b]. Deprecated,
use color instead.

• color (array_like or str) – Color of the dots in form (r, g, b) or [r, g, b].

• colorSpace (str) – Colorspace to use.

• opacity (float) – Opacity of the dots from 0.0 to 1.0.

• contrast (float) – Contrast of the dots 0.0 to 1.0. This value is simply multiplied by the
color value.

• depth (float) – Deprecated, depth is now controlled simply by drawing order.

• element (object) – This can be any object that has a .draw()method and a .setPos([x,
y]) method (e.g. a GratingStim, TextStim. . .)!! DotStim assumes that the element uses
pixels as units. None defaults to dots.

• signalDots (str) – If ‘same’ then the signal and noise dots are constant. If different then
the choice of which is signal and which is noise gets randomised on each frame. This corre-
sponds to Scase et al’s (1996) categories of RDK. This value can be set using the signalDots
property after initialization.

• noiseDots (str) – Determines the behaviour of the noise dots, taken directly from Scase
et al’s (1996) categories. For ‘position’, noise dots take a random position every frame. For
‘direction’ noise dots follow a random, but constant direction. For ‘walk’ noise dots vary their
direction every frame, but keep a constant speed. This value can be set using the noiseDots
property after initialization.

• name (str, optional) – Optional name to use for logging.

• autoLog (bool) – Enable automatic logging.

10.4. psychopy.visual - many visual stimuli 214

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

10.4.8 ElementArrayStim

class psychopy.visual.ElementArrayStim(*args, **kwargs)
This stimulus class defines a field of elements whose behaviour can be independently controlled. Suitable for
creating ‘global form’ stimuli or more detailed random dot stimuli.

This stimulus can draw thousands of elements without dropping a frame, but in order to achieve this performance,
uses several OpenGL extensions only available on modern graphics cards (supporting OpenGL2.0). See the
ElementArray demo.

Parameters
win :

a Window object (required)

units
[None, ‘height’, ‘norm’, ‘cm’, ‘deg’ or ‘pix’] If None then the current units of the Window
will be used. See Units for the window and stimuli for explanation of other options.

nElements :
number of elements in the array.

10.4.9 Form

Attributes

Form(win[, name, colorSpace, fillColor, ...]) A class to add Forms to a psychopy.visual.Window
Form.win The Window object in which the stimulus will be ren-

dered by default.
Form.verticesPix This determines the coordinates of the vertices for the

current stimulus in pixels, accounting for size, ori, pos
and units

Form.values

Form.updateOpacity() Placeholder method to update colours when set exter-
nally, for example updating the pallette attribute of a
textbox.

Form.updateColors() Placeholder method to update colours when set exter-
nally, for example updating the pallette attribute of a
textbox

Form.units

Form.style

Form.size The size (width, height) of the stimulus in the stimulus
units

Form.setSize(newSize[, operation, units, log]) Usually you can use 'stim.attribute = value' syntax in-
stead, but use this method if you need to suppress the
log message

Form.setScrollSpeed(items[, multiplier]) Set scroll speed of Form.
Form.setRGB(color[, operation, log]) DEPRECATED: Legacy setter for foreground RGB, in-

stead set obj._foreColor.rgb
continues on next page

10.4. psychopy.visual - many visual stimuli 215

PsychoPy - Psychology software for Python, Release 2023.2.3

Table 10.1 – continued from previous page
Form.setPos(newPos[, operation, log]) Usually you can use 'stim.attribute = value' syntax in-

stead, but use this method if you need to suppress the
log message.

Form.setOri(newOri[, operation, log]) Usually you can use 'stim.attribute = value' syntax in-
stead, but use this method if you need to suppress the
log message

Form.setOpacity(newOpacity[, operation, log]) Hard setter for opacity, allows the suppression of log
messages and calls the update method

Form.setLineColor(color[, colorSpace, ...])

Form.setLMS(color[, operation]) DEPRECATED since v1.60.05: Please use the color at-
tribute

Form.setForeColor(color[, colorSpace, ...]) Hard setter for foreColor, allows suppression of the log
message, simultaneous colorSpace setting and calls up-
date methods.

Form.setFillColor(color[, colorSpace, ...]) Hard setter for fillColor, allows suppression of the log
message, simultaneous colorSpace setting and calls up-
date methods.

Form.setDepth (newDepth[, operation, log]) Usually you can use 'stim.attribute = value' syntax in-
stead, but use this method if you need to suppress the
log message

Form.setDKL(color[, operation]) DEPRECATED since v1.60.05: Please use the color at-
tribute

Form.setContrast(newContrast[, operation, log]) Usually you can use 'stim.attribute = value' syntax in-
stead, but use this method if you need to suppress the
log message

Form.setColor(color[, colorSpace, ...])

Form.setBorderColor(color[, colorSpace, ...]) Hard setter for fillColor, allows suppression of the log
message, simultaneous colorSpace setting and calls up-
date methods.

Form.setBackColor(color[, colorSpace, ...])

Form.setAutoLog([value, log]) Usually you can use 'stim.attribute = value' syntax in-
stead, but use this method if you need to suppress the
log message.

Form.setAutoDraw(value[, log]) Sets autoDraw for Form and any responseCtrl contained
within

Form.pos The position of the center of the stimulus in the stimulus
units

Form.overlaps(polygon) Returns True if this stimulus intersects another one.
Form.ori The orientation of the stimulus (in degrees).
Form.opacity Determines how visible the stimulus is relative to back-

ground.
Form.name The name (str) of the object to be using during logged

messages about this stim.
Form.lineColor Alternative way of setting borderColor.
Form.knownStyles

Form.importItems(items) Import items from csv or excel sheet and convert to list
of dicts.

continues on next page

10.4. psychopy.visual - many visual stimuli 216

PsychoPy - Psychology software for Python, Release 2023.2.3

Table 10.1 – continued from previous page
Form.getData() Extracts form questions, response ratings and response

times from Form items
Form.formComplete() Deprecated in version 2020.2.
Form.foreColor Sets both itemColor and responseColor to the same

value
Form.fillColor Color of the form's background
Form.draw() Draw all form elements
Form.depth DEPRECATED, depth is now controlled simply by

drawing order.
Form.contrast A value that is simply multiplied by the color.
Form.contains(x[, y, units]) Returns True if a point x,y is inside the stimulus' border.
Form.complete A read-only property to determine if the current form is

complete
Form.colorSpace The name of the color space currently being used
Form.color Alternative way of setting foreColor.
Form.borderColor Color of the line around the form
Form.backColor Alternative way of setting fillColor
Form.autoLog Whether every change in this stimulus should be auto

logged.
Form.autoDraw Determines whether the stimulus should be automati-

cally drawn on every frame flip.
Form.addDataToExp(exp[, itemsAs]) Gets the current Form data and inserts into an

ExperimentHandler object either as rows or as
columns

Details

class psychopy.visual.Form(win, name='default', colorSpace='rgb', fillColor=None, borderColor=None,
itemColor='white', responseColor='white', markerColor='red', items=None,
font=None, textHeight=0.02, size=(0.5, 0.5), pos=(0, 0), style=None,
itemPadding=0.05, units='height', randomize=False, autoLog=True, depth=0,
color=None, foreColor=None)

A class to add Forms to a psychopy.visual.Window

The Form allows Psychopy to be used as a questionnaire tool, where participants can be presented with a series of
questions requiring responses. Form items, defined as questions and response pairs, are presented simultaneously
onscreen with a scrollable viewing window.

Example

survey = Form(win, items=[{}], size=(1.0, 0.7), pos=(0.0, 0.0))

Parameters
• win (psychopy.visual.Window) – The window object to present the form.

• items (List of dicts or csv or xlsx file) –

a list of dicts or csv file should have the following key, value pairs / column headers:
”index”: The item index as a number “itemText”: item question string, “itemWidth”:
fraction of the form width 0:1 “type”: type of rating e.g., ‘radio’, ‘rating’, ‘slider’ “re-
sponseWidth”: fraction of the form width 0:1, “options”: list of tick labels for options,
“layout”: Response object layout e.g., ‘horiz’ or ‘vert’

10.4. psychopy.visual - many visual stimuli 217

PsychoPy - Psychology software for Python, Release 2023.2.3

• textHeight (float) – Text height.

• size (tuple, list) – Size of form on screen.

• pos (tuple, list) – Position of form on screen.

• itemPadding (float) – Space or padding between form items.

• units (str) – units for stimuli - Currently, Form class only operates with ‘height’ units.

• randomize (bool) – Randomize order of Form elements

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

_calcPosRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix.

_calcSizeRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix

_createItemCtrls()

Define layout of form

_drawCtrls()

Draw elements on form within border range.

Parameters
items (List) – List of TextStim or Slider item from survey

_drawDecorations()

Draw decorations on form.

_drawExternalDecorations()

Draw decorations outside the aperture

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_getItemHeight(item, ctrl=None)
Returns the full height of the item to be inserted in the form

_getItemRenderedWidth(size)
Returns text width for item text based on itemWidth and Form width.

Parameters
size (float, int) – The question width

Returns
Wrap width for question text

Return type
float

_getPolyAsRendered()

DEPRECATED. Return a list of vertices as rendered.

10.4. psychopy.visual - many visual stimuli 218

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

_getScrollOffset()

Calculate offset position of items in relation to markerPos. Offset is a proportion of vheight - height,
meaning the max offset (when scrollbar.markerPos is 1) is enough to take the bottom element to the bottom
of the border.

Returns
Offset position of items proportionate to scroll bar

Return type
float

_inRange(item)

Check whether item position falls within border area

Parameters
item (TextStim, Slider object) – TextStim or Slider item from survey

Returns
Returns True if item position falls within border area

Return type
bool

_layoutY()

This needs to be done when editable textboxes change their size because everything below them needs to
move too

_makeSlider(item)

Creates Slider object for Form class

Parameters
• item (dict) – The dict entry for a single item

• pos (tuple) – position of response object

Returns
• psychopy.visual.slider.Slider – The Slider object for response

• respHeight – The height of the response object as type float

_makeTextBox(item)

Creates TextBox object for Form class

NOTE: The TextBox 2 in work in progress, and has not been added to Form class yet. :param item: The
dict entry for a single item :type item: dict :param pos: position of response object :type pos: tuple

Returns
• psychopy.visual.TextBox – The TextBox object for response

• respHeight – The height of the response object as type float

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_set(attrib, val, op='', log=None)
DEPRECATED since 1.80.04 + 1. Use setAttribute() and val2array() instead.

10.4. psychopy.visual - many visual stimuli 219

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

_setAperture()

Blocks text beyond border using Aperture

Returns
The aperture setting viewable area for forms

Return type
psychopy.visual.Aperture

_setBorder()

Creates border using Rect

Returns
The border for the survey

Return type
psychopy.visual.Rect

_setDecorations()

Sets Form decorations i.e., Border and scrollbar

_setQuestion(item)

Creates TextStim object containing question

Parameters
item (dict) – The dict entry for a single item

Returns
• psychopy.visual.text.TextStim – The textstim object with the question string

• questionHeight – The height of the question bounding box as type float

• questionWidth – The width of the question bounding box as type float

_setResponse(item)

Makes calls to methods which make Slider or TextBox response objects for Form

Parameters
• item (dict) – The dict entry for a single item

• question (TextStim) – The question text object

Returns
• psychopy.visual.slider.Slider – The Slider object for response

• psychopy.visual.TextBox – The TextBox object for response

• respHeight – The height of the response object as type float

_setScrollBar()

Creates Slider object for scrollbar

Returns
The Slider object for scroll bar

Return type
psychopy.visual.slider.Slider

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

10.4. psychopy.visual - many visual stimuli 220

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

addDataToExp(exp, itemsAs='rows')
Gets the current Form data and inserts into an ExperimentHandler object either as rows or as columns

Parameters
• exp (ExperimentHandler) –

• itemsAs ('rows','cols' (or 'columns')) –

property anchor

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property backgroundColor

Alternative way of setting fillColor

property borderColor

Color of the line around the form

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

borderWidth

property color

Alternative way of setting foreColor.

10.4. psychopy.visual - many visual stimuli 221

PsychoPy - Psychology software for Python, Release 2023.2.3

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

property complete

A read-only property to determine if the current form is complete

contains(x, y=None, units=None)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast

(continues on next page)

10.4. psychopy.visual - many visual stimuli 222

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

depth

DEPRECATED, depth is now controlled simply by drawing order.

draw()

Draw all form elements

property fillColor

Color of the form’s background

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property flipHoriz

property flipVert

property fontColor

Alternative way of setting foreColor.

property foreColor

Sets both itemColor and responseColor to the same value

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

formComplete()

Deprecated in version 2020.2. Please use the Form.complete property

getData()

Extracts form questions, response ratings and response times from Form items

10.4. psychopy.visual - many visual stimuli 223

PsychoPy - Psychology software for Python, Release 2023.2.3

Returns
A copy of the data as a list of dicts

Return type
list

property height

importItems(items)
Import items from csv or excel sheet and convert to list of dicts. Will also accept a list of dicts.

Note, for csv and excel files, ‘options’ must contain comma separated values, e.g., one, two, three. No
parenthesis, or quotation marks required.

Parameters
items (Excel or CSV file, list of dicts) – Items used to populate the Form

Returns
A list of dicts, where each list entry is a dict containing all fields for a single Form item

Return type
List of dicts

property itemColor

Color of the text on form items

knownStyles = {'dark': {'borderColor': None, 'fillColor': [-0.19, -0.19, -0.14],
'font': 'Open Sans', 'itemColor': 'white', 'markerColor': [0.89, -0.35, -0.28],
'responseColor': 'white'}, 'light': {'borderColor': None, 'fillColor': [0.89,
0.89, 0.89], 'font': 'Open Sans', 'itemColor': 'black', 'markerColor': [0.89,
-0.35, -0.28], 'responseColor': 'black'}}

property lineColor

Alternative way of setting borderColor.

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

lineWidth

property markerColor

Color of the marker on any sliders in this form

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

property opacity

Determines how visible the stimulus is relative to background.

The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent). Operations are supported.
Precisely how this is used depends on the Blend Mode.

10.4. psychopy.visual - many visual stimuli 224

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PsychoPy - Psychology software for Python, Release 2023.2.3

ori

The orientation of the stimulus (in degrees).

Should be a single value (scalar). Operations are supported.

Orientation convention is like a clock: 0 is vertical, and positive values rotate clockwise. Beyond 360 and
below zero values wrap appropriately.

overlaps(polygon)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

See coder demo, shapeContains.py

property pos

The position of the center of the stimulus in the stimulus units

value should be an x,y-pair. Operations are also supported.

Example:

stim.pos = (0.5, 0) # Set slightly to the right of center
stim.pos += (0.5, -1) # Increment pos rightwards and upwards.

Is now (1.0, -1.0)
stim.pos *= 0.2 # Move stim towards the center.

Is now (0.2, -0.2)

Tip: If you need the position of stim in pixels, you can obtain it like this:

from psychopy.tools.monitorunittools import posToPix
posPix = posToPix(stim)

reset()

Clear all responses and set all items to their initial values.

property responseColor

Color of the lines and text on form responses

property scrollbarWidth

Width of the scrollbar for this Form, in the spatial units of this Form. Can also be set as a layout.Vector
object.

setAnchor(value, log=None)

setAutoDraw(value, log=None)
Sets autoDraw for Form and any responseCtrl contained within

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setBackColor(color, colorSpace=None, operation='', log=None)

10.4. psychopy.visual - many visual stimuli 225

PsychoPy - Psychology software for Python, Release 2023.2.3

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setBackgroundColor(color, colorSpace=None, operation='', log=None)

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setBorderWidth(newWidth, operation='', log=None)

setColor(color, colorSpace=None, operation='', log=None)

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setDepth(newDepth, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setFontColor(color, colorSpace=None, operation='', log=None)

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setLineColor(color, colorSpace=None, operation='', log=None)

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setLineWidth(newWidth, operation='', log=None)

setOpacity(newOpacity, operation='', log=None)
Hard setter for opacity, allows the suppression of log messages and calls the update method

setOri(newOri, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

10.4. psychopy.visual - many visual stimuli 226

PsychoPy - Psychology software for Python, Release 2023.2.3

setPos(newPos, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setScrollSpeed(items, multiplier=2)
Set scroll speed of Form. Higher multiplier gives smoother, but slower scroll.

Parameters
• items (list of dicts) – Items used to populate the form

• multiplier (int (default=2)) – Number used to calculate scroll speed

Returns
Scroll speed, calculated using N items by multiplier

Return type
int

setSize(newSize, operation='', units=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

property size

The size (width, height) of the stimulus in the stimulus units

Value should be x,y-pair, scalar (applies to both dimensions) or None (resets to default). Operations are
supported.

Sizes can be negative (causing a mirror-image reversal) and can extend beyond the window.

Example:

stim.size = 0.8 # Set size to (xsize, ysize) = (0.8, 0.8)
print(stim.size) # Outputs array([0.8, 0.8])
stim.size += (0.5, -0.5) # make wider and flatter: (1.3, 0.3)

Tip: if you can see the actual pixel range this corresponds to by looking at stim._sizeRendered

property style

property units

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

updateOpacity()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox.

property values

property vertices

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

10.4. psychopy.visual - many visual stimuli 227

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

property width

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.10 GratingStim

10.4. psychopy.visual - many visual stimuli 228

PsychoPy - Psychology software for Python, Release 2023.2.3

Attributes

GratingStim(win[, tex, mask, units, anchor, ...]) Stimulus object for drawing arbitrary bitmaps that can
repeat (cycle) in either dimension.

GratingStim.win The Window object in which the stimulus will be ren-
dered by default.

GratingStim.tex Texture to used on the stimulus as a grating (aka carrier).
GratingStim.mask The alpha mask (forming the shape of the image).
GratingStim.units

GratingStim.sf Spatial frequency of the grating texture.
GratingStim.pos The position of the center of the stimulus in the stimulus

units
GratingStim.ori The orientation of the stimulus (in degrees).
GratingStim.size The size (width, height) of the stimulus in the stimulus

units
GratingStim.contrast A value that is simply multiplied by the color.
GratingStim.color Alternative way of setting foreColor.
GratingStim.colorSpace The name of the color space currently being used
GratingStim.opacity Determines how visible the stimulus is relative to back-

ground.
GratingStim.interpolate Whether to interpolate (linearly) the texture in the stim-

ulus.
GratingStim.texRes Power-of-two int.
GratingStim.name The name (str) of the object to be using during logged

messages about this stim.
GratingStim.autoLog Whether every change in this stimulus should be auto

logged.
GratingStim.draw([win]) Draw the stimulus in its relevant window.
GratingStim.autoDraw Determines whether the stimulus should be automati-

cally drawn on every frame flip.

Details

class psychopy.visual.GratingStim(win, tex='sin', mask='none', units=None, anchor='center', pos=(0.0,
0.0), size=None, sf=None, ori=0.0, phase=(0.0, 0.0), texRes=128,
rgb=None, dkl=None, lms=None, color=(1.0, 1.0, 1.0),
colorSpace='rgb', contrast=1.0, opacity=None, depth=0,
rgbPedestal=(0.0, 0.0, 0.0), interpolate=False, draggable=False,
blendmode='avg', name=None, autoLog=None, autoDraw=False,
maskParams=None)

Stimulus object for drawing arbitrary bitmaps that can repeat (cycle) in either dimension.

One of the main stimuli for PsychoPy.

Formally GratingStim is just a texture behind an optional transparency mask (an ‘alpha mask’). Both the texture
and mask can be arbitrary bitmaps and their combination allows an enormous variety of stimuli to be drawn in
realtime.

A GratingStim can be rotated scaled and shifted in position, its texture can be drifted in X and/or Y and it can
have a spatial frequency in X and/or Y (for an image file that simply draws multiple copies in the patch).

Also since transparency can be controlled, two GratingStim objects can be combined (e.g. to form a plaid.)

10.4. psychopy.visual - many visual stimuli 229

PsychoPy - Psychology software for Python, Release 2023.2.3

Using GratingStim with images from disk (jpg, tif, png, . . .)
Ideally texture images to be rendered should be square with ‘power-of-2’ dimensions e.g. 16 x 16, 128 x 128.
Any image that is not will be up-scaled (with linear interpolation) to the nearest such texture by PsychoPy. The
size of the stimulus should be specified in the normal way using the appropriate units (deg, pix, cm, . . .). Be sure
to get the aspect ratio the same as the image (if you don’t want it stretched!).

Parameters
• win (Window) – Window this shape is being drawn to. The stimulus instance will allocate its

required resources using that Windows context. In many cases, a stimulus instance cannot be
drawn on different windows unless those windows share the same OpenGL context, which
permits resources to be shared between them.

• tex (str or None) – Texture to use for the primary carrier. Values may be one of ‘sin’,
‘sin’, ‘sqr’, ‘saw’, ‘tri’, or None.

• mask (str or None) – Optional mask to control the shape of the grating. Values may be
one of ‘circle’, ‘sin’, ‘sqr’, ‘saw’, ‘tri’, or None.

• units (str) – Units to use when drawing. This will affect how parameters and attributes
pos, size and radius are interpreted.

• anchor (str) – Anchor string to specify the origin of the stimulus.

• pos (array_like) – Initial position (x, y) of the shape on-screen relative to the origin located
at the center of the window or buffer in units. This can be updated after initialization by
setting the pos property. The default value is (0.0, 0.0) which results in no translation.

• size (array_like, float, int or None) – Width and height of the shape as (w, h) or
[w, h]. If a single value is provided, the width and height will be set to the same specified
value. If None is specified, the size will be set with values passed to width and height.

• sf (float) – Spatial frequency for the grating. Values are dependent on the units in use to
draw the stimuli.

• ori (float) – Initial orientation of the shape in degrees about its origin. Positive values will
rotate the shape clockwise, while negative values will rotate counterclockwise. The default
value for ori is 0.0 degrees.

• phase (ArrayLike) – Initial phase of the grating along the vertical and horizontal dimension
(x, y).

• texRes (int) – Resolution of the texture. The higher the resolutions, the less aliasing ar-
tifacts will be visible. However, this comes at the expense of higher video memory use.
Power-of-two values are recommended (e.g. 256, 512, 1024, etc.)

• color (array_like, str, Color or None) – Sets both the initial lineColor and fillColor of the
shape.

• colorSpace (str) – Sets the colorspace, changing how values passed to lineColor and
fillColor are interpreted.

• contrast (float) – Contrast level of the shape (0.0 to 1.0). This value is used to modulate
the contrast of colors passed to lineColor and fillColor.

• opacity (float) – Opacity of the shape. A value of 1.0 indicates fully opaque and 0.0 is
fully transparent (therefore invisible). Values between 1.0 and 0.0 will result in colors being
blended with objects in the background. This value affects the fill (fillColor) and outline
(lineColor) colors of the shape.

• depth (int) – Depth layer to draw the shape when autoDraw is enabled. DEPRECATED

10.4. psychopy.visual - many visual stimuli 230

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

• rgbPedestal (ArrayLike) – Pedestal color (r, g, b), presently unused.

• interpolate (bool) – Enable smoothing (anti-aliasing) when drawing shape outlines. This
produces a smoother (less-pixelated) outline of the shape.

• draggable (bool) – Can this stimulus be dragged by a mouse click?

• lineRGB (ArrayLike, Color or None) – Deprecated. Please use lineColor and fillColor.
These arguments may be removed in a future version.

• fillRGB (ArrayLike, Color or None) – Deprecated. Please use lineColor and fillColor.
These arguments may be removed in a future version.

• name (str) – Optional name of the stimuli for logging.

• autoLog (bool) – Enable auto-logging of events associated with this stimuli. Useful for
debugging and to track timing when used in conjunction with autoDraw.

• autoDraw (bool) – Enable auto drawing. When True, the stimulus will be drawn every
frame without the need to explicitly call the draw() method.

Examples

Creating a circular grating with a sinusoidal pattern:

myGrat = GratingStim(tex='sin', mask='circle')

Create a ‘Gabor’:

myGabor = GratingStim(tex='sin', mask='gauss')

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

_calcPosRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix.

_calcSizeRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix

_createTexture(tex, id, pixFormat, stim, res=128, maskParams=None, forcePOW2=True, dataType=None,
wrapping=True)

Create a new OpenGL 2D image texture.

Parameters
• tex (Any) – Texture data. Value can be anything that resembles image data.

• id (int or GLint) – Texture ID.

• pixFormat (GLenum or int) – Pixel format to use, values can be GL_ALPHA or GL_RGB.

• stim (Any) – Stimulus object using the texture.

• res (int) – The resolution of the texture (unless a bitmap image is used).

• maskParams (dict or None) – Additional parameters to configure the mask used with
this texture.

10.4. psychopy.visual - many visual stimuli 231

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

• forcePOW2 (bool) – Force the texture to be stored in a square memory area. For grating
stimuli (anything that needs multiple cycles) forcePOW2 should be set to be True. Other-
wise the wrapping of the texture will not work.

• dataType (class:~pyglet.gl.GLenum, int or None) – None, GL_UNSIGNED_BYTE,
GL_FLOAT. Only affects image files (numpy arrays will be float).

• wrapping (bool) – Enable wrapping of the texture. A texture will be set to repeat (or tile).

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_getPolyAsRendered()

DEPRECATED. Return a list of vertices as rendered.

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_set(attrib, val, op='', log=None)
DEPRECATED since 1.80.04 + 1. Use setAttribute() and val2array() instead.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

_updateListShaders()

The user shouldn’t need this method since it gets called after every call to .set() Basically it updates the
OpenGL representation of your stimulus if some parameter of the stimulus changes. Call it if you change
a property manually rather than using the .set() command

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

property anchor

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

10.4. psychopy.visual - many visual stimuli 232

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

property backgroundColor

Alternative way of setting fillColor

blendmode

The OpenGL mode in which the stimulus is draw

Can the ‘avg’ or ‘add’. Average (avg) places the new stimulus over the old one with a transparency given by
its opacity. Opaque stimuli will hide other stimuli transparent stimuli won’t. Add performs the arithmetic
sum of the new stimulus and the ones already present.

property borderColor

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

borderWidth

clearTextures()

Clear all textures associated with the stimulus.

As of v1.61.00 this is called automatically during garbage collection of your stimulus, so doesn’t need
calling explicitly by the user.

property color

Alternative way of setting foreColor.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

contains(x, y=None, units=None)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

10.4. psychopy.visual - many visual stimuli 233

PsychoPy - Psychology software for Python, Release 2023.2.3

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

depth

DEPRECATED, depth is now controlled simply by drawing order.

doDragging()

If this stimulus is draggable, do the necessary actions on a frame flip to drag it.

draggable

Can this stimulus be dragged by a mouse click?

draw(win=None)
Draw the stimulus in its relevant window.

You must call this method after every MyWin.flip() if you want the stimulus to appear on that frame and
then update the screen again.

Parameters
win (~psychopy.visual.Window or None) – Window to draw the stimulus to. Context sharing
must be enabled if any other window beside the one specified during creation of this stimulus
is specified.

10.4. psychopy.visual - many visual stimuli 234

PsychoPy - Psychology software for Python, Release 2023.2.3

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property flipHoriz

property flipVert

property fontColor

Alternative way of setting foreColor.

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':

a blue stimulus using rgb255 space
stim.color = 255 # interpreted as (255, 255, 255)

which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

10.4. psychopy.visual - many visual stimuli 235

PsychoPy - Psychology software for Python, Release 2023.2.3

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

property height

interpolate

Whether to interpolate (linearly) the texture in the stimulus.

If set to False then nearest neighbour will be used when needed, otherwise some form of interpolation will
be used.

isDragging = False

property lineColor

Alternative way of setting borderColor.

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

lineWidth

mask

The alpha mask (forming the shape of the image).

This can be one of various options:
• ‘circle’, ‘gauss’, ‘raisedCos’, ‘cross’

• None (resets to default)

• the name of an image file (most formats supported)

• a numpy array (1xN or NxN) ranging -1:1

10.4. psychopy.visual - many visual stimuli 236

PsychoPy - Psychology software for Python, Release 2023.2.3

maskParams

Various types of input. Default to None.

This is used to pass additional parameters to the mask if those are needed.

• For ‘gauss’ mask, pass dict {‘sd’: 5} to control
standard deviation.

• For the ‘raisedCos’ mask, pass a dict: {‘fringeWidth’:0.2},
where ‘fringeWidth’ is a parameter (float, 0-1), determining the proportion of the patch that will
be blurred by the raised cosine edge.

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

property opacity

Determines how visible the stimulus is relative to background.

The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent). Operations are supported.
Precisely how this is used depends on the Blend Mode.

ori

The orientation of the stimulus (in degrees).

Should be a single value (scalar). Operations are supported.

Orientation convention is like a clock: 0 is vertical, and positive values rotate clockwise. Beyond 360 and
below zero values wrap appropriately.

overlaps(polygon)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

See coder demo, shapeContains.py

phase

Phase of the stimulus in each dimension of the texture.

Should be an x,y-pair or scalar

NB phase has modulus 1 (rather than 360 or 2*pi) This is a little unconventional but has the nice effect that
setting phase=t*n drifts a stimulus at n Hz.

property pos

The position of the center of the stimulus in the stimulus units

value should be an x,y-pair. Operations are also supported.

Example:

10.4. psychopy.visual - many visual stimuli 237

PsychoPy - Psychology software for Python, Release 2023.2.3

stim.pos = (0.5, 0) # Set slightly to the right of center
stim.pos += (0.5, -1) # Increment pos rightwards and upwards.

Is now (1.0, -1.0)
stim.pos *= 0.2 # Move stim towards the center.

Is now (0.2, -0.2)

Tip: If you need the position of stim in pixels, you can obtain it like this:

from psychopy.tools.monitorunittools import posToPix
posPix = posToPix(stim)

setAnchor(value, log=None)

setAutoDraw(value, log=None)
Sets autoDraw. Usually you can use ‘stim.attribute = value’ syntax instead, but use this method to suppress
the log message.

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setBackColor(color, colorSpace=None, operation='', log=None)

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setBackgroundColor(color, colorSpace=None, operation='', log=None)

setBlendmode(value, log=None)
DEPRECATED. Use ‘stim.parameter = value’ syntax instead

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setBorderWidth(newWidth, operation='', log=None)

setColor(color, colorSpace=None, operation='', log=None)

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setDepth(newDepth, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

10.4. psychopy.visual - many visual stimuli 238

PsychoPy - Psychology software for Python, Release 2023.2.3

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setFontColor(color, colorSpace=None, operation='', log=None)

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setLineColor(color, colorSpace=None, operation='', log=None)

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setLineWidth(newWidth, operation='', log=None)

setMask(value, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setOpacity(newOpacity, operation='', log=None)
Hard setter for opacity, allows the suppression of log messages and calls the update method

setOri(newOri, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setPhase(value, operation='', log=None)
DEPRECATED. Use ‘stim.parameter = value’ syntax instead

setPos(newPos, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setSF(value, operation='', log=None)
DEPRECATED. Use ‘stim.parameter = value’ syntax instead

setSize(newSize, operation='', units=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setTex(value, log=None)
DEPRECATED. Use ‘stim.parameter = value’ syntax instead

sf

Spatial frequency of the grating texture.

Should be a x,y-pair or scalar or None. If units == ‘deg’ or ‘cm’ units are in cycles per deg or cm as
appropriate. If units == ‘norm’ then sf units are in cycles per stimulus (and so SF scales with stimulus
size). If texture is an image loaded from a file then sf=None defaults to 1/stimSize to give one cycle of the
image.

10.4. psychopy.visual - many visual stimuli 239

PsychoPy - Psychology software for Python, Release 2023.2.3

property size

The size (width, height) of the stimulus in the stimulus units

Value should be x,y-pair, scalar (applies to both dimensions) or None (resets to default). Operations are
supported.

Sizes can be negative (causing a mirror-image reversal) and can extend beyond the window.

Example:

stim.size = 0.8 # Set size to (xsize, ysize) = (0.8, 0.8)
print(stim.size) # Outputs array([0.8, 0.8])
stim.size += (0.5, -0.5) # make wider and flatter: (1.3, 0.3)

Tip: if you can see the actual pixel range this corresponds to by looking at stim._sizeRendered

tex

Texture to used on the stimulus as a grating (aka carrier).

This can be one of various options:
• ‘sin’,’sqr’, ‘saw’, ‘tri’, None (resets to default)

• the name of an image file (most formats supported)

• a numpy array (1xN or NxN) ranging -1:1

If specifying your own texture using an image or numpy array you should ensure that the image has square
power-of-two dimensions (e.g. 256 x 256). If not then PsychoPy will up-sample your stimulus to the next
larger power of two.

texRes

Power-of-two int. Sets the resolution of the mask and texture. texRes is overridden if an array or image is
provided as mask.

Operations supported.

property units

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

updateOpacity()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox.

property vertices

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

property width

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

10.4. psychopy.visual - many visual stimuli 240

PsychoPy - Psychology software for Python, Release 2023.2.3

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.11 Helper functions

psychopy.visual.helpers.pointInPolygon(x, y, poly)
Determine if a point is inside a polygon; returns True if inside.

(x, y) is the point to test. poly is a list of 3 or more vertices as (x,y) pairs. If given an object, such as a ShapeStim,
will try to use its vertices and position as the polygon.

Same as the .contains() method elsewhere.

psychopy.visual.helpers.polygonsOverlap(poly1, poly2)
Determine if two polygons intersect; can fail for very pointy polygons.

Accepts two polygons, as lists of vertices (x,y) pairs. If given an object with with (vertices + pos), will try to use
that as the polygon.

Checks if any vertex of one polygon is inside the other polygon. Same as the .overlaps() method elsewhere.

Notes
We implement special handling for the Line stimulus as it is not a proper polygon. We do not check for class
instances because this would require importing of visual.Line, creating a circular import. Instead, we assume
that a “polygon” with only two vertices is meant to specify a line. Pixels between the endpoints get interpolated
before testing for overlap.

psychopy.visual.helpers.groupFlipVert(flipList, yReflect=0)
Reverses the vertical mirroring of all items in list flipList.

Reverses the .flipVert status, vertical (y) positions, and angular rotation (.ori). Flipping preserves the relations
among the group’s visual elements. The parameter yReflect is the y-value of an imaginary horizontal line
around which to reflect the items; default = 0 (screen center).

Typical usage is to call once prior to any display; call again to un-flip. Can be called with a list of all stim to be
presented in a given routine.

Will flip a) all psychopy.visual.xyzStim that have a setFlipVert method, b) the y values of .vertices, and c) items
in n x 2 lists that are mutable (i.e., list, np.array, no tuples): [[x1, y1], [x2, y2], . . .]

10.4. psychopy.visual - many visual stimuli 241

PsychoPy - Psychology software for Python, Release 2023.2.3

10.4.12 ImageStim

As of version 1.79.00 some of the properties for this stimulus can be set using the syntax:

stim.pos = newPos

others need to be set with the older syntax:

stim.setImage(newImage)

Attributes

ImageStim(win[, image, mask, units, pos, ...]) Display an image on a psychopy.visual.Window
ImageStim.win The Window object in which the stimulus will be ren-

dered by default.
ImageStim.setImage(value[, log]) Usually you can use 'stim.attribute = value' syntax in-

stead, but use this method if you need to suppress the
log message.

ImageStim.setMask(value[, log]) Usually you can use 'stim.attribute = value' syntax in-
stead, but use this method if you need to suppress the
log message.

ImageStim.units

ImageStim.pos The position of the center of the stimulus in the stimulus
units

ImageStim.ori The orientation of the stimulus (in degrees).
ImageStim.size The size (width, height) of the stimulus in the stimulus

units
ImageStim.contrast A value that is simply multiplied by the color.
ImageStim.color Alternative way of setting foreColor.
ImageStim.colorSpace The name of the color space currently being used
ImageStim.opacity Determines how visible the stimulus is relative to back-

ground.
ImageStim.interpolate Whether to interpolate (linearly) the texture in the stim-

ulus.
ImageStim.contains(x[, y, units]) Returns True if a point x,y is inside the stimulus' border.
ImageStim.overlaps(polygon) Returns True if this stimulus intersects another one.
ImageStim.name The name (str) of the object to be using during logged

messages about this stim.
ImageStim.autoLog Whether every change in this stimulus should be auto

logged.
ImageStim.draw([win]) Draw.
ImageStim.autoDraw Determines whether the stimulus should be automati-

cally drawn on every frame flip.
ImageStim.clearTextures() Clear all textures associated with the stimulus.

10.4. psychopy.visual - many visual stimuli 242

PsychoPy - Psychology software for Python, Release 2023.2.3

Details

class psychopy.visual.ImageStim(win, image=None, mask=None, units='', pos=(0.0, 0.0), size=None,
anchor='center', ori=0.0, color=(1.0, 1.0, 1.0), colorSpace='rgb',
contrast=1.0, opacity=None, depth=0, interpolate=False,
draggable=False, flipHoriz=False, flipVert=False, texRes=128,
name=None, autoLog=None, maskParams=None)

Display an image on a psychopy.visual.Window

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

_calcPosRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix.

_calcSizeRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix

_createTexture(tex, id, pixFormat, stim, res=128, maskParams=None, forcePOW2=True, dataType=None,
wrapping=True)

Create a new OpenGL 2D image texture.

Parameters
• tex (Any) – Texture data. Value can be anything that resembles image data.

• id (int or GLint) – Texture ID.

• pixFormat (GLenum or int) – Pixel format to use, values can be GL_ALPHA or GL_RGB.

• stim (Any) – Stimulus object using the texture.

• res (int) – The resolution of the texture (unless a bitmap image is used).

• maskParams (dict or None) – Additional parameters to configure the mask used with
this texture.

• forcePOW2 (bool) – Force the texture to be stored in a square memory area. For grating
stimuli (anything that needs multiple cycles) forcePOW2 should be set to be True. Other-
wise the wrapping of the texture will not work.

• dataType (class:~pyglet.gl.GLenum, int or None) – None, GL_UNSIGNED_BYTE,
GL_FLOAT. Only affects image files (numpy arrays will be float).

• wrapping (bool) – Enable wrapping of the texture. A texture will be set to repeat (or tile).

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_getPolyAsRendered()

DEPRECATED. Return a list of vertices as rendered.

_movieFrameToTexture(movieSrc)
Convert a movie frame to a texture and use it.

This method is used internally to copy pixel data from a camera object into a texture. This enables the
ImageStim to be used as a ‘viewfinder’ of sorts for the camera to view a live video stream on a window.

10.4. psychopy.visual - many visual stimuli 243

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
movieSrc (~psychopy.hardware.camera.Camera) – Movie source object.

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_set(attrib, val, op='', log=None)
DEPRECATED since 1.80.04 + 1. Use setAttribute() and val2array() instead.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

_updateListShaders()

The user shouldn’t need this method since it gets called after every call to .set() Basically it updates the
OpenGL representation of your stimulus if some parameter of the stimulus changes. Call it if you change
a property manually rather than using the .set() command

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

property anchor

property aspectRatio

Aspect ratio of original image, before taking into account the .size attribute of this object.

returns :
Aspect ratio as a (w, h) tuple, simplified using the smallest common denominator (e.g. 1080x720
pixels becomes (3, 2))

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property backgroundColor

Alternative way of setting fillColor

property borderColor

10.4. psychopy.visual - many visual stimuli 244

PsychoPy - Psychology software for Python, Release 2023.2.3

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

borderWidth

clearTextures()

Clear all textures associated with the stimulus.

As of v1.61.00 this is called automatically during garbage collection of your stimulus, so doesn’t need
calling explicitly by the user.

property color

Alternative way of setting foreColor.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

contains(x, y=None, units=None)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

10.4. psychopy.visual - many visual stimuli 245

PsychoPy - Psychology software for Python, Release 2023.2.3

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

depth

DEPRECATED, depth is now controlled simply by drawing order.

doDragging()

If this stimulus is draggable, do the necessary actions on a frame flip to drag it.

draggable

Can this stimulus be dragged by a mouse click?

draw(win=None)
Draw.

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property flipHoriz

property flipVert

10.4. psychopy.visual - many visual stimuli 246

PsychoPy - Psychology software for Python, Release 2023.2.3

property fontColor

Alternative way of setting foreColor.

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':

a blue stimulus using rgb255 space
stim.color = 255 # interpreted as (255, 255, 255)

which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

10.4. psychopy.visual - many visual stimuli 247

PsychoPy - Psychology software for Python, Release 2023.2.3

Type
DEPRECATED

property height

image

The image file to be presented (most formats supported).

This can be a path-like object to an image file, or a numpy array of shape [H, W, C] where C are channels.
The third dim will usually have length 1 (defining an intensity-only image), 3 (defining an RGB image) or
4 (defining an RGBA image).

If passing a numpy array to the image attribute, the size attribute of ImageStim must be set explicitly.

interpolate

Whether to interpolate (linearly) the texture in the stimulus.

If set to False then nearest neighbour will be used when needed, otherwise some form of interpolation will
be used.

isDragging = False

property lineColor

Alternative way of setting borderColor.

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

lineWidth

mask

The alpha mask that can be used to control the outer shape of the stimulus

• None, ‘circle’, ‘gauss’, ‘raisedCos’

• or the name of an image file (most formats supported)

• or a numpy array (1xN or NxN) ranging -1:1

maskParams

Various types of input. Default to None.

This is used to pass additional parameters to the mask if those are needed.

• For ‘gauss’ mask, pass dict {‘sd’: 5} to control
standard deviation.

• For the ‘raisedCos’ mask, pass a dict: {‘fringeWidth’:0.2},
where ‘fringeWidth’ is a parameter (float, 0-1), determining the proportion of the patch that will
be blurred by the raised cosine edge.

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

10.4. psychopy.visual - many visual stimuli 248

PsychoPy - Psychology software for Python, Release 2023.2.3

property opacity

Determines how visible the stimulus is relative to background.

The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent). Operations are supported.
Precisely how this is used depends on the Blend Mode.

ori

The orientation of the stimulus (in degrees).

Should be a single value (scalar). Operations are supported.

Orientation convention is like a clock: 0 is vertical, and positive values rotate clockwise. Beyond 360 and
below zero values wrap appropriately.

overlaps(polygon)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

See coder demo, shapeContains.py

property pos

The position of the center of the stimulus in the stimulus units

value should be an x,y-pair. Operations are also supported.

Example:

stim.pos = (0.5, 0) # Set slightly to the right of center
stim.pos += (0.5, -1) # Increment pos rightwards and upwards.

Is now (1.0, -1.0)
stim.pos *= 0.2 # Move stim towards the center.

Is now (0.2, -0.2)

Tip: If you need the position of stim in pixels, you can obtain it like this:

from psychopy.tools.monitorunittools import posToPix
posPix = posToPix(stim)

setAnchor(value, log=None)

setAutoDraw(value, log=None)
Sets autoDraw. Usually you can use ‘stim.attribute = value’ syntax instead, but use this method to suppress
the log message.

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setBackColor(color, colorSpace=None, operation='', log=None)

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

10.4. psychopy.visual - many visual stimuli 249

PsychoPy - Psychology software for Python, Release 2023.2.3

setBackgroundColor(color, colorSpace=None, operation='', log=None)

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setBorderWidth(newWidth, operation='', log=None)

setColor(color, colorSpace=None, operation='', log=None)

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setDepth(newDepth, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setFontColor(color, colorSpace=None, operation='', log=None)

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setImage(value, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setLineColor(color, colorSpace=None, operation='', log=None)

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setLineWidth(newWidth, operation='', log=None)

setMask(value, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

10.4. psychopy.visual - many visual stimuli 250

PsychoPy - Psychology software for Python, Release 2023.2.3

setOpacity(newOpacity, operation='', log=None)
Hard setter for opacity, allows the suppression of log messages and calls the update method

setOri(newOri, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setPos(newPos, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setSize(newSize, operation='', units=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

property size

The size (width, height) of the stimulus in the stimulus units

Value should be x,y-pair, scalar (applies to both dimensions) or None (resets to default). Operations are
supported.

Sizes can be negative (causing a mirror-image reversal) and can extend beyond the window.

Example:

stim.size = 0.8 # Set size to (xsize, ysize) = (0.8, 0.8)
print(stim.size) # Outputs array([0.8, 0.8])
stim.size += (0.5, -0.5) # make wider and flatter: (1.3, 0.3)

Tip: if you can see the actual pixel range this corresponds to by looking at stim._sizeRendered

texRes

Power-of-two int. Sets the resolution of the mask and texture. texRes is overridden if an array or image is
provided as mask.

Operations supported.

property units

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

updateOpacity()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox.

property vertices

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

property width

10.4. psychopy.visual - many visual stimuli 251

PsychoPy - Psychology software for Python, Release 2023.2.3

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.13 LightSource

Attributes

LightSource(win[, pos, diffuseColor, ...]) Class for representing a light source in a scene.

Details

class psychopy.visual.LightSource(win, pos=(0.0, 0.0, 0.0), diffuseColor=(1.0, 1.0, 1.0),
specularColor=(1.0, 1.0, 1.0), ambientColor=(0.0, 0.0, 0.0),
colorSpace='rgb', contrast=1.0, lightType='point', attenuation=(1, 0,
0))

Class for representing a light source in a scene.

Only point and directional lighting is supported by this object for now. The ambient color of the light source
contributes to the scene ambient color defined by ambientLight.

Warning: This class is experimental and may result in undefined behavior.

Parameters
• win (~psychopy.visual.Window) – Window associated with this light source.

• pos (array_like) – Position of the light source (x, y, z, w). If w=1.0 the light will be a
point source and x, y, and z is the position in the scene. If w=0.0, the light source will be
directional and x, y, and z will define the vector pointing to the direction the light source is
coming from. For instance, a vector of (0, 1, 0, 0) will indicate that a light source is coming
from above.

• diffuseColor (array_like) – Diffuse light color.

10.4. psychopy.visual - many visual stimuli 252

PsychoPy - Psychology software for Python, Release 2023.2.3

• specularColor (array_like) – Specular light color.

• ambientColor (array_like) – Ambient light color.

• colorSpace (str or None) – Colorspace for diffuse, specular, and ambient color compo-
nents.

• contrast (float) – Contrast of the lighting color components. This acts as a ‘gain’ factor
which scales color values. Must be between 0.0 and 1.0.

• attenuation (array_like) – Values for the constant, linear, and quadratic terms of the
lighting attenuation formula. Default is (1, 0, 0) which results in no attenuation.

property ambientColor

Ambient color of the light source (psychopy.color.Color, ArrayLike or None).

The ambient color component is used to simulate indirect lighting caused by the light source. For instance,
light bouncing off adjacent surfaces or atmospheric scattering if the light source is a sun. This is independent
of the global ambient color.

property ambientRGB

Ambient RGB1 color of the material. This value is passed to OpenGL.

property attenuation

Values for the constant, linear, and quadratic terms of the lighting attenuation formula.

property colorSpace

The name of the color space currently being used (str or None).

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus, you usually want to
specify colorSpace before setting the color.

property contrast

A value that is simply multiplied by the color (float).

This may be used to adjust the gain of the light source. This is applied to all lighting color components.

Examples

Basic usage:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

property diffuseColor

Diffuse color for the light source (psychopy.color.Color, ArrayLike or None).

10.4. psychopy.visual - many visual stimuli 253

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

property diffuseRGB

Diffuse RGB1 color of the material. This value is passed to OpenGL.

property lightType

Type of light source, can be ‘point’ or ‘directional’.

property pos

Position of the light source in the scene in scene units.

setAmbientColor(color, colorSpace=None, operation='', log=None)
Set the ambient color for the light source.

Use this function if you wish to supress logging or apply operations on the color component.

Parameters
• color (ArrayLike or ~psychopy.colors.Color) – Color to set as the ambient component of

the light source.

• colorSpace (str or None) – Colorspace to use. This is only used to set the color, the
value of ambientColor after setting uses the color space of the object.

• operation (str) – Operation string.

• log (bool or None) – Enable logging.

setDiffuseColor(color, colorSpace=None, operation='', log=None)
Set the diffuse color for the light source. Use this function if you wish to supress logging or apply operations
on the color component.

Parameters
• color (ArrayLike or ~psychopy.colors.Color) – Color to set as the diffuse component of

the light source.

• colorSpace (str or None) – Colorspace to use. This is only used to set the color, the
value of diffuseColor after setting uses the color space of the object.

• operation (str) – Operation string.

• log (bool or None) – Enable logging.

setSpecularColor(color, colorSpace=None, operation='', log=None)
Set the diffuse color for the light source. Use this function if you wish to supress logging or apply operations
on the color component.

Parameters
• color (ArrayLike or ~psychopy.colors.Color) – Color to set as the specular component of

the light source.

• colorSpace (str or None) – Colorspace to use. This is only used to set the color, the
value of diffuseColor after setting uses the color space of the object.

• operation (str) – Operation string.

• log (bool or None) – Enable logging.

property specularColor

Specular color of the light source (psychopy.color.Color, ArrayLike or None).

property specularRGB

Specular RGB1 color of the material. This value is passed to OpenGL.

10.4. psychopy.visual - many visual stimuli 254

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

10.4.14 psychopy.visual.Line

Stimulus class for drawing lines.

Overview

Line(win[, start, end, units, lineWidth, ...]) Creates a Line between two points.
Line.start tuple, list or 2x1 array.
Line.end tuple, list or 2x1 array
Line.units

Line.lineWidth Width of the line in pixels.
Line.lineColor Alternative way of setting borderColor.
Line.lineColorSpace Deprecated, please use colorSpace to set color space for

the entire object
Line.fillColor Set the fill color for the shape.
Line.fillColorSpace Deprecated, please use colorSpace to set color space for

the entire object.
Line.pos The position of the center of the stimulus in the stimulus

units
Line.size The size (width, height) of the stimulus in the stimulus

units
Line.ori The orientation of the stimulus (in degrees).
Line.opacity Determines how visible the stimulus is relative to back-

ground.
Line.contrast A value that is simply multiplied by the color.
Line.depth DEPRECATED, depth is now controlled simply by

drawing order.
Line.interpolate If True the edge of the line will be anti-aliased.
Line.lineRGB Legacy property for setting the border color of a stimulus

in RGB, instead use obj._borderColor.rgb
Line.fillRGB Legacy property for setting the fill color of a stimulus in

RGB, instead use obj._fillColor.rgb
Line.name The name (str) of the object to be using during logged

messages about this stim.
Line.autoLog Whether every change in this stimulus should be auto

logged.
Line.autoDraw Determines whether the stimulus should be automati-

cally drawn on every frame flip.
Line.color Set the color of the shape.
Line.colorSpace The name of the color space currently being used

10.4. psychopy.visual - many visual stimuli 255

PsychoPy - Psychology software for Python, Release 2023.2.3

Details

class psychopy.visual.line.Line(win, start=(-0.5, -0.5), end=(0.5, 0.5), units=None, lineWidth=1.5,
lineColor=False, colorSpace='rgb', pos=(0, 0), size=1.0, anchor='center',
ori=0.0, opacity=None, contrast=1.0, depth=0, interpolate=True,
draggable=False, name=None, autoLog=None, autoDraw=False,
color=False, fillColor=False, lineColorSpace=None, lineRGB=False,
fillRGB=False)

Creates a Line between two points.

Line accepts all input parameters, that ShapeStim accepts, except for vertices, closeShape and fillColor.

(New in version 1.72.00)

Parameters
• win (Window) – Window this line is being drawn to. The stimulus instance will allocate its

required resources using that Windows context. In many cases, a stimulus instance cannot be
drawn on different windows unless those windows share the same OpenGL context, which
permits resources to be shared between them.

• start (array_like) – Coordinate (x, y) of the starting point of the line.

• end (array_like) – Coordinate (x, y) of the end-point of the line.

• units (str) – Units to use when drawing. This will affect how parameters and attributes
pos, size and radius are interpreted.

• lineWidth (float) – Width of the line.

• lineColor (array_like, str, Color or None) – Color of the line. If None, a fully transparent
color is used which makes the line invisible. Deprecated use color instead.

• lineColorSpace (str or None) – Colorspace to use for the line. These change how the
values passed to lineColor are interpreted. Deprecated. Please use colorSpace to set the line
colorspace. This arguments may be removed in a future version.

• pos (array_like) – Initial translation (x, y) of the line on-screen relative to the origin
located at the center of the window or buffer in units. This can be updated after initialization
by setting the pos property. The default value is (0.0, 0.0) which results in no translation.

• size (float or array_like) – Initial scale factor for adjusting the size of the line. A
single value (float) will apply uniform scaling, while an array (sx, sy) will result in anisotropic
scaling in the horizontal (sx) and vertical (sy) direction. Providing negative values to size
will cause the line to be mirrored. Scaling can be changed by setting the size property after
initialization. The default value is 1.0 which results in no scaling.

• ori (float) – Initial orientation of the line in degrees about its origin. Positive values will
rotate the line clockwise, while negative values will rotate counterclockwise. The default
value for ori is 0.0 degrees.

• opacity (float) – Opacity of the line. A value of 1.0 indicates fully opaque and 0.0 is
fully transparent (therefore invisible). Values between 1.0 and 0.0 will result in colors being
blended with objects in the background. This value affects the fill (fillColor) and outline
(lineColor) colors of the shape.

• contrast (float) – Contrast level of the line (0.0 to 1.0). This value is used to modulate
the contrast of colors passed to lineColor and fillColor.

• depth (int) – Depth layer to draw the stimulus when autoDraw is enabled.

10.4. psychopy.visual - many visual stimuli 256

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

• interpolate (bool) – Enable smoothing (anti-aliasing) when drawing lines. This produces
a smoother (less-pixelated) line.

• draggable (bool) – Can this stimulus be dragged by a mouse click?

• lineRGB (array_like, Color or None) – Deprecated. Please use color instead. This argu-
ment may be removed in a future version.

• name (str) – Optional name of the stimuli for logging.

• autoLog (bool) – Enable auto-logging of events associated with this stimuli. Useful for
debugging and to track timing when used in conjunction with autoDraw.

• autoDraw (bool) – Enable auto drawing. When True, the stimulus will be drawn every
frame without the need to explicitly call the draw() method.

• color (array_like, str, Color or None) – Sets both the initial lineColor and fillColor of the
shape.

• colorSpace (str) – Sets the colorspace, changing how values passed to lineColor and
fillColor are interpreted.

Notes

The contains method always return False because a line is not a proper (2D) polygon.

start, end

Coordinates (x, y) for the start- and end-point of the line.

Type
array_like

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

static _calcEquilateralVertices(edges, radius=0.5)
Get vertices for an equilateral shape with a given number of sides, will assume radius is 0.5 (relative) but
can be manually specified

_calcPosRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix.

_calcSizeRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix

static _calculateMinEdges(lineWidth, threshold=180)
Calculate how many points are needed in an equilateral polygon for the gap between line rects to be < 1px
and for corner angles to exceed a threshold.

In other words, how many edges does a polygon need to have to appear smooth?

lineWidth
[int, float, np.ndarray] Width of the line in pixels

threshold
[int] Maximum angle (degrees) for corners of the polygon, useful for drawing a circle. Supply 180 for
no maximum angle.

10.4. psychopy.visual - many visual stimuli 257

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_getPolyAsRendered()

DEPRECATED. Return a list of vertices as rendered.

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_set(attrib, val, op='', log=None)
DEPRECATED since 1.80.04 + 1. Use setAttribute() and val2array() instead.

_tesselate(newVertices)
Set the .vertices and .border to new values, invoking tessellation.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property backgroundColor

Alternative way of setting fillColor

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

10.4. psychopy.visual - many visual stimuli 258

PsychoPy - Psychology software for Python, Release 2023.2.3

closeShape

Should the last vertex be automatically connected to the first?

If you’re using Polygon, Circle or Rect, closeShape=True is assumed and shouldn’t be changed.

property color

Set the color of the shape. Sets both fillColor and lineColor simultaneously if applicable.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

contains(*args, **kwargs)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

10.4. psychopy.visual - many visual stimuli 259

PsychoPy - Psychology software for Python, Release 2023.2.3

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

depth

DEPRECATED, depth is now controlled simply by drawing order.

doDragging()

If this stimulus is draggable, do the necessary actions on a frame flip to drag it.

draggable

Can this stimulus be dragged by a mouse click?

draw(win=None, keepMatrix=False)
Draw the stimulus in the relevant window.

You must call this method after every win.flip() if you want the stimulus to appear on that frame and then
update the screen again.

end

tuple, list or 2x1 array

Specifies the position of the end of the line. Operations supported.

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property fontColor

Alternative way of setting foreColor.

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

10.4. psychopy.visual - many visual stimuli 260

PsychoPy - Psychology software for Python, Release 2023.2.3

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':

a blue stimulus using rgb255 space
stim.color = 255 # interpreted as (255, 255, 255)

which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

interpolate

If True the edge of the line will be anti-aliased.

property lineColor

Alternative way of setting borderColor.

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

10.4. psychopy.visual - many visual stimuli 261

PsychoPy - Psychology software for Python, Release 2023.2.3

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

lineWidth

Width of the line in pixels.
Operations supported.

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

property opacity

Determines how visible the stimulus is relative to background.

The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent). Operations are supported.
Precisely how this is used depends on the Blend Mode.

ori

The orientation of the stimulus (in degrees).

Should be a single value (scalar). Operations are supported.

Orientation convention is like a clock: 0 is vertical, and positive values rotate clockwise. Beyond 360 and
below zero values wrap appropriately.

overlaps(polygon)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

See coder demo, shapeContains.py

property pos

The position of the center of the stimulus in the stimulus units

value should be an x,y-pair. Operations are also supported.

Example:

stim.pos = (0.5, 0) # Set slightly to the right of center
stim.pos += (0.5, -1) # Increment pos rightwards and upwards.

Is now (1.0, -1.0)
stim.pos *= 0.2 # Move stim towards the center.

Is now (0.2, -0.2)

Tip: If you need the position of stim in pixels, you can obtain it like this:

10.4. psychopy.visual - many visual stimuli 262

PsychoPy - Psychology software for Python, Release 2023.2.3

from psychopy.tools.monitorunittools import posToPix
posPix = posToPix(stim)

setAutoDraw(value, log=None)
Sets autoDraw. Usually you can use ‘stim.attribute = value’ syntax instead, but use this method to suppress
the log message.

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setColor(color, colorSpace=None, operation='', log=None)
Sets both the line and fill to be the same color.

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setDepth(newDepth, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setEnd(end, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

10.4. psychopy.visual - many visual stimuli 263

PsychoPy - Psychology software for Python, Release 2023.2.3

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setOpacity(newOpacity, operation='', log=None)
Hard setter for opacity, allows the suppression of log messages and calls the update method

setOri(newOri, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setPos(newPos, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setSize(newSize, operation='', units=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setStart(start, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setVertices(value=None, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

property size

The size (width, height) of the stimulus in the stimulus units

Value should be x,y-pair, scalar (applies to both dimensions) or None (resets to default). Operations are
supported.

Sizes can be negative (causing a mirror-image reversal) and can extend beyond the window.

Example:

stim.size = 0.8 # Set size to (xsize, ysize) = (0.8, 0.8)
print(stim.size) # Outputs array([0.8, 0.8])
stim.size += (0.5, -0.5) # make wider and flatter: (1.3, 0.3)

Tip: if you can see the actual pixel range this corresponds to by looking at stim._sizeRendered

start

tuple, list or 2x1 array.

Specifies the position of the start of the line. Operations supported.

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

updateOpacity()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox.

10.4. psychopy.visual - many visual stimuli 264

PsychoPy - Psychology software for Python, Release 2023.2.3

property vertices

A list of lists or a numpy array (Nx2) specifying xy positions of each vertex, relative to the center of the
field.

Assigning to vertices can be slow if there are many vertices.

Operations supported with .setVertices().

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.15 MovieStim

10.4. psychopy.visual - many visual stimuli 265

PsychoPy - Psychology software for Python, Release 2023.2.3

Attributes

MovieStim(win[, filename, movieLib, units, ...]) Class for presenting movie clips as stimuli.
MovieStim.win The Window object in which the stimulus will be ren-

dered by default.
MovieStim.units

MovieStim.pos The position of the center of the stimulus in the stimulus
units

MovieStim.ori The orientation of the stimulus (in degrees).
MovieStim.size The size (width, height) of the stimulus in the stimulus

units
MovieStim.opacity Determines how visible the stimulus is relative to back-

ground.
MovieStim.name The name (str) of the object to be using during logged

messages about this stim.
MovieStim.autoLog Whether every change in this stimulus should be auto

logged.
MovieStim.draw([win]) Draw the current frame to a particular window.
MovieStim.autoDraw Determines whether the stimulus should be automati-

cally drawn on every frame flip.
MovieStim.loadMovie(filename) Load a movie file from disk.
MovieStim.play([log]) Start or continue a paused movie from current position.
MovieStim.seek(timestamp[, log]) Seek to a particular timestamp in the movie.
MovieStim.pause([log]) Pause the current point in the movie.
MovieStim.stop([log]) Stop the current point in the movie (sound will stop, cur-

rent frame will not advance and remain on-screen).

Details

class psychopy.visual.MovieStim(win, filename='', movieLib='ffpyplayer', units='pix', size=None, pos=(0.0,
0.0), ori=0.0, anchor='center', draggable=False, flipVert=False,
flipHoriz=False, color=(1.0, 1.0, 1.0), colorSpace='rgb', opacity=1.0,
contrast=1, volume=1.0, name='', loop=False, autoLog=True, depth=0.0,
noAudio=False, interpolate=True, autoStart=True)

Class for presenting movie clips as stimuli.

Parameters
• win (Window) – Window the video is being drawn to.

• filename (str) – Name of the file or stream URL to play. If an empty string, no file will
be loaded on initialization but can be set later.

• movieLib (str or None) – Library to use for video decoding. By default, the ‘preferred’
library by PsychoPy developers is used. Default is ‘ffpyplayer’. An alert is raised if you are
not using the preferred player.

• units (str) – Units to use when sizing the video frame on the window, affects how size is
interpreted.

• size (ArrayLike or None) – Size of the video frame on the window in units. If None, the
native size of the video will be used.

• draggable (bool) – Can this stimulus be dragged by a mouse click?

10.4. psychopy.visual - many visual stimuli 266

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

• flipVert (bool) – If True then the movie will be top-bottom flipped.

• flipHoriz (bool) – If True then the movie will be right-left flipped.

• volume (int or float) – If specifying an int the nominal level is 100, and 0 is silence. If
a float, values between 0 and 1 may be used.

• loop (bool) – Whether to start the movie over from the beginning if draw is called and the
movie is done. Default is False.

• autoStart (bool) – Automatically begin playback of the video when flip() is called.

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

_calcPosRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix.

_calcSizeRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix

_drawRectangle()

Draw the video frame to the window.

This is called by the draw() method to blit the video to the display window.

_freeBuffers()

Free texture and pixel buffers. Call this when tearing down this class or if a movie is stopped.

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_getPolyAsRendered()

DEPRECATED. Return a list of vertices as rendered.

_pixelTransfer()

Copy pixel data from video frame to texture.

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_set(attrib, val, op='', log=None)
DEPRECATED since 1.80.04 + 1. Use setAttribute() and val2array() instead.

_setupTextureBuffers()

Setup texture buffers which hold frame data. This creates a 2D RGB texture and pixel buffer. The pixel
buffer serves as the store for texture color data. Each frame, the pixel buffer memory is mapped and frame
data is copied over to the GPU from the decoder.

This is called every time a video file is loaded. The _freeBuffers method is called in this routine prior to
creating new buffers, so it’s safe to call this right after loading a new movie without having to _freeBuffers
first.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

10.4. psychopy.visual - many visual stimuli 267

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

property anchor

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

property autoStart

Start playback when .draw() is called (bool).

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property backgroundColor

Alternative way of setting fillColor

property borderColor

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

borderWidth

property color

Alternative way of setting foreColor.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

10.4. psychopy.visual - many visual stimuli 268

PsychoPy - Psychology software for Python, Release 2023.2.3

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

contains(x, y=None, units=None)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

depth

DEPRECATED, depth is now controlled simply by drawing order.

10.4. psychopy.visual - many visual stimuli 269

PsychoPy - Psychology software for Python, Release 2023.2.3

doDragging()

If this stimulus is draggable, do the necessary actions on a frame flip to drag it.

draggable

Can this stimulus be dragged by a mouse click?

draw(win=None)
Draw the current frame to a particular window.

The current position in the movie will be determined automatically. This method should be called on every
frame that the movie is meant to appear. If .autoStart==True the video will begin playing when this is
called.

Parameters
win (Window or None) – Window the video is being drawn to. If None, the window specified
at initialization will be used instead.

Returns
True if the frame was updated this draw call.

Return type
bool

property duration

Duration of the loaded video in seconds (float). Not valid unless the video has been started.

fastForward(seconds=5, log=True)
Fast-forward the video.

Parameters
• seconds (float) – Time in seconds to fast forward from the current position. Default is

5 seconds.

• log (bool) – Log this event.

property filename

File name for the loaded video (str).

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property flipHoriz

property flipVert

10.4. psychopy.visual - many visual stimuli 270

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

property fontColor

Alternative way of setting foreColor.

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':

a blue stimulus using rgb255 space
stim.color = 255 # interpreted as (255, 255, 255)

which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

10.4. psychopy.visual - many visual stimuli 271

PsychoPy - Psychology software for Python, Release 2023.2.3

Type
DEPRECATED

property fps

Movie frames per second (float).

property frameIndex

Current frame index being displayed (int).

property frameRate

Frame rate of the movie in Hertz (float).

property frameSize

Size of the video (w, h) in pixels (tuple). Alias of videoSize.

property frameTexture

Texture ID for the current video frame (GLuint). You can use this as a video texture. However, you must
periodically call updateVideoFrame to keep this up to date.

getCurrentFrameNumber()

Get the current movie frame number (int), same as frameIndex.

getFPS()

Movie frames per second.

Returns
Nominal number of frames to be displayed per second.

Return type
float

getPercentageComplete()

Provides a value between 0.0 and 100.0, indicating the amount of the movie that has been already played
(float).

property height

isDragging = False

property isFinished

True if the video is finished (bool).

property isNotStarted

True if the video may not have started yet (bool). This status is given after a video is loaded and play has
yet to be called.

property isPaused

True if the video is presently paused (bool).

property isPlaying

True if the video is presently playing (bool).

property isStopped

True if the video is stopped (bool). It will resume from the beginning if play() is called.

property lineColor

Alternative way of setting borderColor.

10.4. psychopy.visual - many visual stimuli 272

https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

lineWidth

load(filename)
Load a movie file from disk (alias of loadMovie).

Parameters
filename (str) – Path to movie file. Must be a format that FFMPEG supports.

loadMovie(filename)
Load a movie file from disk.

Parameters
filename (str) – Path to movie file. Must be a format that FFMPEG supports.

property loopCount

Number of loops completed since playback started (int). Incremented each time the movie begins another
loop.

Examples

Compute how long a looping video has been playing until now:

totalMovieTime = (mov.loopCount + 1) * mov.pts

property muted

True if the stream audio is muted (bool).

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

property opacity

Determines how visible the stimulus is relative to background.

The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent). Operations are supported.
Precisely how this is used depends on the Blend Mode.

ori

The orientation of the stimulus (in degrees).

Should be a single value (scalar). Operations are supported.

Orientation convention is like a clock: 0 is vertical, and positive values rotate clockwise. Beyond 360 and
below zero values wrap appropriately.

property origSize

Alias of videoSize

10.4. psychopy.visual - many visual stimuli 273

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

overlaps(polygon)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

See coder demo, shapeContains.py

pause(log=True)
Pause the current point in the movie. The image of the last frame will persist on-screen until play() or stop()
are called.

Parameters
log (bool) – Log this event.

play(log=True)
Start or continue a paused movie from current position.

Parameters
log (bool) – Log the play event.

property pos

The position of the center of the stimulus in the stimulus units

value should be an x,y-pair. Operations are also supported.

Example:

stim.pos = (0.5, 0) # Set slightly to the right of center
stim.pos += (0.5, -1) # Increment pos rightwards and upwards.

Is now (1.0, -1.0)
stim.pos *= 0.2 # Move stim towards the center.

Is now (0.2, -0.2)

Tip: If you need the position of stim in pixels, you can obtain it like this:

from psychopy.tools.monitorunittools import posToPix
posPix = posToPix(stim)

property pts

Presentation timestamp of the most recent frame (float).

This value corresponds to the time in movie/stream time the frame is scheduled to be presented.

replay(log=True)
Replay the movie from the beginning.

Parameters
log (bool) – Log this event.

10.4. psychopy.visual - many visual stimuli 274

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Notes

• This tears down the current media player instance and creates a new one. Similar to calling stop() and
loadMovie(). Use seek(0.0) if you would like to restart the movie without reloading.

rewind(seconds=5, log=True)
Rewind the video.

Parameters
• seconds (float) – Time in seconds to rewind from the current position. Default is 5

seconds.

• log (bool) – Log this event.

seek(timestamp, log=True)
Seek to a particular timestamp in the movie.

Parameters
• timestamp (float) – Time in seconds.

• log (bool) – Log this event.

setAnchor(value, log=None)

setAutoDraw(value, log=None)
Sets autoDraw. Usually you can use ‘stim.attribute = value’ syntax instead, but use this method to suppress
the log message.

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setBackColor(color, colorSpace=None, operation='', log=None)

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setBackgroundColor(color, colorSpace=None, operation='', log=None)

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setBorderWidth(newWidth, operation='', log=None)

setColor(color, colorSpace=None, operation='', log=None)

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

10.4. psychopy.visual - many visual stimuli 275

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

setDepth(newDepth, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setFontColor(color, colorSpace=None, operation='', log=None)

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setLineColor(color, colorSpace=None, operation='', log=None)

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setLineWidth(newWidth, operation='', log=None)

setMovie(value)

setOpacity(newOpacity, operation='', log=None)
Hard setter for opacity, allows the suppression of log messages and calls the update method

setOri(newOri, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setPos(newPos, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setSize(newSize, operation='', units=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

property size

The size (width, height) of the stimulus in the stimulus units

Value should be x,y-pair, scalar (applies to both dimensions) or None (resets to default). Operations are
supported.

Sizes can be negative (causing a mirror-image reversal) and can extend beyond the window.

Example:

10.4. psychopy.visual - many visual stimuli 276

PsychoPy - Psychology software for Python, Release 2023.2.3

stim.size = 0.8 # Set size to (xsize, ysize) = (0.8, 0.8)
print(stim.size) # Outputs array([0.8, 0.8])
stim.size += (0.5, -0.5) # make wider and flatter: (1.3, 0.3)

Tip: if you can see the actual pixel range this corresponds to by looking at stim._sizeRendered

stop(log=True)
Stop the current point in the movie (sound will stop, current frame will not advance and remain on-screen).
Once stopped the movie can be restarted from the beginning by calling play().

Parameters
log (bool) – Log this event.

toggle(log=True)
Switch between playing and pausing the movie. If the movie is playing, this function will pause it. If the
movie is paused, this function will play it.

Parameters
log (bool) – Log this event.

property units

unload(log=True)
Stop and unload the movie.

Parameters
log (bool) – Log this event.

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

updateOpacity()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox.

updateVideoFrame()

Update the present video frame. The next call to draw() will make the retrieved frame appear.

Returns
If True, the video texture has been updated and the frame index is advanced by one. If False,
the last frame should be kept on-screen.

Return type
bool

property vertices

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

property videoSize

Size of the video (w, h) in pixels (tuple). Returns (0, 0) if no video is loaded.

property volume

Volume for the audio track for this movie (int or float).

10.4. psychopy.visual - many visual stimuli 277

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

volumeDown(amount=0.05)
Decrease the volume by a fixed amount.

Parameters
amount (float or int) – Amount to decrease the volume relative to the current volume.

volumeUp(amount=0.05)
Increase the volume by a fixed amount.

Parameters
amount (float or int) – Amount to increase the volume relative to the current volume.

property width

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.16 NoiseStim

Attributes

Details

class psychopy.visual.NoiseStim(*args, **kwargs)
A stimulus with 2 textures: a radom noise sample and a mask

Example:

noise1 = noise = visual.NoiseStim(
win=win, name='noise',units='pix',
noiseImage='testImg.jpg', mask='circle',
ori=1.0, pos=(0, 0), size=(512, 512), sf=None, phase=0,
color=[1,1,1], colorSpace='rgb', opacity=1, blendmode='add',␣

→˓contrast=1.0,
texRes=512, filter='None', imageComponent='Phase'
noiseType='Gabor', noiseElementSize=4, noiseBaseSf=32.0/512,
noiseBW=1.0, noiseBWO=30, noiseFractalPower=-1,noiseFilterLower=3/

(continues on next page)

10.4. psychopy.visual - many visual stimuli 278

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

→˓512, noiseFilterUpper=8.0/512.0,
noiseFilterOrder=3.0, noiseClip=3.0, filter=False,␣

→˓interpolate=False, depth=-1.0)
gives a circular patch of noise made up of scattered Gabor elements with peak␣
→˓frequency = 32.0/512 cycles per pixel,
orientation = 0 , frequency bandwidth = 1 octave and orientation bandwidth 30␣
→˓degrees

Types of noise available
• Binary, Normal, Uniform - pixel based noise samples drawn from a binary (blank and white), normal

or uniform distribution respectively. Binary noise is always exactly zero mean, Normal and Uniform are
approximately so. Parameters:

– noiseElementSize - (can be a tuple) defines the size of the noise elements in the components units.

– noiseClip the values in normally distributed noise are divided by noiseClip to limit excessively high
or low values. However, values can still go out of range -1 to 1 whih will throw a soft error message
high values of noiseClip are recommended if using ‘Normal’

• Gabor, Isotropic: Effectively a dense scattering of Gabor elements with random amplitude and fixed
orientation for Gabor or random orientation for Isotropic noise. In practice the desired amplitude spectrum
for the noise is built in Fourier space with a random phase spectrum. DC term is set to zero - ie zero mean.
Parameters:

– noiseBaseSf - centre spatial frequency in the component units.

– noiseBW - spatial frequency bandwidth full width half height in octaves.

– ori - center orientation for Gabor noise (works as for gratingStim so twists the final image at render
time).

– noiseBWO - orientation bandwidth for Gabor noise full width half height in degrees.

– noiseOri - alternative center orientation for Gabor which sets the orientation during the image build
rather than at render time. Useful for setting the orientation of a filter to be applied to some other noise
type with a different base orientation.

• Filtered - A white noise sample that has been filtered with a low, high or bandpass Butterworth filter. The
initial sample can have its spectrum skewed towards low or high frequencies. The contrast of the noise falls
by half its maximum (3dB) at the cutoff frequencies. Parameters:

– noiseFilterUpper - upper cutoff frequency - if greater than texRes/2 cycles per image low pass filter
used.

– noiseFilterLower - Lower cutoff frequency - if zero low pass filter used.

– noiseFilterOrder - The order of the filter controls the steepness of the falloff outside the passband is
zero no filter is applied.

– noiseFractalPower - spectrum = f^noiseFractalPower - determines the spatial frequency bias of the
initial noise sample. 0 = flat spectrum, negative = low frequency bias, positive = high frequency bias,
-1 = fractal or brownian noise.

– noiseClip - determines clipping values and rescaling factor such that final rms contrast is close to that
requested by contrast parameter while keeping pixel values in range -1, 1.

• White - A short cut to obtain noise with a flat, unfiltered spectrum. In practice the desired amplitude
spectrum is built in the Fourier Domain with a random phase spectrum. DC term is set to zero - ie zero
mean Note despite name the noise contains all grey levels. Parameters:

10.4. psychopy.visual - many visual stimuli 279

PsychoPy - Psychology software for Python, Release 2023.2.3

– noiseClip - determines clipping values and rescaling factor such that final rms contrast is close to that
requested by contrast parameter while keeping pixel values in range -1, 1.

• Image: A noise sample whose spatial frequency spectrum is taken from the supplied image. In practice the
desired amplitude spectrum is taken from the image and paired with a random phase spectrum. DC term
is set to zero - ie zero mean. Parameters:

– noiseImage name of ndarray or image file from which to take spectrum - should be same size as largest
side requested for component if units is pix or texRes x texRes otherwise

– imageComponent: ‘Phase’ randomizes the phase spectrum leaving the amplitude spectrum untouched.
‘Amplitude’ randomizes the amplitude spectrum leaving the phase spectrum untouched - retains spatial
structure of image. ‘Neither’ keeps the image as is - but you can now apply a spatial filter to the image.

– noiseClip - determines clipping values and rescaling factor such that final rms contrast is close to that
requested by contrast parameter while keeping pixel values in range -1, 1.

Filter parameter
• Butterworth: a spectral filter defined by the filtered noise parameters will be applied to the other noise

types.

• Gabor: a spectral filter defined by the Gabor noise parameters will be applied to the other noise types.

• Isotropic: then a spectral filter defined by the Isotropic noise parameters will be applied to the other noise
types.

Updating noise samples and timing
The noise is rebuilt at next call of the draw function whenever a parameter starting ‘noise’ is notionally changed
even if the value does not actually change every time. eg. setting a parameter to update every frame will cause a
new noise sample on every frame but see below. A rebuild can also be forced at any time using the buildNoise()
function. The updateNoise() function can be used at any time to produce a new random saple of noise without
doing a full build. ie it is quicker than a full build. Both buildNoise and updateNoise can be slow for large
samples. Samples of Binary, Normal or Uniform noise can usually be made at frame rate using noiseUpdate.
Updating or building other noise types at frame rate may result in dropped frames. An alternative is to build a
large sample of noise at the start of the routien and place it off the screen then cut a samples out of this at random
locations and feed that as a numpy array into the texture of a visible gratingStim.

Notes on size If units = pix and noiseType = Binary, Normal or Uniform will make noise sample of requested
size. If units = pix and noiseType is Gabor, Isotropic, Filtered, White, Coloured or Image will make square noise
sample with side length equal that of the largest dimetions requested. if units is not pix will make square noise
sample with side length equal to texRes then rescale to present.

Notes on interpolation For pixel based noise interpolation = nearest is usually best. For other noise types linear
is better if the size of the noise sample does not match the final size of the image well.

Notes on frequency Frequencies for cutoffs etc are converted between units for you but can be counter intuitive.
1/size is always 1 cycle per image. For the sf (final spatial frequency) parameter itself 1/size (or None for units
pix) will faithfully represent the image without further scaling.

Filter cuttoff and Gabor/Isotropic base frequencies should not be too high you should aim to keep them below
0.5 c/pixel on the screen. The function will produce an error when it can’t draw the stimulus in the buffer but it
may still be wrong when displayed.

Notes on orientation and phase The ori parameter twists the final image so the samples in noiseType Binary,
Normal or Uniform will no longer be aligned to the sides of the monitor if ori is not a multiple of 90. Most other
noise types look broadly the same for all values of ori but the specific sample shown can be made to rotate by
changing ori. The dominant orientation for Gabor noise is determined by ori at render time, not before.

The phase parameter similarly shifts the sample around within the display window at render time and will not
choose new random phases for the noise sample.

10.4. psychopy.visual - many visual stimuli 280

PsychoPy - Psychology software for Python, Release 2023.2.3

10.4.17 ObjMeshStim

Attributes

ObjMeshStim(win, objFile[, pos, ori, ...]) Class for loading and presenting 3D stimuli in the Wave-
front OBJ format.

Details

class psychopy.visual.ObjMeshStim(win, objFile, pos=(0, 0, 0), ori=(0, 0, 0, 1), useMaterial=None,
loadMtllib=True, color=(0.0, 0.0, 0.0), colorSpace='rgb', contrast=1.0,
opacity=1.0, name='', autoLog=True)

Class for loading and presenting 3D stimuli in the Wavefront OBJ format.

Calling the draw method will render the mesh to the current buffer. The render target (FBO or back buffer) must
have a depth buffer attached to it for the object to be rendered correctly. Shading is used if the current window
has light sources defined and lighting is enabled (by setting useLights=True before drawing the stimulus).

Vertex positions, texture coordinates, and normals are loaded and packed into a single vertex buffer object (VBO).
Vertex array objects (VAO) are created for each material with an index buffer referencing vertices assigned that
material in the VBO. For maximum performance, keep the number of materials per object as low as possible, as
switching between VAOs has some overhead.

Material attributes are read from the material library file (*.MTL) associated with the *.OBJ file. This file will
be automatically searched for and read during loading. Afterwards you can edit material properties by accessing
the data structure of the materials attribute.

Keep in mind that OBJ shapes are rigid bodies, the mesh itself cannot be deformed during runtime. However,
meshes can be positioned and rotated as desired by manipulating the RigidBodyPose instance accessed through
the thePose attribute.

Warning: Loading an *.OBJ file is a slow process, be sure to do this outside of any time-critical routines!
This class is experimental and may result in undefined behavior.

Examples

Loading an *.OBJ file from a disk location:

myObjStim = ObjMeshStim(win, '/path/to/file/model.obj')

Parameters
• win (~psychopy.visual.Window) – Window this stimulus is associated with. Stimuli cannot

be shared across windows unless they share the same context.

• size (tuple or float) – Dimensions of the mesh. If a single value is specified, the plane
will be a square. Provide a tuple of floats to specify the width and length of the box (eg.
size=(0.2, 1.3)).

• pos (array_like) – Position vector [x, y, z] for the origin of the rigid body.

10.4. psychopy.visual - many visual stimuli 281

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

• ori (array_like) – Orientation quaternion [x, y, z, w] where x, y, z are imaginary and
w is real. If you prefer specifying rotations in axis-angle format, call setOriAxisAngle after
initialization. By default, the plane is oriented with normal facing the +Z axis of the scene.

• useMaterial (PhongMaterial, optional) – Material to use for all sub-meshes. The
material can be configured by accessing the material attribute after initialization. If no ma-
terial is specified, color will modulate the diffuse and ambient colors for all meshes in the
model. If loadMtllib is True, this value should be None.

• loadMtllib (bool) – Load materials from the MTL file associated with the mesh. This
will override useMaterial if it is None. The value of materials after initialization will be a
dictionary where keys are material names and values are materials. Any textures associated
with the model will be loaded as per the material requirements.

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

_createVAO(vertices, textureCoords, normals, faces)
Create a vertex array object for handling vertex attribute data.

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_loadMtlLib(mtlFile)
Load a material library associated with the OBJ file. This is usually called by the constructor for this class.

Parameters
mtlFile (str) – Path to MTL file.

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

property anchor

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property backgroundColor

Alternative way of setting fillColor

property borderColor

10.4. psychopy.visual - many visual stimuli 282

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

borderWidth

property color

Alternative way of setting foreColor.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

10.4. psychopy.visual - many visual stimuli 283

PsychoPy - Psychology software for Python, Release 2023.2.3

draw(win=None)
Draw the mesh.

Parameters
win (~psychopy.visual.Window) – Window this stimulus is associated with. Stimuli cannot
be shared across windows unless they share the same context.

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property flipHoriz

property flipVert

property fontColor

Alternative way of setting foreColor.

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
(continues on next page)

10.4. psychopy.visual - many visual stimuli 284

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':
a blue stimulus using rgb255 space

stim.color = 255 # interpreted as (255, 255, 255)
which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

getOri()

getOriAxisAngle(degrees=True)
Get the axis and angle of rotation for the 3D stimulus. Converts the orientation defined by the ori quaternion
to and axis-angle representation.

Parameters
degrees (bool, optional) – Specify True if angle is in degrees, or else it will be treated
as radians. Default is True.

Returns
Axis [rx, ry, rz] and angle.

Return type
tuple

getPos()

getRayIntersectBounds(rayOrig, rayDir)
Get the point which a ray intersects the bounding box of this mesh.

Parameters
• rayOrig (array_like) – Origin of the ray in space [x, y, z].

• rayDir (array_like) – Direction vector of the ray [x, y, z], should be normalized.

10.4. psychopy.visual - many visual stimuli 285

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

Returns
Coordinate in world space of the intersection and distance in scene units from rayOrig. Re-
turns None if there is no intersection.

Return type
tuple

property height

isVisible()

Check if the object is visible to the observer.

Test if a pose’s bounding box or position falls outside of an eye’s view frustum.

Poses can be assigned bounding boxes which enclose any 3D models associated with them. A model is not
visible if all the corners of the bounding box fall outside the viewing frustum. Therefore any primitives
(i.e. triangles) associated with the pose can be culled during rendering to reduce CPU/GPU workload.

Returns
True if the object’s bounding box is visible.

Return type
bool

Examples

You can avoid running draw commands if the object is not visible by doing a visibility test first:

if myStim.isVisible():
myStim.draw()

property lineColor

Alternative way of setting borderColor.

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

lineWidth

property ori

Orientation quaternion (X, Y, Z, W).

property pos

Position vector (X, Y, Z).

setAnchor(value, log=None)

setBackColor(color, colorSpace=None, operation='', log=None)

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

10.4. psychopy.visual - many visual stimuli 286

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

setBackgroundColor(color, colorSpace=None, operation='', log=None)

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setBorderWidth(newWidth, operation='', log=None)

setColor(color, colorSpace=None, operation='', log=None)

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setFontColor(color, colorSpace=None, operation='', log=None)

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setLineColor(color, colorSpace=None, operation='', log=None)

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setLineWidth(newWidth, operation='', log=None)

setOri(ori)

setOriAxisAngle(axis, angle, degrees=True)
Set the orientation of the 3D stimulus using an axis and angle. This sets the quaternion at ori.

Parameters
• axis (array_like) – Axis of rotation [rx, ry, rz].

• angle (float) – Angle of rotation.

• degrees (bool, optional) – Specify True if angle is in degrees, or else it will be treated
as radians. Default is True.

10.4. psychopy.visual - many visual stimuli 287

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

setPos(pos)

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

property size

property thePose

The pose of the rigid body. This is a class which has pos and ori attributes.

units

None, ‘norm’, ‘cm’, ‘deg’, ‘degFlat’, ‘degFlatPos’, or ‘pix’

If None then the current units of the Window will be used. See Units for the window and stimuli for expla-
nation of other options.

Note that when you change units, you don’t change the stimulus parameters and it is likely to change ap-
pearance. Example:

This stimulus is 20% wide and 50% tall with respect to window
stim = visual.PatchStim(win, units='norm', size=(0.2, 0.5)

This stimulus is 0.2 degrees wide and 0.5 degrees tall.
stim.units = 'deg'

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

property vertices

property width

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4. psychopy.visual - many visual stimuli 288

PsychoPy - Psychology software for Python, Release 2023.2.3

10.4.18 PatchStim (deprecated)

class psychopy.visual.PatchStim(*args, **kwargs)
Deprecated (as of version 1.74.00): please use the GratingStim or the ImageStim classes.

The GratingStim has identical abilities to the PatchStim (but possibly different initial values) whereas the Im-
ageStim is designed to be use for non-cyclic images (photographs, not gratings).

10.4.19 BlinnPhongMaterial

Attributes

BlinnPhongMaterial([win, diffuseColor, ...]) Class representing a material using the Blinn-Phong
lighting model.

Details

class psychopy.visual.BlinnPhongMaterial(win=None, diffuseColor=(-1.0, -1.0, -1.0),
specularColor=(-1.0, -1.0, -1.0), ambientColor=(-1.0, -1.0,
-1.0), emissionColor=(-1.0, -1.0, -1.0), shininess=10.0,
colorSpace='rgb', diffuseTexture=None, opacity=1.0,
contrast=1.0, face='front')

Class representing a material using the Blinn-Phong lighting model.

This class stores material information to modify the appearance of drawn primitives with respect to lighting,
such as color (diffuse, specular, ambient, and emission), shininess, and textures. Simple materials are intended
to work with features supported by the fixed-function OpenGL pipeline. However, one may use shaders that
implement the Blinn-Phong shading model for per-pixel lighting.

If shaders are enabled, the colors of objects will appear different than without. This is due to the lighting/material
colors being computed on a per-pixel basis, and the formulation of the lighting model. The Phong shader de-
termines the ambient color/intensity by adding up both the scene and light ambient colors, then multiplies them
by the diffuse color of the material, as the ambient light’s color should be a product of the surface reflectance
(albedo) and the light color (the ambient light needs to reflect off something to be visible). Diffuse reflectance
is Lambertian, where the cosine angle between the incident light ray and surface normal determines color. The
size of specular highlights are related to the shininess factor which ranges from 1.0 to 128.0. The greater this
number, the tighter the specular highlight making the surface appear smoother. If shaders are not being used,
specular highlights will be computed using the Phong lighting model. The emission color is optional, it simply
adds to the color of every pixel much like ambient lighting does. Usually, you would not really want this, but it
can be used to add bias to the overall color of the shape.

If there are no lights in the scene, the diffuse color is simply multiplied by the scene and material ambient color
to give the final color.

Lights are attenuated (fall-off with distance) using the formula:

attenuationFactor = 1.0 / (k0 + k1 * distance + k2 * pow(distance, 2))

The coefficients for attenuation can be specified by setting attenuation in the lighting object. Values k0=1.0,
k1=0.0, and k2=0.0 results in a light that does not fall-off with distance.

Parameters

10.4. psychopy.visual - many visual stimuli 289

PsychoPy - Psychology software for Python, Release 2023.2.3

• win (~psychopy.visual.Window or None) – Window this material is associated with, required
for shaders and some color space conversions.

• diffuseColor (array_like) – Diffuse material color (r, g, b) with values between -1.0
and 1.0.

• specularColor (array_like) – Specular material color (r, g, b) with values between -1.0
and 1.0.

• ambientColor (array_like) – Ambient material color (r, g, b) with values between -1.0
and 1.0.

• emissionColor (array_like) – Emission material color (r, g, b) with values between -1.0
and 1.0.

• shininess (float) – Material shininess, usually ranges from 0.0 to 128.0.

• colorSpace (str) – Color space for diffuseColor, specularColor, ambientColor, and emis-
sionColor. This is no longer used.

• opacity (float) – Opacity of the material. Ranges from 0.0 to 1.0 where 1.0 is fully
opaque.

• contrast (float) – Contrast of the material colors.

• diffuseTexture (TexImage2D) – Optional 2D texture to apply to the material. Color val-
ues from the texture are blended with the diffuseColor of the material. The target primitives
must have texture coordinates to specify how texels are mapped to the surface.

• face (str) – Face to apply material to. Values are front, back or both.

Warning: This class is experimental and may result in undefined behavior.

property ambientColor

Ambient color (r, g, b) of the material (psychopy.color.Color, ArrayLike or None).

property ambientRGB

RGB values of the ambient color of the material (numpy.ndarray).

begin(useTextures=True)
Use this material for successive rendering calls.

Parameters
useTextures (bool) – Enable textures.

property colorSpace

The name of the color space currently being used (str or None).

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus, you usually want to
specify colorSpace before setting the color.

property contrast

A value that is simply multiplied by the color (float).

This may be used to adjust the lightness of the material. This is applied to all material color components.

10.4. psychopy.visual - many visual stimuli 290

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Basic usage:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

property diffuseColor

Diffuse color (r, g, b) for the material (psychopy.color.Color, ArrayLike or None).

property diffuseRGB

RGB values of the diffuse color of the material (numpy.ndarray).

property diffuseTexture

Diffuse texture of the material (psychopy.tools.gltools.TexImage2D or None).

property emissionColor

Emission color (r, g, b) of the material (psychopy.color.Color, ArrayLike or None).

property emissionRGB

RGB values of the emission color of the material (numpy.ndarray).

end(clear=True)
Stop using this material.

Must be called after begin before using another material or else later drawing operations may have undefined
behavior.

Upon returning, GL_COLOR_MATERIAL is enabled so material colors will track the current glColor.

Parameters
clear (bool) – Overwrite material state settings with default values. This ensures material
colors are set to OpenGL defaults. You can forgo clearing if successive materials are used
which overwrite glMaterialfv values for GL_DIFFUSE, GL_SPECULAR, GL_AMBIENT,
GL_EMISSION, and GL_SHININESS. This reduces a bit of overhead if there is no need to re-
turn to default values intermittently between successive material begin and end calls. Textures
and shaders previously enabled will still be disabled.

property face

Face to apply the material to (str). Possible values are one of ‘front’, ‘back’ or ‘both’.

setAmbientColor(color, colorSpace=None, operation='', log=None)
Set the ambient color for the material.

Use this function if you wish to supress logging or apply operations on the color component.

Parameters
• color (ArrayLike or ~psychopy.colors.Color) – Color to set as the ambient component of

the light source.

10.4. psychopy.visual - many visual stimuli 291

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

• colorSpace (str or None) – Colorspace to use. This is only used to set the color, the
value of ambientColor after setting uses the color space of the object.

• operation (str) – Operation string.

• log (bool or None) – Enable logging.

setDiffuseColor(color, colorSpace=None, operation='', log=None)
Set the diffuse color for the material.

Use this method if you wish to supress logging or apply operations on the color component.

Parameters
• color (ArrayLike or ~psychopy.colors.Color) – Color to set as the diffuse component of

the material.

• colorSpace (str or None) – Colorspace to use. This is only used to set the color, the
value of diffuseColor after setting uses the color space of the object.

• operation (str) – Operation string.

• log (bool or None) – Enable logging.

setEmissionColor(color, colorSpace=None, operation='', log=None)
Set the emission color for the material.

Use this function if you wish to supress logging or apply operations on the color component.

Parameters
• color (ArrayLike or ~psychopy.colors.Color) – Color to set as the ambient component of

the light source.

• colorSpace (str or None) – Colorspace to use. This is only used to set the color, the
value of ambientColor after setting uses the color space of the object.

• operation (str) – Operation string.

• log (bool or None) – Enable logging.

setSpecularColor(color, colorSpace=None, operation='', log=None)
Set the diffuse color for the material. Use this function if you wish to supress logging or apply operations
on the color component.

Parameters
• color (ArrayLike or ~psychopy.colors.Color) – Color to set as the specular component of

the light source.

• colorSpace (str or None) – Colorspace to use. This is only used to set the color, the
value of diffuseColor after setting uses the color space of the object.

• operation (str) – Operation string.

• log (bool or None) – Enable logging.

property shininess

Material shininess coefficient (float).

This is used to specify the ‘tightness’ of the specular highlights. Values usually range between 0 and 128,
but the range depends on the specular highlight formula used by the shader.

property specularColor

Specular color (r, g, b) of the material (psychopy.color.Color, ArrayLike or None).

10.4. psychopy.visual - many visual stimuli 292

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

property specularRGB

RGB values of the specular color of the material (numpy.ndarray).

10.4.20 psychopy.visual.Pie

Stimulus class for drawing semi-circles and wedges.

Overview

Pie(win[, radius, start, end, edges, units, ...]) Creates a pie shape which is a circle with a wedge cut-
out.

Pie.start Start angle of the slice/wedge in degrees (float or int).
Pie.end End angle of the slice/wedge in degrees (float or int).
Pie.radius Radius of the shape in units (float or int).
Pie.units

Pie.lineWidth Width of the line in pixels.
Pie.lineColor Alternative way of setting borderColor.
Pie.lineColorSpace Deprecated, please use colorSpace to set color space for

the entire object
Pie.fillColor Set the fill color for the shape.
Pie.fillColorSpace Deprecated, please use colorSpace to set color space for

the entire object.
Pie.pos The position of the center of the stimulus in the stimulus

units
Pie.size The size (width, height) of the stimulus in the stimulus

units
Pie.ori The orientation of the stimulus (in degrees).
Pie.opacity Determines how visible the stimulus is relative to back-

ground.
Pie.contrast A value that is simply multiplied by the color.
Pie.depth DEPRECATED, depth is now controlled simply by

drawing order.
Pie.interpolate If True the edge of the line will be anti-aliased.
Pie.lineRGB Legacy property for setting the border color of a stimulus

in RGB, instead use obj._borderColor.rgb
Pie.fillRGB Legacy property for setting the fill color of a stimulus in

RGB, instead use obj._fillColor.rgb
Pie.name The name (str) of the object to be using during logged

messages about this stim.
Pie.autoLog Whether every change in this stimulus should be auto

logged.
Pie.autoDraw Determines whether the stimulus should be automati-

cally drawn on every frame flip.
Pie.color Set the color of the shape.
Pie.colorSpace The name of the color space currently being used

10.4. psychopy.visual - many visual stimuli 293

PsychoPy - Psychology software for Python, Release 2023.2.3

Details

class psychopy.visual.pie.Pie(win, radius=0.5, start=0.0, end=90.0, edges=32, units='', lineWidth=1.5,
lineColor=False, fillColor=False, pos=(0, 0), size=1.0, ori=0.0, opacity=1.0,
contrast=1.0, depth=0, interpolate=True, name=None, autoLog=None,
autoDraw=False, colorSpace=None, color=False, fillColorSpace='rgb',
lineColorSpace='rgb', lineRGB=False, fillRGB=False)

Creates a pie shape which is a circle with a wedge cut-out.

This shape is sometimes referred to as a Pac-Man shape which is often used for creating Kanizsa figures. How-
ever, the shape can be adapted for other uses.

Parameters
• win (Window) – Window this shape is being drawn to. The stimulus instance will allocate its

required resources using that Windows context. In many cases, a stimulus instance cannot be
drawn on different windows unless those windows share the same OpenGL context, which
permits resources to be shared between them.

• radius (float or int) – Radius of the shape. Avoid using size for adjusting figure di-
mensions if radius != 0.5 which will result in undefined behavior.

• start (float or int) – Start and end angles of the filled region of the shape in degrees.
Shapes are filled counter clockwise between the specified angles.

• end (float or int) – Start and end angles of the filled region of the shape in degrees.
Shapes are filled counter clockwise between the specified angles.

• edges (int) – Number of edges to use when drawing the figure. A greater number of edges
will result in smoother curves, but will require more time to compute.

• units (str) – Units to use when drawing. This will affect how parameters and attributes
pos, size and radius are interpreted.

• lineWidth (float) – Width of the shape’s outline.

• lineColor (array_like, str, Color or None) – Color of the shape outline and fill. If None, a
fully transparent color is used which makes the fill or outline invisible.

• fillColor (array_like, str, Color or None) – Color of the shape outline and fill. If None, a
fully transparent color is used which makes the fill or outline invisible.

• lineColorSpace (str) – Colorspace to use for the outline and fill. These change how the
values passed to lineColor and fillColor are interpreted. Deprecated. Please use colorSpace
to set both outline and fill colorspace. These arguments may be removed in a future version.

• fillColorSpace (str) – Colorspace to use for the outline and fill. These change how the
values passed to lineColor and fillColor are interpreted. Deprecated. Please use colorSpace
to set both outline and fill colorspace. These arguments may be removed in a future version.

• pos (array_like) – Initial position (x, y) of the shape on-screen relative to the origin located
at the center of the window or buffer in units. This can be updated after initialization by
setting the pos property. The default value is (0.0, 0.0) which results in no translation.

• size (array_like, float, int or None) – Width and height of the shape as (w, h) or
[w, h]. If a single value is provided, the width and height will be set to the same specified
value. If None is specified, the size will be set with values passed to width and height.

• ori (float) – Initial orientation of the shape in degrees about its origin. Positive values will
rotate the shape clockwise, while negative values will rotate counterclockwise. The default
value for ori is 0.0 degrees.

10.4. psychopy.visual - many visual stimuli 294

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

• opacity (float) – Opacity of the shape. A value of 1.0 indicates fully opaque and 0.0 is
fully transparent (therefore invisible). Values between 1.0 and 0.0 will result in colors being
blended with objects in the background. This value affects the fill (fillColor) and outline
(lineColor) colors of the shape.

• contrast (float) – Contrast level of the shape (0.0 to 1.0). This value is used to modulate
the contrast of colors passed to lineColor and fillColor.

• depth (int) – Depth layer to draw the shape when autoDraw is enabled. DEPRECATED

• interpolate (bool) – Enable smoothing (anti-aliasing) when drawing shape outlines. This
produces a smoother (less-pixelated) outline of the shape.

• lineRGB (array_like, Color or None) – Deprecated. Please use lineColor and fillColor.
These arguments may be removed in a future version.

• fillRGB (array_like, Color or None) – Deprecated. Please use lineColor and fillColor.
These arguments may be removed in a future version.

• name (str) – Optional name of the stimuli for logging.

• autoLog (bool) – Enable auto-logging of events associated with this stimuli. Useful for
debugging and to track timing when used in conjunction with autoDraw.

• autoDraw (bool) – Enable auto drawing. When True, the stimulus will be drawn every
frame without the need to explicitly call the draw() method.

• color (array_like, str, Color or None) – Sets both the initial lineColor and fillColor of the
shape.

• colorSpace (str) – Sets the colorspace, changing how values passed to lineColor and
fillColor are interpreted.

start, end

Start and end angles of the filled region of the shape in degrees. Shapes are filled counter clockwise between
the specified angles.

Type
float or int

radius

Radius of the shape. Avoid using size for adjusting figure dimensions if radius != 0.5 which will result in
undefined behavior.

Type
float or int

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

static _calcEquilateralVertices(edges, radius=0.5)
Get vertices for an equilateral shape with a given number of sides, will assume radius is 0.5 (relative) but
can be manually specified

_calcPosRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix.

_calcSizeRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix

10.4. psychopy.visual - many visual stimuli 295

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

_calcVertices()

Calculate the required vertices for the figure.

static _calculateMinEdges(lineWidth, threshold=180)
Calculate how many points are needed in an equilateral polygon for the gap between line rects to be < 1px
and for corner angles to exceed a threshold.

In other words, how many edges does a polygon need to have to appear smooth?

lineWidth
[int, float, np.ndarray] Width of the line in pixels

threshold
[int] Maximum angle (degrees) for corners of the polygon, useful for drawing a circle. Supply 180 for
no maximum angle.

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_getPolyAsRendered()

DEPRECATED. Return a list of vertices as rendered.

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_set(attrib, val, op='', log=None)
DEPRECATED since 1.80.04 + 1. Use setAttribute() and val2array() instead.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

10.4. psychopy.visual - many visual stimuli 296

PsychoPy - Psychology software for Python, Release 2023.2.3

property backgroundColor

Alternative way of setting fillColor

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

closeShape

Should the last vertex be automatically connected to the first?

If you’re using Polygon, Circle or Rect, closeShape=True is assumed and shouldn’t be changed.

color

Set the color of the shape. Sets both fillColor and lineColor simultaneously if applicable.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

contains(x, y=None, units=None)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

10.4. psychopy.visual - many visual stimuli 297

PsychoPy - Psychology software for Python, Release 2023.2.3

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

depth

DEPRECATED, depth is now controlled simply by drawing order.

doDragging()

If this stimulus is draggable, do the necessary actions on a frame flip to drag it.

draggable

Can this stimulus be dragged by a mouse click?

draw(win=None, keepMatrix=False)
Draw the stimulus in its relevant window.

You must call this method after every MyWin.flip() if you want the stimulus to appear on that frame and
then update the screen again.

end

End angle of the slice/wedge in degrees (float or int).

Operations supported.

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

10.4. psychopy.visual - many visual stimuli 298

PsychoPy - Psychology software for Python, Release 2023.2.3

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property fontColor

Alternative way of setting foreColor.

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':

a blue stimulus using rgb255 space
stim.color = 255 # interpreted as (255, 255, 255)

which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

10.4. psychopy.visual - many visual stimuli 299

PsychoPy - Psychology software for Python, Release 2023.2.3

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

interpolate

If True the edge of the line will be anti-aliased.

property lineColor

Alternative way of setting borderColor.

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

lineWidth

Width of the line in pixels.
Operations supported.

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

property opacity

Determines how visible the stimulus is relative to background.

The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent). Operations are supported.
Precisely how this is used depends on the Blend Mode.

ori

The orientation of the stimulus (in degrees).

Should be a single value (scalar). Operations are supported.

Orientation convention is like a clock: 0 is vertical, and positive values rotate clockwise. Beyond 360 and
below zero values wrap appropriately.

overlaps(polygon)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

See coder demo, shapeContains.py

10.4. psychopy.visual - many visual stimuli 300

PsychoPy - Psychology software for Python, Release 2023.2.3

property pos

The position of the center of the stimulus in the stimulus units

value should be an x,y-pair. Operations are also supported.

Example:

stim.pos = (0.5, 0) # Set slightly to the right of center
stim.pos += (0.5, -1) # Increment pos rightwards and upwards.

Is now (1.0, -1.0)
stim.pos *= 0.2 # Move stim towards the center.

Is now (0.2, -0.2)

Tip: If you need the position of stim in pixels, you can obtain it like this:

from psychopy.tools.monitorunittools import posToPix
posPix = posToPix(stim)

radius

Radius of the shape in units (float or int).

Operations supported.

setAutoDraw(value, log=None)
Sets autoDraw. Usually you can use ‘stim.attribute = value’ syntax instead, but use this method to suppress
the log message.

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setColor(color, colorSpace=None, operation='', log=None)
Sets both the line and fill to be the same color.

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setDepth(newDepth, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setEnd(end, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

10.4. psychopy.visual - many visual stimuli 301

PsychoPy - Psychology software for Python, Release 2023.2.3

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setOpacity(newOpacity, operation='', log=None)
Hard setter for opacity, allows the suppression of log messages and calls the update method

setOri(newOri, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setPos(newPos, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setRadius(end, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setSize(newSize, operation='', units=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setStart(start, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setVertices(value=None, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

property size

The size (width, height) of the stimulus in the stimulus units

Value should be x,y-pair, scalar (applies to both dimensions) or None (resets to default). Operations are
supported.

Sizes can be negative (causing a mirror-image reversal) and can extend beyond the window.

Example:

10.4. psychopy.visual - many visual stimuli 302

PsychoPy - Psychology software for Python, Release 2023.2.3

stim.size = 0.8 # Set size to (xsize, ysize) = (0.8, 0.8)
print(stim.size) # Outputs array([0.8, 0.8])
stim.size += (0.5, -0.5) # make wider and flatter: (1.3, 0.3)

Tip: if you can see the actual pixel range this corresponds to by looking at stim._sizeRendered

start

Start angle of the slice/wedge in degrees (float or int).

Operations supported.

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

updateOpacity()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox.

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.21 PlaneStim

Attributes

PlaneStim(win[, size, pos, ori, color, ...]) Class for drawing planes.

10.4. psychopy.visual - many visual stimuli 303

PsychoPy - Psychology software for Python, Release 2023.2.3

Details

class psychopy.visual.PlaneStim(win, size=(0.5, 0.5), pos=(0.0, 0.0, 0.0), ori=(0.0, 0.0, 0.0, 1.0),
color=(0.0, 0.0, 0.0), colorSpace='rgb', contrast=1.0, opacity=1.0,
useMaterial=None, textureScale=None, name='', autoLog=True)

Class for drawing planes.

Draws a plane with dimensions specified by size (length, width) in scene units.

Calling the draw method will render the plane to the current buffer. The render target (FBO or back buffer) must
have a depth buffer attached to it for the object to be rendered correctly. Shading is used if the current window
has light sources defined and lighting is enabled (by setting useLights=True before drawing the stimulus).

Warning: This class is experimental and may result in undefined behavior.

Parameters
• win (~psychopy.visual.Window) – Window this stimulus is associated with. Stimuli cannot

be shared across windows unless they share the same context.

• size (tuple or float) – Dimensions of the mesh. If a single value is specified, the plane
will be a square. Provide a tuple of floats to specify the width and length of the plane (eg.
size=(0.2, 1.3)).

• pos (array_like) – Position vector [x, y, z] for the origin of the rigid body.

• ori (array_like) – Orientation quaternion [x, y, z, w] where x, y, z are imaginary and
w is real. If you prefer specifying rotations in axis-angle format, call setOriAxisAngle after
initialization. By default, the plane is oriented with normal facing the +Z axis of the scene.

• useMaterial (PhongMaterial, optional) – Material to use. The material can be con-
figured by accessing the material attribute after initialization. If not material is specified, the
diffuse and ambient color of the shape will track the current color specified by glColor.

• colorSpace (str) – Colorspace of color to use.

• contrast (float) – Contrast of the stimulus, value modulates the color.

• opacity (float) – Opacity of the stimulus ranging from 0.0 to 1.0. Note that transparent
objects look best when rendered from farthest to nearest.

• textureScale (array_like or float, optional) – Scaling factors for texture coor-
dinates (sx, sy). By default, a factor of 1 will have the entire texture cover the surface of the
mesh. If a single number is provided, the texture will be scaled uniformly.

• name (str) – Name of this object for logging purposes.

• autoLog (bool) – Enable automatic logging on attribute changes.

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

_createVAO(vertices, textureCoords, normals, faces)
Create a vertex array object for handling vertex attribute data.

10.4. psychopy.visual - many visual stimuli 304

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

property anchor

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property backgroundColor

Alternative way of setting fillColor

property borderColor

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

borderWidth

property color

Alternative way of setting foreColor.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

(continues on next page)

10.4. psychopy.visual - many visual stimuli 305

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

draw(win=None)
Draw the stimulus.

This should work for stimuli using a single VAO and material. More complex stimuli with multiple materials
should override this method to correctly handle that case.

Parameters
win (~psychopy.visual.Window) – Window this stimulus is associated with. Stimuli cannot
be shared across windows unless they share the same context.

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

10.4. psychopy.visual - many visual stimuli 306

PsychoPy - Psychology software for Python, Release 2023.2.3

property flipHoriz

property flipVert

property fontColor

Alternative way of setting foreColor.

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':

a blue stimulus using rgb255 space
stim.color = 255 # interpreted as (255, 255, 255)

which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

10.4. psychopy.visual - many visual stimuli 307

PsychoPy - Psychology software for Python, Release 2023.2.3

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

getOri()

getOriAxisAngle(degrees=True)
Get the axis and angle of rotation for the 3D stimulus. Converts the orientation defined by the ori quaternion
to and axis-angle representation.

Parameters
degrees (bool, optional) – Specify True if angle is in degrees, or else it will be treated
as radians. Default is True.

Returns
Axis [rx, ry, rz] and angle.

Return type
tuple

getPos()

getRayIntersectBounds(rayOrig, rayDir)
Get the point which a ray intersects the bounding box of this mesh.

Parameters
• rayOrig (array_like) – Origin of the ray in space [x, y, z].

• rayDir (array_like) – Direction vector of the ray [x, y, z], should be normalized.

Returns
Coordinate in world space of the intersection and distance in scene units from rayOrig. Re-
turns None if there is no intersection.

Return type
tuple

property height

isVisible()

Check if the object is visible to the observer.

Test if a pose’s bounding box or position falls outside of an eye’s view frustum.

Poses can be assigned bounding boxes which enclose any 3D models associated with them. A model is not
visible if all the corners of the bounding box fall outside the viewing frustum. Therefore any primitives
(i.e. triangles) associated with the pose can be culled during rendering to reduce CPU/GPU workload.

Returns
True if the object’s bounding box is visible.

Return type
bool

10.4. psychopy.visual - many visual stimuli 308

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

You can avoid running draw commands if the object is not visible by doing a visibility test first:

if myStim.isVisible():
myStim.draw()

property lineColor

Alternative way of setting borderColor.

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

lineWidth

property ori

Orientation quaternion (X, Y, Z, W).

property pos

Position vector (X, Y, Z).

setAnchor(value, log=None)

setBackColor(color, colorSpace=None, operation='', log=None)

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setBackgroundColor(color, colorSpace=None, operation='', log=None)

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setBorderWidth(newWidth, operation='', log=None)

setColor(color, colorSpace=None, operation='', log=None)

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

10.4. psychopy.visual - many visual stimuli 309

PsychoPy - Psychology software for Python, Release 2023.2.3

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setFontColor(color, colorSpace=None, operation='', log=None)

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setLineColor(color, colorSpace=None, operation='', log=None)

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setLineWidth(newWidth, operation='', log=None)

setOri(ori)

setOriAxisAngle(axis, angle, degrees=True)
Set the orientation of the 3D stimulus using an axis and angle. This sets the quaternion at ori.

Parameters
• axis (array_like) – Axis of rotation [rx, ry, rz].

• angle (float) – Angle of rotation.

• degrees (bool, optional) – Specify True if angle is in degrees, or else it will be treated
as radians. Default is True.

setPos(pos)

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

property size

property thePose

The pose of the rigid body. This is a class which has pos and ori attributes.

units

None, ‘norm’, ‘cm’, ‘deg’, ‘degFlat’, ‘degFlatPos’, or ‘pix’

If None then the current units of the Window will be used. See Units for the window and stimuli for expla-
nation of other options.

Note that when you change units, you don’t change the stimulus parameters and it is likely to change ap-
pearance. Example:

This stimulus is 20% wide and 50% tall with respect to window
stim = visual.PatchStim(win, units='norm', size=(0.2, 0.5)

This stimulus is 0.2 degrees wide and 0.5 degrees tall.
stim.units = 'deg'

10.4. psychopy.visual - many visual stimuli 310

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

property vertices

property width

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.22 psychopy.visual.Polygon

Stimulus class for drawing regular polygons.

10.4. psychopy.visual - many visual stimuli 311

PsychoPy - Psychology software for Python, Release 2023.2.3

Overview

Polygon(win[, edges, radius, units, ...]) Creates a regular polygon (triangles, pentagons, ...).
Polygon.radius float, int, tuple, list or 2x1 array Radius of the Polygon

(distance from the center to the corners).
Polygon.edges Number of edges of the polygon.
Polygon.units

Polygon.lineWidth Width of the line in pixels.
Polygon.lineColor Alternative way of setting borderColor.
Polygon.lineColorSpace Deprecated, please use colorSpace to set color space for

the entire object
Polygon.fillColor Set the fill color for the shape.
Polygon.fillColorSpace Deprecated, please use colorSpace to set color space for

the entire object.
Polygon.pos The position of the center of the stimulus in the stimulus

units
Polygon.size The size (width, height) of the stimulus in the stimulus

units
Polygon.ori The orientation of the stimulus (in degrees).
Polygon.opacity Determines how visible the stimulus is relative to back-

ground.
Polygon.contrast A value that is simply multiplied by the color.
Polygon.depth DEPRECATED, depth is now controlled simply by

drawing order.
Polygon.interpolate If True the edge of the line will be anti-aliased.
Polygon.lineRGB Legacy property for setting the border color of a stimulus

in RGB, instead use obj._borderColor.rgb
Polygon.fillRGB Legacy property for setting the fill color of a stimulus in

RGB, instead use obj._fillColor.rgb
Polygon.name The name (str) of the object to be using during logged

messages about this stim.
Polygon.autoLog Whether every change in this stimulus should be auto

logged.
Polygon.autoDraw Determines whether the stimulus should be automati-

cally drawn on every frame flip.
Polygon.color Set the color of the shape.
Polygon.colorSpace The name of the color space currently being used

Details

class psychopy.visual.polygon.Polygon(win, edges=3, radius=0.5, units='', lineWidth=1.5,
lineColor=False, fillColor=False, pos=(0, 0), size=1.0,
anchor=None, ori=0.0, opacity=None, contrast=1.0, depth=0,
interpolate=True, draggable=False, name=None, autoLog=None,
autoDraw=False, colorSpace='rgb', color=False,
fillColorSpace=None, lineColorSpace=None, lineRGB=False,
fillRGB=False)

Creates a regular polygon (triangles, pentagons, . . .).

This class is a special case of a ShapeStim that accepts the same parameters except closeShape and vertices.

10.4. psychopy.visual - many visual stimuli 312

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
• win (Window) – Window this shape is being drawn to. The stimulus instance will allocate its

required resources using that Windows context. In many cases, a stimulus instance cannot be
drawn on different windows unless those windows share the same OpenGL context, which
permits resources to be shared between them.

• edges (int) – Number of sides for the polygon (for instance, edges=3 will result in a triangle).

• radius (float) – Initial radius of the polygon in units. This specifies how far out to place
the corners (vertices) of the shape.

• units (str) – Units to use when drawing. This will affect how parameters and attributes
pos, size and radius are interpreted.

• lineWidth (float) – Width of the polygon’s outline.

• lineColor (array_like, str, Color or None) – Color of the shape’s outline and fill. If None,
a fully transparent color is used which makes the fill or outline invisible.

• fillColor (array_like, str, Color or None) – Color of the shape’s outline and fill. If None,
a fully transparent color is used which makes the fill or outline invisible.

• lineColorSpace (str) – Colorspace to use for the outline and fill. These change how the
values passed to lineColor and fillColor are interpreted. Deprecated. Please use colorSpace
to set both outline and fill colorspace. These arguments may be removed in a future version.

• fillColorSpace (str) – Colorspace to use for the outline and fill. These change how the
values passed to lineColor and fillColor are interpreted. Deprecated. Please use colorSpace
to set both outline and fill colorspace. These arguments may be removed in a future version.

• pos (array_like) – Initial position (x, y) of the shape on-screen relative to the origin located
at the center of the window or buffer in units. This can be updated after initialization by
setting the pos property. The default value is (0.0, 0.0) which results in no translation.

• size (float or array_like) – Initial scale factor for adjusting the size of the shape. A
single value (float) will apply uniform scaling, while an array (sx, sy) will result in anisotropic
scaling in the horizontal (sx) and vertical (sy) direction. Providing negative values to size
will cause the shape being mirrored. Scaling can be changed by setting the size property
after initialization. The default value is 1.0 which results in no scaling.

• ori (float) – Initial orientation of the shape in degrees about its origin. Positive values will
rotate the shape clockwise, while negative values will rotate counterclockwise. The default
value for ori is 0.0 degrees.

• opacity (float) – Opacity of the shape. A value of 1.0 indicates fully opaque and 0.0 is
fully transparent (therefore invisible). Values between 1.0 and 0.0 will result in colors being
blended with objects in the background. This value affects the fill (fillColor) and outline
(lineColor) colors of the shape.

• contrast (float) – Contrast level of the shape (0.0 to 1.0). This value is used to modulate
the contrast of colors passed to lineColor and fillColor.

• depth (int) – Depth layer to draw the stimulus when autoDraw is enabled.

• interpolate (bool) – Enable smoothing (anti-aliasing) when drawing shape outlines. This
produces a smoother (less-pixelated) outline of the shape.

• lineRGB (array_like, Color or None) – Deprecated. Please use lineColor and fillColor.
These arguments may be removed in a future version.

• fillRGB (array_like, Color or None) – Deprecated. Please use lineColor and fillColor.
These arguments may be removed in a future version.

10.4. psychopy.visual - many visual stimuli 313

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

• name (str) – Optional name of the stimuli for logging.

• autoLog (bool) – Enable auto-logging of events associated with this stimuli. Useful for
debugging and to track timing when used in conjunction with autoDraw.

• autoDraw (bool) – Enable auto drawing. When True, the stimulus will be drawn every
frame without the need to explicitly call the draw() method.

• color (array_like, str, Color or None) – Sets both the initial lineColor and fillColor of the
shape.

• colorSpace (str) – Sets the colorspace, changing how values passed to lineColor and
fillColor are interpreted.

• draggable (bool) – Can this stimulus be dragged by a mouse click?

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

static _calcEquilateralVertices(edges, radius=0.5)
Get vertices for an equilateral shape with a given number of sides, will assume radius is 0.5 (relative) but
can be manually specified

_calcPosRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix.

_calcSizeRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix

static _calculateMinEdges(lineWidth, threshold=180)
Calculate how many points are needed in an equilateral polygon for the gap between line rects to be < 1px
and for corner angles to exceed a threshold.

In other words, how many edges does a polygon need to have to appear smooth?

lineWidth
[int, float, np.ndarray] Width of the line in pixels

threshold
[int] Maximum angle (degrees) for corners of the polygon, useful for drawing a circle. Supply 180 for
no maximum angle.

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_getPolyAsRendered()

DEPRECATED. Return a list of vertices as rendered.

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_set(attrib, val, op='', log=None)
DEPRECATED since 1.80.04 + 1. Use setAttribute() and val2array() instead.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

10.4. psychopy.visual - many visual stimuli 314

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property backgroundColor

Alternative way of setting fillColor

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

closeShape

Should the last vertex be automatically connected to the first?

If you’re using Polygon, Circle or Rect, closeShape=True is assumed and shouldn’t be changed.

color

Set the color of the shape. Sets both fillColor and lineColor simultaneously if applicable.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

10.4. psychopy.visual - many visual stimuli 315

PsychoPy - Psychology software for Python, Release 2023.2.3

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

contains(x, y=None, units=None)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

depth

DEPRECATED, depth is now controlled simply by drawing order.

10.4. psychopy.visual - many visual stimuli 316

PsychoPy - Psychology software for Python, Release 2023.2.3

doDragging()

If this stimulus is draggable, do the necessary actions on a frame flip to drag it.

draggable

Can this stimulus be dragged by a mouse click?

draw(win=None, keepMatrix=False)
Draw the stimulus in its relevant window.

You must call this method after every MyWin.flip() if you want the stimulus to appear on that frame and
then update the screen again.

edges

Number of edges of the polygon. Floats are rounded to int.

Operations supported.

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property fontColor

Alternative way of setting foreColor.

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

10.4. psychopy.visual - many visual stimuli 317

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':

a blue stimulus using rgb255 space
stim.color = 255 # interpreted as (255, 255, 255)

which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

interpolate

If True the edge of the line will be anti-aliased.

property lineColor

Alternative way of setting borderColor.

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

10.4. psychopy.visual - many visual stimuli 318

PsychoPy - Psychology software for Python, Release 2023.2.3

lineWidth

Width of the line in pixels.
Operations supported.

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

property opacity

Determines how visible the stimulus is relative to background.

The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent). Operations are supported.
Precisely how this is used depends on the Blend Mode.

ori

The orientation of the stimulus (in degrees).

Should be a single value (scalar). Operations are supported.

Orientation convention is like a clock: 0 is vertical, and positive values rotate clockwise. Beyond 360 and
below zero values wrap appropriately.

overlaps(polygon)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

See coder demo, shapeContains.py

property pos

The position of the center of the stimulus in the stimulus units

value should be an x,y-pair. Operations are also supported.

Example:

stim.pos = (0.5, 0) # Set slightly to the right of center
stim.pos += (0.5, -1) # Increment pos rightwards and upwards.

Is now (1.0, -1.0)
stim.pos *= 0.2 # Move stim towards the center.

Is now (0.2, -0.2)

Tip: If you need the position of stim in pixels, you can obtain it like this:

from psychopy.tools.monitorunittools import posToPix
posPix = posToPix(stim)

radius

float, int, tuple, list or 2x1 array Radius of the Polygon (distance from the center to the corners). May be a
-2tuple or list to stretch the polygon asymmetrically.

10.4. psychopy.visual - many visual stimuli 319

PsychoPy - Psychology software for Python, Release 2023.2.3

Operations supported.

Usually there’s a setAttribute(value, log=False) method for each attribute. Use this if you want to disable
logging.

setAutoDraw(value, log=None)
Sets autoDraw. Usually you can use ‘stim.attribute = value’ syntax instead, but use this method to suppress
the log message.

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setColor(color, colorSpace=None, operation='', log=None)
Sets both the line and fill to be the same color.

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setDepth(newDepth, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setEdges(edges, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

10.4. psychopy.visual - many visual stimuli 320

PsychoPy - Psychology software for Python, Release 2023.2.3

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setNVertices(nVerts, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setOpacity(newOpacity, operation='', log=None)
Hard setter for opacity, allows the suppression of log messages and calls the update method

setOri(newOri, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setPos(newPos, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setRadius(radius, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setSize(newSize, operation='', units=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setVertices(value=None, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

property size

The size (width, height) of the stimulus in the stimulus units

Value should be x,y-pair, scalar (applies to both dimensions) or None (resets to default). Operations are
supported.

Sizes can be negative (causing a mirror-image reversal) and can extend beyond the window.

Example:

stim.size = 0.8 # Set size to (xsize, ysize) = (0.8, 0.8)
print(stim.size) # Outputs array([0.8, 0.8])
stim.size += (0.5, -0.5) # make wider and flatter: (1.3, 0.3)

Tip: if you can see the actual pixel range this corresponds to by looking at stim._sizeRendered

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

updateOpacity()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox.

10.4. psychopy.visual - many visual stimuli 321

PsychoPy - Psychology software for Python, Release 2023.2.3

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.23 psychopy.visual.Progress

Stimulus class for drawing progress bars.

10.4. psychopy.visual - many visual stimuli 322

PsychoPy - Psychology software for Python, Release 2023.2.3

Overview

Progress(win[, name, progress, direction, ...]) A basic progress bar, consisting of two rectangles: A
background and a foreground.

Progress.name The name (str) of the object to be using during logged
messages about this stim.

Progress.progress How far along the progress bar is
Progress.direction What direction is this progress bar progressing in? Use

in combination with "anchor" to control which direction
the bar fills up from.

Progress.pos The position of the center of the stimulus in the stimulus
units

Progress.size The size (width, height) of the stimulus in the stimulus
units

Progress.anchor

Progress.units

Progress.barColor

Progress.backColor Alternative way of setting fillColor
Progress.borderColor

Progress.colorSpace The name of the color space currently being used
Progress.lineWidth Width of the line in pixels.
Progress.opacity Determines how visible the stimulus is relative to back-

ground.

Details

class psychopy.visual.progress.Progress(win, name='pb', progress=0, direction='horizontal', pos=(-0.5,
0), size=(1, 0.1), anchor='center left', units=None,
barColor=False, backColor=False, borderColor=False,
colorSpace=None, lineWidth=1.5, opacity=1.0, ori=0.0,
depth=0, autoLog=None, autoDraw=False, foreColor='white',
fillColor=False, lineColor='white')

A basic progress bar, consisting of two rectangles: A background and a foreground. The foreground rectangle
fill the background as progress approaches 1.

Parameters
• win (Window) – Window this shape is being drawn to. The stimulus instance will allocate its

required resources using that Windows context. In many cases, a stimulus instance cannot be
drawn on different windows unless those windows share the same OpenGL context, which
permits resources to be shared between them.

• name (str) – Name to refer to this Progress bar by

• progress (float) – Value between 0 (not started) and 1 (complete) to set the progress bar
to.

• direction (str) – Which dimension the bar should fill along, either “horizontal” (also
accepts “horiz”, “x” or 0) or “vertical” (also accepts “vert”, “y” or 1)

10.4. psychopy.visual - many visual stimuli 323

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

• pos (array_like) – Initial position (x, y) of the shape on-screen relative to the origin located
at the center of the window or buffer in units. This can be updated after initialization by
setting the pos property. The default value is (0.0, 0.0) which results in no translation.

• size (array_like, float, int or None) – Width and height of the shape as (w, h) or
[w, h]. If a single value is provided, the width and height will be set to the same specified
value. If None is specified, the size will be set with values passed to width and height.

• anchor (str) – Point within the shape where size and pos are set from. This also affects
where the progress bar fills up from (e.g. if anchor is “left” and direction is “horizontal”,
then the bar will fill from left to right)

• units (str) – Units to use when drawing. This will affect how parameters and attributes
pos and size are interpreted.

• barColor (array_like, str, Color or None) – Color of the full part of the progress bar.

• foreColor (array_like, str, Color or None) – Color of the full part of the progress bar.

• backColor (array_like, str, Color or None) – Color of the empty part of the progress bar.

• fillColor (array_like, str, Color or None) – Color of the empty part of the progress bar.

• borderColor (array_like, str, Color or None) – Color of the outline around the outside of
the progress bar.

• lineColor (array_like, str, Color or None) – Color of the outline around the outside of the
progress bar.

• colorSpace (str) – Sets the colorspace, changing how values passed to foreColor, line-
Color and fillColor are interpreted.

• lineWidth (float) – Width of the shape outline.

• opacity (float) – Opacity of the shape. A value of 1.0 indicates fully opaque and 0.0 is
fully transparent (therefore invisible). Values between 1.0 and 0.0 will result in colors being
blended with objects in the background.

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

static _calcEquilateralVertices(edges, radius=0.5)
Get vertices for an equilateral shape with a given number of sides, will assume radius is 0.5 (relative) but
can be manually specified

_calcPosRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix.

_calcSizeRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix

static _calculateMinEdges(lineWidth, threshold=180)
Calculate how many points are needed in an equilateral polygon for the gap between line rects to be < 1px
and for corner angles to exceed a threshold.

In other words, how many edges does a polygon need to have to appear smooth?

lineWidth
[int, float, np.ndarray] Width of the line in pixels

10.4. psychopy.visual - many visual stimuli 324

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

threshold
[int] Maximum angle (degrees) for corners of the polygon, useful for drawing a circle. Supply 180 for
no maximum angle.

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_getPolyAsRendered()

DEPRECATED. Return a list of vertices as rendered.

static _sanitizeDirection(direction)
Take a value indicating direction and convert it to a human readable string

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_set(attrib, val, op='', log=None)
DEPRECATED since 1.80.04 + 1. Use setAttribute() and val2array() instead.

_tesselate(newVertices)
Set the .vertices and .border to new values, invoking tessellation.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property backgroundColor

Alternative way of setting fillColor

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

10.4. psychopy.visual - many visual stimuli 325

PsychoPy - Psychology software for Python, Release 2023.2.3

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

closeShape

Should the last vertex be automatically connected to the first?

If you’re using Polygon, Circle or Rect, closeShape=True is assumed and shouldn’t be changed.

color

Set the color of the shape. Sets both fillColor and lineColor simultaneously if applicable.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

contains(x, y=None, units=None)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

property contrast

A value that is simply multiplied by the color.

10.4. psychopy.visual - many visual stimuli 326

PsychoPy - Psychology software for Python, Release 2023.2.3

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

depth

DEPRECATED, depth is now controlled simply by drawing order.

direction

What direction is this progress bar progressing in? Use in combination with “anchor” to control which
direction the bar fills up from.

Parameters
value (str, int, bool) – Is progress bar horizontal or vertical? Accepts the following
values: * horizontal: “horizontal”, “horiz”, “x”, “0”, “False”, 0, False * vertical: “vertical”,
“vert”, “y”, “1”, “True”, 1, True

doDragging()

If this stimulus is draggable, do the necessary actions on a frame flip to drag it.

draggable

Can this stimulus be dragged by a mouse click?

draw(win=None, keepMatrix=False)
Draw the stimulus in the relevant window.

You must call this method after every win.flip() if you want the stimulus to appear on that frame and then
update the screen again.

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

10.4. psychopy.visual - many visual stimuli 327

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property fontColor

Alternative way of setting foreColor.

property foreColor

Color of the full part of the progress bar.

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

interpolate

If True the edge of the line will be anti-aliased.

property lineColor

Alternative way of setting borderColor.

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

lineWidth

Width of the line in pixels.
Operations supported.

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

property opacity

Determines how visible the stimulus is relative to background.

The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent). Operations are supported.
Precisely how this is used depends on the Blend Mode.

ori

overlaps(polygon)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

10.4. psychopy.visual - many visual stimuli 328

PsychoPy - Psychology software for Python, Release 2023.2.3

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

See coder demo, shapeContains.py

property pos

The position of the center of the stimulus in the stimulus units

value should be an x,y-pair. Operations are also supported.

Example:

stim.pos = (0.5, 0) # Set slightly to the right of center
stim.pos += (0.5, -1) # Increment pos rightwards and upwards.

Is now (1.0, -1.0)
stim.pos *= 0.2 # Move stim towards the center.

Is now (0.2, -0.2)

Tip: If you need the position of stim in pixels, you can obtain it like this:

from psychopy.tools.monitorunittools import posToPix
posPix = posToPix(stim)

progress

How far along the progress bar is

Parameters
value (float) – Between 0 (not complete) and 1 (fully complete)

setAutoDraw(value, log=None)
Sets autoDraw. Usually you can use ‘stim.attribute = value’ syntax instead, but use this method to suppress
the log message.

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setColor(color, colorSpace=None, operation='', log=None)
Sets both the line and fill to be the same color.

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

10.4. psychopy.visual - many visual stimuli 329

https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

setDepth(newDepth, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setOpacity(newOpacity, operation='', log=None)
Hard setter for opacity, allows the suppression of log messages and calls the update method

setOri(newOri, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setPos(newPos, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setSize(newSize, operation='', units=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setVertices(value=None, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

property size

The size (width, height) of the stimulus in the stimulus units

Value should be x,y-pair, scalar (applies to both dimensions) or None (resets to default). Operations are
supported.

Sizes can be negative (causing a mirror-image reversal) and can extend beyond the window.

Example:

stim.size = 0.8 # Set size to (xsize, ysize) = (0.8, 0.8)
print(stim.size) # Outputs array([0.8, 0.8])
stim.size += (0.5, -0.5) # make wider and flatter: (1.3, 0.3)

10.4. psychopy.visual - many visual stimuli 330

PsychoPy - Psychology software for Python, Release 2023.2.3

Tip: if you can see the actual pixel range this corresponds to by looking at stim._sizeRendered

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

updateOpacity()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox.

property vertices

A list of lists or a numpy array (Nx2) specifying xy positions of each vertex, relative to the center of the
field.

Assigning to vertices can be slow if there are many vertices.

Operations supported with .setVertices().

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.24 RadialStim

10.4. psychopy.visual - many visual stimuli 331

PsychoPy - Psychology software for Python, Release 2023.2.3

Attributes

RadialStim(win[, tex, mask, units, pos, ...]) Stimulus object for drawing radial stimuli.
RadialStim.win The Window object in which the stimulus will be ren-

dered by default.
RadialStim.tex Texture to used on the stimulus as a grating (aka carrier).
RadialStim.mask The alpha mask that forms the shape of the resulting im-

age.
RadialStim.units

RadialStim.pos The position of the center of the stimulus in the stimulus
units

RadialStim.ori The orientation of the stimulus (in degrees).
RadialStim.size The size (width, height) of the stimulus in the stimulus

units
RadialStim.contrast A value that is simply multiplied by the color.
RadialStim.color Alternative way of setting foreColor.
RadialStim.colorSpace The name of the color space currently being used
RadialStim.opacity Determines how visible the stimulus is relative to back-

ground.
RadialStim.interpolate Whether to interpolate (linearly) the texture in the stim-

ulus.
RadialStim.setAngularCycles(value[, ...]) Usually you can use 'stim.attribute = value' syntax in-

stead, but use this method if you need to suppress the
log message

RadialStim.setAngularPhase(value[, ...]) Usually you can use 'stim.attribute = value' syntax in-
stead, but use this method if you need to suppress the
log message

RadialStim.setRadialCycles(value[, ...]) Usually you can use 'stim.attribute = value' syntax in-
stead, but use this method if you need to suppress the
log message

RadialStim.setRadialPhase(value[, ...]) Usually you can use 'stim.attribute = value' syntax in-
stead, but use this method if you need to suppress the
log message

RadialStim.name The name (str) of the object to be using during logged
messages about this stim.

RadialStim.autoLog Whether every change in this stimulus should be auto
logged.

RadialStim.draw([win]) Draw the stimulus in its relevant window.
RadialStim.autoDraw Determines whether the stimulus should be automati-

cally drawn on every frame flip.
RadialStim.clearTextures() Clear all textures associated with the stimulus.

10.4. psychopy.visual - many visual stimuli 332

PsychoPy - Psychology software for Python, Release 2023.2.3

Details

class psychopy.visual.RadialStim(win, tex='sqrXsqr', mask='none', units='', pos=(0.0, 0.0), size=(1.0, 1.0),
radialCycles=3, angularCycles=4, radialPhase=0, angularPhase=0,
ori=0.0, texRes=64, angularRes=100, visibleWedge=(0, 360), rgb=None,
color=(1.0, 1.0, 1.0), colorSpace='rgb', dkl=None, lms=None,
contrast=1.0, opacity=1.0, depth=0, rgbPedestal=(0.0, 0.0, 0.0),
interpolate=False, name=None, autoLog=None, maskParams=None)

Stimulus object for drawing radial stimuli.

Examples: annulus, rotating wedge, checkerboard.

Ideal for fMRI retinotopy stimuli!

Many of the capabilities are built on top of the GratingStim.

This stimulus is still relatively new and I’m finding occasional glitches. It also takes longer to draw than a typical
GratingStim, so not recommended for tasks where high frame rates are needed.

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

_calcPosRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix.

_calcSizeRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix

_createTexture(tex, id, pixFormat, stim, res=128, maskParams=None, forcePOW2=True, dataType=None,
wrapping=True)

Create a new OpenGL 2D image texture.

Parameters
• tex (Any) – Texture data. Value can be anything that resembles image data.

• id (int or GLint) – Texture ID.

• pixFormat (GLenum or int) – Pixel format to use, values can be GL_ALPHA or GL_RGB.

• stim (Any) – Stimulus object using the texture.

• res (int) – The resolution of the texture (unless a bitmap image is used).

• maskParams (dict or None) – Additional parameters to configure the mask used with
this texture.

• forcePOW2 (bool) – Force the texture to be stored in a square memory area. For grating
stimuli (anything that needs multiple cycles) forcePOW2 should be set to be True. Other-
wise the wrapping of the texture will not work.

• dataType (class:~pyglet.gl.GLenum, int or None) – None, GL_UNSIGNED_BYTE,
GL_FLOAT. Only affects image files (numpy arrays will be float).

• wrapping (bool) – Enable wrapping of the texture. A texture will be set to repeat (or tile).

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

10.4. psychopy.visual - many visual stimuli 333

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

_getPolyAsRendered()

DEPRECATED. Return a list of vertices as rendered.

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_set(attrib, val, op='', log=None)
DEPRECATED since 1.80.04 + 1. Use setAttribute() and val2array() instead.

_setRadialAtribute(attr, value)
Internal helper function to reduce redundancy

_updateEverything()

Internal helper function for angularRes and visibleWedge (and init)

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

_updateListShaders()

The user shouldn’t need this method since it gets called after every call to .set() Basically it updates the
OpenGL representation of your stimulus if some parameter of the stimulus changes. Call it if you change
a property manually rather than using the .set() command

_updateMaskCoords()

calculate mask coords

_updateTextureCoords()

calculate texture coordinates if angularCycles or Phase change

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

_updateVerticesBase()

Update the base vertices if angular resolution changes.

These will be multiplied by the size and rotation matrix before rendering.

property anchor

angularCycles

Float (but Int is prettiest). Set the number of cycles going around the stimulus. i.e. it controls the number
of ‘spokes’.

Operations supported.

angularPhase

Float. Set the angular phase (like orientation) of the texture (wraps 0-1).

This is akin to setting the orientation of the texture around the stimulus in radians. If possible, it is more
efficient to rotate the stimulus using its ori setting instead.

Operations supported.

angularRes

The number of triangles used to make the sti.

Operations supported.

10.4. psychopy.visual - many visual stimuli 334

PsychoPy - Psychology software for Python, Release 2023.2.3

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property backgroundColor

Alternative way of setting fillColor

blendmode

The OpenGL mode in which the stimulus is draw

Can the ‘avg’ or ‘add’. Average (avg) places the new stimulus over the old one with a transparency given by
its opacity. Opaque stimuli will hide other stimuli transparent stimuli won’t. Add performs the arithmetic
sum of the new stimulus and the ones already present.

property borderColor

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

borderWidth

clearTextures()

Clear all textures associated with the stimulus.

As of v1.61.00 this is called automatically during garbage collection of your stimulus, so doesn’t need
calling explicitly by the user.

property color

Alternative way of setting foreColor.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

10.4. psychopy.visual - many visual stimuli 335

PsychoPy - Psychology software for Python, Release 2023.2.3

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

contains(x, y=None, units=None)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

10.4. psychopy.visual - many visual stimuli 336

PsychoPy - Psychology software for Python, Release 2023.2.3

depth

DEPRECATED, depth is now controlled simply by drawing order.

doDragging()

If this stimulus is draggable, do the necessary actions on a frame flip to drag it.

draggable

Can this stimulus be dragged by a mouse click?

draw(win=None)
Draw the stimulus in its relevant window. You must call this method after every win.flip() if you want the
stimulus to appear on that frame and then update the screen again.

If win is specified then override the normal window of this stimulus.

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property flipHoriz

property flipVert

property fontColor

Alternative way of setting foreColor.

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

10.4. psychopy.visual - many visual stimuli 337

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':

a blue stimulus using rgb255 space
stim.color = 255 # interpreted as (255, 255, 255)

which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

property height

interpolate

Whether to interpolate (linearly) the texture in the stimulus.

If set to False then nearest neighbour will be used when needed, otherwise some form of interpolation will
be used.

isDragging = False

property lineColor

Alternative way of setting borderColor.

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

10.4. psychopy.visual - many visual stimuli 338

PsychoPy - Psychology software for Python, Release 2023.2.3

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

lineWidth

mask

The alpha mask that forms the shape of the resulting image.

Value should be one of:

• ‘circle’, ‘gauss’, ‘raisedCos’, None (resets to default)

• or the name of an image file (most formats supported)

• or a numpy array (1xN) ranging -1:1

Note that the mask for RadialStim is somewhat different to the mask for ImageStim . For RadialStim it is a
1D array specifying the luminance profile extending outwards from the center of the stimulus, rather than
a 2D array

maskParams

Various types of input. Default to None.

This is used to pass additional parameters to the mask if those are needed.

• For ‘gauss’ mask, pass dict {‘sd’: 5} to control
standard deviation.

• For the ‘raisedCos’ mask, pass a dict: {‘fringeWidth’:0.2},
where ‘fringeWidth’ is a parameter (float, 0-1), determining the proportion of the patch that will
be blurred by the raised cosine edge.

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

property opacity

Determines how visible the stimulus is relative to background.

The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent). Operations are supported.
Precisely how this is used depends on the Blend Mode.

ori

The orientation of the stimulus (in degrees).

Should be a single value (scalar). Operations are supported.

Orientation convention is like a clock: 0 is vertical, and positive values rotate clockwise. Beyond 360 and
below zero values wrap appropriately.

overlaps(polygon)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

10.4. psychopy.visual - many visual stimuli 339

PsychoPy - Psychology software for Python, Release 2023.2.3

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

See coder demo, shapeContains.py

phase

Phase of the stimulus in each dimension of the texture.

Should be an x,y-pair or scalar

NB phase has modulus 1 (rather than 360 or 2*pi) This is a little unconventional but has the nice effect that
setting phase=t*n drifts a stimulus at n Hz.

property pos

The position of the center of the stimulus in the stimulus units

value should be an x,y-pair. Operations are also supported.

Example:

stim.pos = (0.5, 0) # Set slightly to the right of center
stim.pos += (0.5, -1) # Increment pos rightwards and upwards.

Is now (1.0, -1.0)
stim.pos *= 0.2 # Move stim towards the center.

Is now (0.2, -0.2)

Tip: If you need the position of stim in pixels, you can obtain it like this:

from psychopy.tools.monitorunittools import posToPix
posPix = posToPix(stim)

radialCycles

Float (but Int is prettiest). Set the number of texture cycles from centre to periphery, i.e. it controls the
number of ‘rings’.

Operations supported.

radialPhase

Float. Set the radial phase of the texture (wraps 0-1). This is the phase of the texture from the centre to the
perimeter of the stimulus (in radians). Can be used to drift concentric rings out/inwards.

Operations supported.

setAnchor(value, log=None)

setAngularCycles(value, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setAngularPhase(value, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setAutoDraw(value, log=None)
Sets autoDraw. Usually you can use ‘stim.attribute = value’ syntax instead, but use this method to suppress
the log message.

10.4. psychopy.visual - many visual stimuli 340

PsychoPy - Psychology software for Python, Release 2023.2.3

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setBackColor(color, colorSpace=None, operation='', log=None)

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setBackgroundColor(color, colorSpace=None, operation='', log=None)

setBlendmode(value, log=None)
DEPRECATED. Use ‘stim.parameter = value’ syntax instead

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setBorderWidth(newWidth, operation='', log=None)

setColor(color, colorSpace=None, operation='', log=None)

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setDepth(newDepth, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setFontColor(color, colorSpace=None, operation='', log=None)

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setLineColor(color, colorSpace=None, operation='', log=None)

10.4. psychopy.visual - many visual stimuli 341

PsychoPy - Psychology software for Python, Release 2023.2.3

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setLineWidth(newWidth, operation='', log=None)

setMask(value, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setOpacity(newOpacity, operation='', log=None)
Hard setter for opacity, allows the suppression of log messages and calls the update method

setOri(newOri, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setPhase(value, operation='', log=None)
DEPRECATED. Use ‘stim.parameter = value’ syntax instead

setPos(newPos, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setRadialCycles(value, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setRadialPhase(value, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setSF(value, operation='', log=None)
DEPRECATED. Use ‘stim.parameter = value’ syntax instead

setSize(newSize, operation='', units=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setTex(value, log=None)
DEPRECATED. Use ‘stim.parameter = value’ syntax instead

sf

Spatial frequency of the grating texture.

Should be a x,y-pair or scalar or None. If units == ‘deg’ or ‘cm’ units are in cycles per deg or cm as
appropriate. If units == ‘norm’ then sf units are in cycles per stimulus (and so SF scales with stimulus
size). If texture is an image loaded from a file then sf=None defaults to 1/stimSize to give one cycle of the
image.

property size

The size (width, height) of the stimulus in the stimulus units

Value should be x,y-pair, scalar (applies to both dimensions) or None (resets to default). Operations are
supported.

Sizes can be negative (causing a mirror-image reversal) and can extend beyond the window.

10.4. psychopy.visual - many visual stimuli 342

PsychoPy - Psychology software for Python, Release 2023.2.3

Example:

stim.size = 0.8 # Set size to (xsize, ysize) = (0.8, 0.8)
print(stim.size) # Outputs array([0.8, 0.8])
stim.size += (0.5, -0.5) # make wider and flatter: (1.3, 0.3)

Tip: if you can see the actual pixel range this corresponds to by looking at stim._sizeRendered

tex

Texture to used on the stimulus as a grating (aka carrier).

This can be one of various options:
• ‘sin’,’sqr’, ‘saw’, ‘tri’, None (resets to default)

• the name of an image file (most formats supported)

• a numpy array (1xN or NxN) ranging -1:1

If specifying your own texture using an image or numpy array you should ensure that the image has square
power-of-two dimensions (e.g. 256 x 256). If not then PsychoPy will up-sample your stimulus to the next
larger power of two.

texRes

Power-of-two int. Sets the resolution of the mask and texture. texRes is overridden if an array or image is
provided as mask.

Operations supported.

property units

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

updateOpacity()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox.

property vertices

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

visibleWedge

tuple (start, end) in degrees. Determines visible range.

(0, 360) is full visibility.

Operations supported.

property width

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

10.4. psychopy.visual - many visual stimuli 343

PsychoPy - Psychology software for Python, Release 2023.2.3

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.25 RatingScale

class psychopy.visual.RatingScale(*args, **kwargs)
A class for obtaining ratings, e.g., on a 1-to-7 or categorical scale.

A RatingScale instance is a re-usable visual object having a draw() method, with customizable appearance and
response options. draw() displays the rating scale, handles the subject’s mouse or key responses, and updates
the display. When the subject accepts a selection, .noResponse goes False (i.e., there is a response).

You can call the getRating() method anytime to get a rating, getRT() to get the decision time, or
getHistory() to obtain the entire set of (rating, RT) pairs.

There are five main elements of a rating scale: the scale (text above the line intended to be a reminder of how
to use the scale), the line (with tick marks), the marker (a moveable visual indicator on the line), the labels (text
below the line that label specific points), and the accept button. The appearance and function of elements can be
customized by the experimenter; it is not possible to orient a rating scale to be vertical. Multiple scales can be
displayed at the same time, and continuous real-time ratings can be obtained from the history.

The Builder RatingScale component gives a restricted set of options, but also allows full control over a Rat-
ingScale via the ‘customize_everything’ field.

A RatingScale instance has no idea what else is on the screen. The experimenter has to draw the item to be rated,
and handle escape to break or quit, if desired. The subject can use the mouse or keys to respond. Direction keys
(left, right) will move the marker in the smallest available increment (e.g., 1/10th of a tick-mark if precision =
10).

Example 1:

A basic 7-point scale:

ratingScale = visual.RatingScale(win)
item = <statement, question, image, movie, ...>
while ratingScale.noResponse:

item.draw()
ratingScale.draw()
win.flip()

rating = ratingScale.getRating()
decisionTime = ratingScale.getRT()
choiceHistory = ratingScale.getHistory()

Example 2:

10.4. psychopy.visual - many visual stimuli 344

PsychoPy - Psychology software for Python, Release 2023.2.3

For fMRI, sometimes only a keyboard can be used. If your response box sends keys 1-4, you could
specify left, right, and accept keys, and not need a mouse:

ratingScale = visual.RatingScale(
win, low=1, high=5, markerStart=4,
leftKeys='1', rightKeys = '2', acceptKeys='4')

Example 3:

Categorical ratings can be obtained using choices:

ratingScale = visual.RatingScale(
win, choices=['agree', 'disagree'],
markerStart=0.5, singleClick=True)

For other examples see Coder Demos -> stimuli -> ratingScale.py.

Authors
• 2010 Jeremy Gray: original code and on-going updates

• 2012 Henrik Singmann: tickMarks, labels, ticksAboveLine

• 2014 Jeremy Gray: multiple API changes (v1.80.00)

Parameters
win :

A Window object (required).

choices :
A list of items which the subject can choose among. choices takes precedence over low,
high, precision, scale, labels, and tickMarks.

low :
Lowest numeric rating (integer), default = 1.

high :
Highest numeric rating (integer), default = 7.

precision :
Portions of a tick to accept as input [1, 10, 60, 100]; default = 1 (a whole tick). Pressing a
key in leftKeys or rightKeys will move the marker by one portion of a tick. precision=60 is
intended to support ratings of time-based quantities, with seconds being fractional minutes
(or minutes being fractional hours). The display uses a colon (min:sec, or hours:min) to
signal this to participants. The value returned by getRating() will be a proportion of a minute
(e.g., 1:30 -> 1.5, or 59 seconds -> 59/60 = 0.98333). hours:min:sec is not supported.

scale :
Optional reminder message about how to respond or rate an item, displayed above the line;
default = ‘<low>=not at all, <high>=extremely’. To suppress the scale, set scale=None.

labels :
Text to be placed at specific tick marks to indicate their value. Can be just the ends (if given
2 labels), ends + middle (if given 3 labels), or all points (if given the same number of labels
as points).

tickMarks :
List of positions at which tick marks should be placed from low to high. The default is to
space tick marks equally, one per integer value.

10.4. psychopy.visual - many visual stimuli 345

PsychoPy - Psychology software for Python, Release 2023.2.3

tickHeight :
The vertical height of tick marks: 1.0 is the default height (above line), -1.0 is below the
line, and 0.0 suppresses the display of tickmarks. tickHeight is purely cosmetic, and can
be fractional, e.g., 1.2.

marker :
The moveable visual indicator of the current selection. The predefined styles are ‘triangle’,
‘circle’, ‘glow’, ‘slider’, and ‘hover’. A slider moves smoothly when there are enough screen
positions to move through, e.g., low=0, high=100. Hovering requires a set of choices, and
allows clicking directly on individual choices; dwell-time is not recorded. Can also be set
to a custom marker stimulus: any object with a .draw() method and .pos will work, e.g.,
visual.TextStim(win, text='[]', units='norm').

markerStart :
The location or value to be pre-selected upon initial display, either numeric or one of the
choices. Can be fractional, e.g., midway between two options.

markerColor :
Color to use for a predefined marker style, e.g., ‘DarkRed’.

markerExpansion :
Only affects the glow marker: How much to expand or contract when moving rightward;
0=none, negative shrinks.

singleClick :
Enable a mouse click to both select and accept the rating, default = False. A legal key press
will also count as a singleClick. The ‘accept’ box is visible, but clicking it has no effect.

pos
[tuple (x, y)] Position of the rating scale on the screen. The midpoint of the line will be
positioned at (x, y); default = (0.0, -0.4) in norm units

size :
How much to expand or contract the overall rating scale display. Default size = 1.0. For
larger than the default, set size > 1; for smaller, set < 1.

stretch:
Like size, but only affects the horizontal direction.

textSize :
The size of text elements, relative to the default size (i.e., a scaling factor, not points).

textColor :
Color to use for labels and scale text; default = ‘LightGray’.

textFont :
Name of the font to use; default = ‘Helvetica Bold’.

showValue :
Show the subject their current selection default = True. Ignored if singleClick is True.

showAccept :
Show the button to click to accept the current value by using the mouse; default = True.

acceptPreText :
The text to display before any value has been selected.

acceptText :
The text to display in the ‘accept’ button after a value has been selected.

acceptSize :
The width of the accept box relative to the default (e.g., 2 is twice as wide).

10.4. psychopy.visual - many visual stimuli 346

PsychoPy - Psychology software for Python, Release 2023.2.3

acceptKeys :
A list of keys that are used to accept the current response; default = ‘return’.

leftKeys :
A list of keys that each mean “move leftwards”; default = ‘left’.

rightKeys :
A list of keys that each mean “move rightwards”; default = ‘right’.

respKeys :
A list of keys to use for selecting choices, in the desired order. The first item will be the
left-most choice, the second item will be the next choice, and so on.

skipKeys :
List of keys the subject can use to skip a response, default = ‘tab’. To require a response to
every item, set skipKeys=None.

lineColor :
The RGB color to use for the scale line, default = ‘White’.

mouseOnly :
Require the subject to use the mouse (any keyboard input is ignored), default = False. Can
be used to avoid competing with other objects for keyboard input.

noMouse:
Require the subject to use keys to respond; disable and hide the mouse. markerStart will
default to the left end.

minTime :
Seconds that must elapse before a response can be accepted, default = 0.4.

maxTime :
Seconds after which a response cannot be accepted. If maxTime <= minTime, there’s no
time limit. Default = 0.0 (no time limit).

disappear :
Whether the rating scale should vanish after a value is accepted. Can be useful when showing
multiple scales.

flipVert :
Whether to mirror-reverse the rating scale in the vertical direction.

10.4.26 psychopy.visual.Rect

Stimulus class for drawing rectangles and squares.

10.4. psychopy.visual - many visual stimuli 347

PsychoPy - Psychology software for Python, Release 2023.2.3

Overview

Rect(win[, width, height, units, lineWidth, ...]) Creates a rectangle of given width and height as a special
case of a ShapeStim.

Rect.width

Rect.height

Rect.units

Rect.lineWidth Width of the line in pixels.
Rect.lineColor Alternative way of setting borderColor.
Rect.lineColorSpace Deprecated, please use colorSpace to set color space for

the entire object
Rect.fillColor Set the fill color for the shape.
Rect.fillColorSpace Deprecated, please use colorSpace to set color space for

the entire object.
Rect.pos The position of the center of the stimulus in the stimulus

units
Rect.size The size (width, height) of the stimulus in the stimulus

units
Rect.ori The orientation of the stimulus (in degrees).
Rect.opacity Determines how visible the stimulus is relative to back-

ground.
Rect.contrast A value that is simply multiplied by the color.
Rect.depth DEPRECATED, depth is now controlled simply by

drawing order.
Rect.interpolate If True the edge of the line will be anti-aliased.
Rect.lineRGB Legacy property for setting the border color of a stimulus

in RGB, instead use obj._borderColor.rgb
Rect.fillRGB Legacy property for setting the fill color of a stimulus in

RGB, instead use obj._fillColor.rgb
Rect.name The name (str) of the object to be using during logged

messages about this stim.
Rect.autoLog Whether every change in this stimulus should be auto

logged.
Rect.autoDraw Determines whether the stimulus should be automati-

cally drawn on every frame flip.
Rect.color Set the color of the shape.
Rect.colorSpace The name of the color space currently being used

Details

class psychopy.visual.rect.Rect(win, width=0.5, height=0.5, units='', lineWidth=1.5, lineColor=False,
fillColor=False, colorSpace='rgb', pos=(0, 0), size=None, anchor=None,
ori=0.0, opacity=None, contrast=1.0, depth=0, interpolate=True,
draggable=False, name=None, autoLog=None, autoDraw=False,
color=None, lineColorSpace=None, fillColorSpace=None,
lineRGB=False, fillRGB=False)

Creates a rectangle of given width and height as a special case of a ShapeStim.

Parameters

10.4. psychopy.visual - many visual stimuli 348

PsychoPy - Psychology software for Python, Release 2023.2.3

• win (Window) – Window this shape is being drawn to. The stimulus instance will allocate its
required resources using that Windows context. In many cases, a stimulus instance cannot be
drawn on different windows unless those windows share the same OpenGL context, which
permits resources to be shared between them.

• width (float or int) – The width or height of the shape. DEPRECATED use size to
define the dimensions of the shape on initialization. If size is specified the values of width
and height are ignored. This is to provide legacy compatibility for existing applications.

• height (float or int) – The width or height of the shape. DEPRECATED use size to
define the dimensions of the shape on initialization. If size is specified the values of width
and height are ignored. This is to provide legacy compatibility for existing applications.

• units (str) – Units to use when drawing. This will affect how parameters and attributes
pos, size and radius are interpreted.

• lineWidth (float) – Width of the shape’s outline.

• lineColor (array_like, str, Color or None) – Color of the shape outline and fill. If None, a
fully transparent color is used which makes the fill or outline invisible.

• fillColor (array_like, str, Color or None) – Color of the shape outline and fill. If None, a
fully transparent color is used which makes the fill or outline invisible.

• lineColorSpace (str) – Colorspace to use for the outline and fill. These change how the
values passed to lineColor and fillColor are interpreted. Deprecated. Please use colorSpace
to set both outline and fill colorspace. These arguments may be removed in a future version.

• fillColorSpace (str) – Colorspace to use for the outline and fill. These change how the
values passed to lineColor and fillColor are interpreted. Deprecated. Please use colorSpace
to set both outline and fill colorspace. These arguments may be removed in a future version.

• pos (array_like) – Initial position (x, y) of the shape on-screen relative to the origin located
at the center of the window or buffer in units. This can be updated after initialization by
setting the pos property. The default value is (0.0, 0.0) which results in no translation.

• size (array_like, float, int or None) – Width and height of the shape as (w, h) or
[w, h]. If a single value is provided, the width and height will be set to the same specified
value. If None is specified, the size will be set with values passed to width and height.

• ori (float) – Initial orientation of the shape in degrees about its origin. Positive values will
rotate the shape clockwise, while negative values will rotate counterclockwise. The default
value for ori is 0.0 degrees.

• opacity (float) – Opacity of the shape. A value of 1.0 indicates fully opaque and 0.0 is
fully transparent (therefore invisible). Values between 1.0 and 0.0 will result in colors being
blended with objects in the background. This value affects the fill (fillColor) and outline
(lineColor) colors of the shape.

• contrast (float) – Contrast level of the shape (0.0 to 1.0). This value is used to modulate
the contrast of colors passed to lineColor and fillColor.

• depth (int) – Depth layer to draw the shape when autoDraw is enabled. DEPRECATED

• interpolate (bool) – Enable smoothing (anti-aliasing) when drawing shape outlines. This
produces a smoother (less-pixelated) outline of the shape.

• lineRGB (array_like, Color or None) – Deprecated. Please use lineColor and fillColor.
These arguments may be removed in a future version.

• fillRGB (array_like, Color or None) – Deprecated. Please use lineColor and fillColor.
These arguments may be removed in a future version.

10.4. psychopy.visual - many visual stimuli 349

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

• name (str) – Optional name of the stimuli for logging.

• autoLog (bool) – Enable auto-logging of events associated with this stimuli. Useful for
debugging and to track timing when used in conjunction with autoDraw.

• autoDraw (bool) – Enable auto drawing. When True, the stimulus will be drawn every
frame without the need to explicitly call the draw() method.

• color (array_like, str, Color or None) – Sets both the initial lineColor and fillColor of the
shape.

• colorSpace (str) – Sets the colorspace, changing how values passed to lineColor and
fillColor are interpreted.

• draggable (bool) – Can this stimulus be dragged by a mouse click?

width, height

The width and height of the rectangle. Values are aliased with fields in the size attribute. Use these values
to adjust the size of the rectangle in a single dimension after initialization.

Type
float or int

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

static _calcEquilateralVertices(edges, radius=0.5)
Get vertices for an equilateral shape with a given number of sides, will assume radius is 0.5 (relative) but
can be manually specified

_calcPosRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix.

_calcSizeRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix

static _calculateMinEdges(lineWidth, threshold=180)
Calculate how many points are needed in an equilateral polygon for the gap between line rects to be < 1px
and for corner angles to exceed a threshold.

In other words, how many edges does a polygon need to have to appear smooth?

lineWidth
[int, float, np.ndarray] Width of the line in pixels

threshold
[int] Maximum angle (degrees) for corners of the polygon, useful for drawing a circle. Supply 180 for
no maximum angle.

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_getPolyAsRendered()

DEPRECATED. Return a list of vertices as rendered.

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

10.4. psychopy.visual - many visual stimuli 350

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

_set(attrib, val, op='', log=None)
DEPRECATED since 1.80.04 + 1. Use setAttribute() and val2array() instead.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property backgroundColor

Alternative way of setting fillColor

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

closeShape

Should the last vertex be automatically connected to the first?

If you’re using Polygon, Circle or Rect, closeShape=True is assumed and shouldn’t be changed.

color

Set the color of the shape. Sets both fillColor and lineColor simultaneously if applicable.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

10.4. psychopy.visual - many visual stimuli 351

PsychoPy - Psychology software for Python, Release 2023.2.3

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

contains(x, y=None, units=None)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

10.4. psychopy.visual - many visual stimuli 352

PsychoPy - Psychology software for Python, Release 2023.2.3

depth

DEPRECATED, depth is now controlled simply by drawing order.

doDragging()

If this stimulus is draggable, do the necessary actions on a frame flip to drag it.

draggable

Can this stimulus be dragged by a mouse click?

draw(win=None, keepMatrix=False)
Draw the stimulus in its relevant window.

You must call this method after every MyWin.flip() if you want the stimulus to appear on that frame and
then update the screen again.

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property fontColor

Alternative way of setting foreColor.

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

10.4. psychopy.visual - many visual stimuli 353

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':

a blue stimulus using rgb255 space
stim.color = 255 # interpreted as (255, 255, 255)

which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

interpolate

If True the edge of the line will be anti-aliased.

property lineColor

Alternative way of setting borderColor.

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

10.4. psychopy.visual - many visual stimuli 354

PsychoPy - Psychology software for Python, Release 2023.2.3

lineWidth

Width of the line in pixels.
Operations supported.

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

property opacity

Determines how visible the stimulus is relative to background.

The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent). Operations are supported.
Precisely how this is used depends on the Blend Mode.

ori

The orientation of the stimulus (in degrees).

Should be a single value (scalar). Operations are supported.

Orientation convention is like a clock: 0 is vertical, and positive values rotate clockwise. Beyond 360 and
below zero values wrap appropriately.

overlaps(polygon)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

See coder demo, shapeContains.py

property pos

The position of the center of the stimulus in the stimulus units

value should be an x,y-pair. Operations are also supported.

Example:

stim.pos = (0.5, 0) # Set slightly to the right of center
stim.pos += (0.5, -1) # Increment pos rightwards and upwards.

Is now (1.0, -1.0)
stim.pos *= 0.2 # Move stim towards the center.

Is now (0.2, -0.2)

Tip: If you need the position of stim in pixels, you can obtain it like this:

from psychopy.tools.monitorunittools import posToPix
posPix = posToPix(stim)

setAutoDraw(value, log=None)
Sets autoDraw. Usually you can use ‘stim.attribute = value’ syntax instead, but use this method to suppress
the log message.

10.4. psychopy.visual - many visual stimuli 355

PsychoPy - Psychology software for Python, Release 2023.2.3

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setColor(color, colorSpace=None, operation='', log=None)
Sets both the line and fill to be the same color.

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setDepth(newDepth, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setHeight(height, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setOpacity(newOpacity, operation='', log=None)
Hard setter for opacity, allows the suppression of log messages and calls the update method

setOri(newOri, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

10.4. psychopy.visual - many visual stimuli 356

PsychoPy - Psychology software for Python, Release 2023.2.3

setPos(newPos, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setSize(size, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

Operations supported.

setVertices(value=None, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setWidth(width, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

property size

The size (width, height) of the stimulus in the stimulus units

Value should be x,y-pair, scalar (applies to both dimensions) or None (resets to default). Operations are
supported.

Sizes can be negative (causing a mirror-image reversal) and can extend beyond the window.

Example:

stim.size = 0.8 # Set size to (xsize, ysize) = (0.8, 0.8)
print(stim.size) # Outputs array([0.8, 0.8])
stim.size += (0.5, -0.5) # make wider and flatter: (1.3, 0.3)

Tip: if you can see the actual pixel range this corresponds to by looking at stim._sizeRendered

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

updateOpacity()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox.

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2

(continues on next page)

10.4. psychopy.visual - many visual stimuli 357

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.27 psychopy.visual.Rift

Overview

Rift([fovType, trackingOriginType, ...]) Class provides a display and peripheral interface for
the Oculus Rift (see: https://www.oculus.com/) head-
mounted display.

Rift.close() Close the window and cleanly shutdown the LibOVR
session.

Rift.size Size property to get the dimensions of the view buffer
instead of the window.

Rift.setSize(value[, log])

Rift.perfHudMode([mode]) Set the performance HUD mode.
Rift.hidePerfHud() Hide the performance HUD.
Rift.stereoDebugHudMode(mode) Set the debug stereo HUD mode.
Rift.setStereoDebugHudOption(option, value) Configure stereo debug HUD guides.
Rift.userHeight Get user height in meters (float).
Rift.eyeHeight Eye height in meters (float).
Rift.eyeToNoseDistance Eye to nose distance in meters (float).
Rift.eyeOffset Eye separation in centimeters (float).
Rift.hasPositionTracking True if the HMD is capable of tracking position.
Rift.hasOrientationTracking True if the HMD is capable of tracking orientation.
Rift.hasMagYawCorrection True if this HMD supports yaw drift correction.
Rift.manufacturer Get the connected HMD's manufacturer (str).
Rift.serialNumber Get the connected HMD's unique serial number (str).
Rift.hid USB human interface device (HID) identifiers (int, int).
Rift.displayResolution Get the HMD's raster display size (int, int).
Rift.displayRefreshRate Get the HMD's display refresh rate in Hz (float).
Rift.pixelsPerTanAngleAtCenter Horizontal and vertical pixels per tangent angle (=1) at

the center of the display.
Rift.tanAngleToNDC(horzTan, vertTan) Convert tan angles to the normalized device coordinates

for the current buffer.
Rift.trackerCount Number of attached trackers.
Rift.getTrackerInfo(trackerIdx) Get tracker information.
Rift.headLocked True if head locking is enabled.
Rift.trackingOriginType Current tracking origin type (str).

continues on next page

10.4. psychopy.visual - many visual stimuli 358

https://www.oculus.com/

PsychoPy - Psychology software for Python, Release 2023.2.3

Table 10.2 – continued from previous page
Rift.recenterTrackingOrigin() Recenter the tracking origin using the current head posi-

tion.
Rift.specifyTrackingOrigin(pose) Specify a tracking origin.
Rift.specifyTrackingOriginPosOri([pos, ori]) Specify a tracking origin using a pose and orientation.
Rift.clearShouldRecenterFlag() Clear the 'shouldRecenter' status flag at the API level.
Rift.testBoundary(deviceType[, bounadryType]) Test if tracked devices are colliding with the play area

boundary.
Rift.sensorSampleTime Sensor sample time (float).
Rift.getDevicePose(deviceName[, absTime, ...]) Get the pose of a tracked device.
Rift.getTrackingState([absTime, latencyMarker]) Get the tracking state of the head and hands.
Rift.calcEyePoses(headPose[, originPose]) Calculate eye poses for rendering.
Rift.eyeRenderPose Computed eye pose for the current buffer.
Rift.shouldQuit True if the user requested the application should quit

through the headset's interface.
Rift.isVisible True if the app has focus in the HMD and is visible to

the viewer.
Rift.hmdMounted True if the HMD is mounted on the user's head.
Rift.hmdPresent True if the HMD is present.
Rift.shouldRecenter True if the user requested the origin be re-centered

through the headset's interface.
Rift.hasInputFocus True if the application currently has input focus.
Rift.overlayPresent

Rift.setBuffer(buffer[, clear]) Set the active draw buffer.
Rift.getPredictedDisplayTime() Get the predicted time the next frame will be displayed

on the HMD.
Rift.getTimeInSeconds() Absolute time in seconds.
Rift.viewMatrix The view matrix for the current eye buffer.
Rift.nearClip Distance to the near clipping plane in meters.
Rift.farClip Distance to the far clipping plane in meters.
Rift.projectionMatrix Get the projection matrix for the current eye buffer.
Rift.isBoundaryVisible True if the VR boundary is visible.
Rift.getBoundaryDimensions([boundaryType]) Get boundary dimensions.
Rift.connectedControllers Connected controller types (list of str)
Rift.updateInputState([controllers]) Update all connected controller states.
Rift.flip([clearBuffer, drawMirror]) Submit view buffer images to the HMD's compositor for

display at next V-SYNC and draw the mirror texture to
the on-screen window.

Rift.multiplyViewMatrixGL() Multiply the local eye pose transformation modelMatrix
obtained from the SDK using glMultMatrixf.

Rift.multiplyProjectionMatrixGL() Multiply the current projection modelMatrix obtained
from the SDK using glMultMatrixf.

Rift.setRiftView([clearDepth]) Set head-mounted display view.
Rift.setDefaultView([clearDepth]) Return to default projection.
Rift.getThumbstickValues([controller, deadzone]) Get controller thumbstick values.
Rift.getIndexTriggerValues([controller, ...]) Get the values of the index triggers.
Rift.getHandTriggerValues([controller, dead-
zone])

Get the values of the hand triggers.

Rift.getButtons(buttons[, controller, testState]) Get button states from a controller.
Rift.getTouches(touches[, controller, testState]) Get touch states from a controller.
Rift.startHaptics(controller[, frequency, ...]) Start haptic feedback (vibration).
Rift.stopHaptics(controller) Stop haptic feedback.

continues on next page

10.4. psychopy.visual - many visual stimuli 359

PsychoPy - Psychology software for Python, Release 2023.2.3

Table 10.2 – continued from previous page
Rift.createHapticsBuffer(samples) Create a new haptics buffer.
Rift.submitControllerVibration(controller, ...) Submit a haptics buffer to begin controller vibration.
Rift.createPose([pos, ori]) Create a new Rift pose object (LibOVRPose).
Rift.createBoundingBox([extents]) Create a new bounding box object (LibOVRBounds).
Rift.isPoseVisible(pose) Check if a pose object if visible to the present eye.

Details

class psychopy.visual.rift.Rift(fovType='recommended', trackingOriginType='floor', texelsPerPixel=1.0,
headLocked=False, highQuality=True, monoscopic=False, samples=1,
mirrorMode='default', mirrorRes=None, warnAppFrameDropped=True,
autoUpdateInput=True, legacyOpenGL=True, *args, **kwargs)

Class provides a display and peripheral interface for the Oculus Rift (see: https://www.oculus.com/) head-
mounted display.

Requires PsychXR 0.2.4 to be installed. Setting the winType=’glfw’ is preferred for VR applications.

Parameters
• fovType (str) – Field-of-view (FOV) configuration type. Using ‘recommended’ auto-

configures the FOV using the recommended parameters computed by the runtime. Using
‘symmetric’ forces a symmetric FOV using optimal parameters from the SDK, this mode is
required for displaying 2D stimuli. Specifying ‘max’ will use the maximum FOVs supported
by the HMD.

• trackingOriginType (str) – Specify the HMD origin type. If ‘floor’, the height of the
user is added to the head tracker by LibOVR.

• texelsPerPixel (float) – Texture pixels per display pixel at FOV center. A value of 1.0
results in 1:1 mapping. A fractional value results in a lower resolution draw buffer which
may increase performance.

• headLocked (bool) – Lock the compositor render layer in-place, disabling Asynchronous
Space Warp (ASW). Enable this if you plan on computing eye poses using custom or modified
head poses.

• highQuality (bool) – Configure the compositor to use anisotropic texture sampling (4x).
This reduces aliasing artifacts resulting from high frequency details particularly in the pe-
riphery.

• nearClip (float) – Location of the near and far clipping plane in GL units (meters by
default) from the viewer. These values can be updated after initialization.

• farClip (float) – Location of the near and far clipping plane in GL units (meters by de-
fault) from the viewer. These values can be updated after initialization.

• monoscopic (bool) – Enable monoscopic rendering mode which presents the same image
to both eyes. Eye poses used will be both centered at the HMD origin. Monoscopic mode
uses a separate rendering pipeline which reduces VRAM usage. When in monoscopic mode,
you do not need to call ‘setBuffer’ prior to rendering (doing so will do have no effect).

• samples (int or str) – Specify the number of samples for multi-sample anti-aliasing
(MSAA). When >1, multi-sampling logic is enabled in the rendering pipeline. If ‘max’ is
specified, the largest number of samples supported by the platform is used. If floating point
textures are used, MSAA sampling is disabled. Must be power of two value.

10.4. psychopy.visual - many visual stimuli 360

https://www.oculus.com/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

• mirrorMode (str) – On-screen mirror mode. Values ‘left’ and ‘right’ show rectilinear im-
ages of a single eye. Value ‘distortion` shows the post-distortion image after being processed
by the compositor. Value ‘default’ displays rectilinear images of both eyes side-by-side.

• mirrorRes (list of int) – Resolution of the mirror texture. If None, the resolution will
match the window size. The value of mirrorRes is used for to define the resolution of movie
frames.

• warnAppFrameDropped (bool) – Log a warning if the application drops a frame. This
occurs when the application fails to submit a frame to the compositor on-time. Application
frame drops can have many causes, such as running routines in your application loop that
take too long to complete. However, frame drops can happen sporadically due to driver bugs
and running background processes (such as Windows Update). Use the performance HUD
to help diagnose the causes of frame drops.

• autoUpdateInput (bool) – Automatically update controller input states at the start of each
frame. If False, you must manually call updateInputState before getting input values from
LibOVR managed input devices.

• legacyOpenGL (bool) – Disable ‘immediate mode’ OpenGL calls in the rendering pipeline.
Specifying False maintains compatibility with existing PsychoPy stimuli drawing routines.
Use True when computing transformations using some other method and supplying shaders
matrices directly.

_assignFlipTime(obj, attrib)
Helper function to assign the time of last flip to the obj.attrib

Parameters
• obj (dict or object) – A mutable object (usually a dict of class instance).

• attrib (str) – Key or attribute of obj to assign the flip time to.

_checkMatchingSizes(requested, actual)
Checks whether the requested and actual screen sizes differ. If not then a warning is output and the window
size is set to actual

_cleanEditables()

Make sure there are no dead refs in the editables list

_endOfFlip(clearBuffer)
Override end of flip with custom color channel masking if required.

_getFrame(rect=None, buffer='mirror')
Return the current HMD view as an image.

Parameters
• rect (array_like) – Rectangle [x, y, w, h] defining a sub-region of the frame to capture.

This should remain None for HMD frames.

• buffer (str, optional) – Buffer to capture. For the HMD, only ‘mirror’ is available at
this time.

Returns
Buffer pixel contents as a PIL/Pillow image object.

Return type
Image

10.4. psychopy.visual - many visual stimuli 361

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

_getRegionOfFrame(rect=(-1, 1, 1, -1), buffer='front', power2=False, squarePower2=False)
Deprecated function, here for historical reasons. You may now use :py:attr:`~Window._getFrame() and
specify a rect to get a sub-region, just as used here.

power2 can be useful with older OpenGL versions to avoid interpolation in PatchStim. If power2 or
squarePower2, it will expand rect dimensions up to next power of two. squarePower2 uses the max dimen-
sions. You need to check what your hardware & OpenGL supports, and call _getRegionOfFrame() as
appropriate.

_prepareMonoFrame(clear=True)
Prepare a frame for monoscopic rendering. This is called automatically after _startHmdFrame() if mono-
scopic rendering is enabled.

_renderFBO()

Perform a warp operation.

(in this case a copy operation without any warping)

_resolveMSAA()

Resolve multisample anti-aliasing (MSAA). If MSAA is enabled, drawing operations are diverted to a
special multisample render buffer. Pixel data must be ‘resolved’ by blitting it to the swap chain texture. If
not, the texture will be blank.

Notes

You cannot perform operations on the default FBO (at frameBuffer) when MSAA is enabled. Any changes
will be over-written when ‘flip’ is called.

_setCurrent()

Make this window’s OpenGL context current.

If called on a window whose context is current, the function will return immediately. This reduces the
number of redundant calls if no context switch is required. If useFBO=True, the framebuffer is bound after
the context switch.

_setupFrameBuffer()

Override the default framebuffer init code in window.Window to use the HMD swap chain. The HMD’s
swap texture and render buffer are configured here.

If multisample anti-aliasing (MSAA) is enabled, a secondary render buffer is created. Rendering is diverted
to the multi-sample buffer when drawing, which is then resolved into the HMD’s swap chain texture prior
to committing it to the chain. Consequently, you cannot pass the texture attached to the FBO specified by
frameBuffer until the MSAA buffer is resolved. Doing so will result in a blank texture.

_setupGL()

Setup OpenGL state for this window.

_setupGamma(gammaVal)
A private method to work out how to handle gamma for this Window given that the user might have specified
an explicit value, or maybe gave a Monitor.

_startHmdFrame()

Prepare to render an HMD frame. This must be called every frame before flipping or setting the view buffer.

This function will wait until the HMD is ready to begin rendering before continuing. The current frame
texture from the swap chain are pulled from the SDK and made available for binding.

10.4. psychopy.visual - many visual stimuli 362

PsychoPy - Psychology software for Python, Release 2023.2.3

_startOfFlip()

Custom _startOfFlip for HMD rendering. This finalizes the HMD texture before diverting drawing
operations back to the on-screen window. This allows flip to swap the on-screen and HMD buffers when
called. This function always returns True.

Return type
True

_updatePerfStats()

Update and process performance statistics obtained from LibOVR. This should be called at the beginning
of each frame to get the stats of the last frame.

This is called automatically when _waitToBeginHmdFrame() is called at the beginning of each frame.

_updateProjectionMatrix()

Update or re-calculate projection matrices based on the current render descriptor configuration.

_waitToBeginHmdFrame()

Wait until the HMD surfaces are available for rendering.

addEditable(editable)
Adds an editable element to the screen (something to which characters can be sent with meaning from the
keyboard).

The current editable object receiving chars is Window.currentEditable

Parameters
editable –

Returns
property ambientLight

Ambient light color for the scene [r, g, b, a]. Values range from 0.0 to 1.0. Only applicable if useLights is
True.

Examples

Setting the ambient light color:

win.ambientLight = [0.5, 0.5, 0.5]

don't do this!!!
win.ambientLight[0] = 0.5
win.ambientLight[1] = 0.5
win.ambientLight[2] = 0.5

applyEyeTransform(clearDepth=True)
Apply the current view and projection matrices.

Matrices specified by attributes viewMatrix and projectionMatrix are applied using ‘immediate mode’
OpenGL functions. Subsequent drawing operations will be affected until flip() is called.

All transformations in GL_PROJECTION and GL_MODELVIEW matrix stacks will be cleared (set to identity)
prior to applying.

Parameters
clearDepth (bool) – Clear the depth buffer. This may be required prior to rendering 3D
objects.

10.4. psychopy.visual - many visual stimuli 363

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Using a custom view and projection matrix:

Must be called every frame since these values are reset after
`flip()` is called!
win.viewMatrix = viewtools.lookAt(...)
win.projectionMatrix = viewtools.perspectiveProjectionMatrix(...)
win.applyEyeTransform()
draw 3D objects here ...

property aspect

Aspect ratio of the current viewport (width / height).

backgroundFit

How should the background image of this window fit? Options are:

None, “None”, “none”
No scaling is applied, image is present at its pixel size unaltered.

“cover”
Image is scaled such that it covers the whole screen without changing its aspect ratio. In other
words, both dimensions are evenly scaled such that its SHORTEST dimension matches the window’s
LONGEST dimension.

“contain”
Image is scaled such that it is contained within the screen without changing its aspect ratio. In other
words, both dimensions are evenly scaled such that its LONGEST dimension matches the window’s
SHORTEST dimension.

“scaleDown”, “scale-down”, “scaledown”
If image is bigger than the window along any dimension, it will behave as if backgroundFit were
“contain”. Otherwise, it will behave as if backgroundFit were None.

backgroundImage

Background image for the window, can be either a visual.ImageStim object or anything which could be
passed to visual.ImageStim.image to create one. Will be drawn each time win.flip() is called, meaning it is
always below all other contents of the window.

blendMode

Blend mode to use.

calcEyePoses(headPose, originPose=None)
Calculate eye poses for rendering.

This function calculates the eye poses to define the viewpoint transformation for each eye buffer. Upon
starting a new frame, the application loop is halted until this function is called and returns.

Once this function returns, setBuffer may be called and frame rendering can commence. The computed eye
pose for the selected buffer is accessible through the eyeRenderPose attribute after calling setBuffer().
If monoscopic=True, the eye poses are set to the head pose.

The source data specified to headPose can originate from the tracking state retrieved by calling
getTrackingState(), or from other sources. If a custom head pose is specified (for instance, from a
motion tracker), you must ensure head-locking is enabled to prevent the ASW feature of the compositor
from engaging. Furthermore, you must specify sensor sample time for motion-to-photon calculation de-
rived from the sample time of the custom tracking source.

Parameters

10.4. psychopy.visual - many visual stimuli 364

PsychoPy - Psychology software for Python, Release 2023.2.3

• headPose (LibOVRPose) – Head pose to use.

• originPose (LibOVRPose, optional) – Origin of tracking in the VR scene.

Examples

Get the tracking state and calculate the eye poses:

get tracking state at predicted mid-frame time
trackingState = hmd.getTrackingState()

get the head pose from the tracking state
headPose = trackingState.headPose.thePose
hmd.calcEyePoses(headPose) # compute eye poses

begin rendering to each eye
for eye in ('left', 'right'):

hmd.setBuffer(eye)
hmd.setRiftView()
draw stuff here ...

Using a custom head pose (make sure headLocked=True before doing this):

headPose = createPose((0., 1.75, 0.))
hmd.calcEyePoses(headPose) # compute eye poses

callOnFlip(function, *args, **kwargs)
Call a function immediately after the next flip() command.

The first argument should be the function to call, the following args should be used exactly as you would
for your normal call to the function (can use ordered arguments or keyword arguments as normal).

e.g. If you have a function that you would normally call like this:

pingMyDevice(portToPing, channel=2, level=0)

then you could call callOnFlip() to have the function call synchronized with the frame flip like this:

win.callOnFlip(pingMyDevice, portToPing, channel=2, level=0)

clearAutoDraw()

Remove all autoDraw components, meaning they get autoDraw set to False and are not added to any list (as
in .stashAutoDraw)

clearBuffer(color=True, depth=False, stencil=False)
Clear the present buffer (to which you are currently drawing) without flipping the window.

Useful if you want to generate movie sequences from the back buffer without actually taking the time to
flip the window.

Set color prior to clearing to set the color to clear the color buffer to. By default, the depth buffer is cleared
to a value of 1.0.

Parameters
• color (bool) – Buffers to clear.

• depth (bool) – Buffers to clear.

10.4. psychopy.visual - many visual stimuli 365

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

• stencil (bool) – Buffers to clear.

Examples

Clear the color buffer to a specified color:

win.color = (1, 0, 0)
win.clearBuffer(color=True)

Clear only the depth buffer, depthMask must be True or else this will have no effect. Depth mask is usually
True by default, but may change:

win.depthMask = True
win.clearBuffer(color=False, depth=True, stencil=False)

clearShouldRecenterFlag()

Clear the ‘shouldRecenter’ status flag at the API level.

close()

Close the window and cleanly shutdown the LibOVR session.

property color

Set the color of the window.

This command sets the color that the blank screen will have on the next clear operation. As a result it
effectively takes TWO flip() operations to become visible (the first uses the color to create the new
screen, the second presents that screen to the viewer). For this reason, if you want to changed background
color of the window “on the fly”, it might be a better idea to draw a Rect that fills the whole window with
the desired Rect.fillColor attribute. That’ll show up on first flip.

See other stimuli (e.g. GratingStim.color) for more info on the color attribute which essentially works
the same on all PsychoPy stimuli.

See Color spaces for further information about the ways to specify colors and their various implications.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

10.4. psychopy.visual - many visual stimuli 366

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

property connectedControllers

Connected controller types (list of str)

property contentScaleFactor

Scaling factor (float) to use when drawing to the backbuffer to convert framebuffer to client coordinates.

See also:
getContentScaleFactor

property convergeOffset

Convergence offset from monitor in centimeters.

This is value corresponds to the offset from screen plane to set the convergence plane (or point for toe-in
projections). Positive offsets move the plane farther away from the viewer, while negative offsets nearer.
This value is used by setPerspectiveView and should be set before calling it to take effect.

Notes

• This value is only applicable for setToeIn and setOffAxisView.

coordToRay(screenXY)
Convert a screen coordinate to a direction vector.

Takes a screen/window coordinate and computes a vector which projects a ray from the viewpoint through
it (line-of-sight). Any 3D point touching the ray will appear at the screen coordinate.

Uses the current viewport and projectionMatrix to calculate the vector. The vector is in eye-space, where
the origin of the scene is centered at the viewpoint and the forward direction aligned with the -Z axis. A
ray of (0, 0, -1) results from a point at the very center of the screen assuming symmetric frustums.

Note that if you are using a flipped/mirrored view, you must invert your supplied screen coordinates
(screenXY) prior to passing them to this function.

Parameters
screenXY (array_like) – X, Y screen coordinate. Must be in units of the window.

Returns
Normalized direction vector [x, y, z].

Return type
ndarray

Examples

Getting the direction vector between the mouse cursor and the eye:

mx, my = mouse.getPos()
dir = win.coordToRay((mx, my))

Set the position of a 3D stimulus object using the mouse, constrained to a plane. The object origin will
always be at the screen coordinate of the mouse cursor:

the eye position in the scene is defined by a rigid body pose
win.viewMatrix = camera.getViewMatrix()
win.applyEyeTransform()

(continues on next page)

10.4. psychopy.visual - many visual stimuli 367

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

get the mouse location and calculate the intercept
mx, my = mouse.getPos()
ray = win.coordToRay([mx, my])
result = intersectRayPlane(# from mathtools

orig=camera.pos,
dir=camera.transformNormal(ray),
planeOrig=(0, 0, -10),
planeNormal=(0, 1, 0))

if result is `None`, there is no intercept
if result is not None:

pos, dist = result
objModel.thePose.pos = pos

else:
objModel.thePose.pos = (0, 0, -10) # plane origin

If you don’t define the position of the viewer with a RigidBodyPose, you can obtain the appropriate eye
position and rotate the ray by doing the following:

pos = numpy.linalg.inv(win.viewMatrix)[:3, 3]
ray = win.coordToRay([mx, my]).dot(win.viewMatrix[:3, :3])
then ...
result = intersectRayPlane(

orig=pos,
dir=ray,
planeOrig=(0, 0, -10),
planeNormal=(0, 1, 0))

static createBoundingBox(extents=None)
Create a new bounding box object (LibOVRBounds).

LibOVRBounds represents an axis-aligned bounding box with dimensions defined by extents. Bounding
boxes are primarily used for visibility testing and culling by PsychXR. The dimensions of the bounding box
can be specified explicitly, or fitted to meshes by passing vertices to the fit() method after initialization.

This function exposes the LibOVRBounds class so you don’t need to access it by importing psychxr.

Parameters
extents (array_like or None) – Extents of the bounding box as (mins, maxs). Where
mins (x, y, z) is the minimum and maxs (x, y, z) is the maximum extents of the bounding box
in world units. If None is specified, the returned bounding box will be invalid. The bounding
box can be later constructed using the fit() method or the extents attribute.

Returns
Object representing a bounding box.

Return type
~psychxr.libovr.LibOVRBounds

10.4. psychopy.visual - many visual stimuli 368

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Add a bounding box to a pose:

create a 1 meter cube bounding box centered with the pose
bbox = Rift.createBoundingBox(((-.5, -.5, -.5), (.5, .5, .5)))

create a pose and attach the bounding box
modelPose = Rift.createPose()
modelPose.boundingBox = bbox

Perform visibility culling on the pose using the bounding box by using the isVisible() method:

if hmd.isPoseVisible(modelPose):
modelPose.draw()

static createHapticsBuffer(samples)
Create a new haptics buffer.

A haptics buffer is object which stores vibration amplitude samples for playback through the Touch con-
trollers. To play a haptics buffer, pass it to submitHapticsBuffer().

Parameters
samples (array_like) – 1-D array of amplitude samples, ranging from 0 to 1.
Values outside of this range will be clipped. The buffer must not exceed HAP-
TICS_BUFFER_SAMPLES_MAX samples, any additional samples will be dropped.

Returns
Haptics buffer object.

Return type
LibOVRHapticsBuffer

Notes

Methods startHaptics and stopHaptics cannot be used interchangeably with this function.

Examples

Create a haptics buffer where vibration amplitude ramps down over the course of playback:

samples = np.linspace(
1.0, 0.0, num=HAPTICS_BUFFER_SAMPLES_MAX-1, dtype=np.float32)

hbuff = Rift.createHapticsBuffer(samples)

vibrate right Touch controller
hmd.submitControllerVibration(CONTROLLER_TYPE_RTOUCH, hbuff)

static createPose(pos=(0.0, 0.0, 0.0), ori=(0.0, 0.0, 0.0, 1.0))
Create a new Rift pose object (LibOVRPose).

LibOVRPose is used to represent a rigid body pose mainly for use with the PsychXR’s LibOVR module.
There are several methods associated with the object to manipulate the pose.

This function exposes the LibOVRPose class so you don’t need to access it by importing psychxr.

10.4. psychopy.visual - many visual stimuli 369

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
• pos (tuple, list, or ndarray of float) – Position vector/coordinate (x, y, z).

• ori (tuple, list, or ndarray of float) – Orientation quaternion (x, y, z, w).

Returns
Object representing a rigid body pose for use with LibOVR.

Return type
LibOVRPose

property cullFace

True if face culling is enabled.`

property cullFaceMode

Face culling mode, either back, front or both.

property currentEditable

The editable (Text?) object that currently has key focus

property depthFunc

Depth test comparison function for rendering.

property depthMask

True if depth masking is enabled. Writing to the depth buffer will be disabled.

property depthTest

True if depth testing is enabled.

classmethod dispatchAllWindowEvents()

Dispatches events for all pyglet windows. Used by iohub 2.0 psychopy kb event integration.

property displayRefreshRate

Get the HMD’s display refresh rate in Hz (float).

property displayResolution

Get the HMD’s raster display size (int, int).

property draw3d

True if 3D drawing is enabled on this window.

property eyeHeight

Eye height in meters (float).

property eyeOffset

Eye separation in centimeters (float).

property eyeRenderPose

Computed eye pose for the current buffer. Only valid after calling calcEyePoses().

property eyeToNoseDistance

Eye to nose distance in meters (float).

10.4. psychopy.visual - many visual stimuli 370

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Generate your own eye poses. These are used when calcEyePoses() is called:

leftEyePose = Rift.createPose((-self.eyeToNoseDistance, 0., 0.))
rightEyePose = Rift.createPose((self.eyeToNoseDistance, 0., 0.))

Get the inter-axial separation (IAS) reported by LibOVR:

iad = self.eyeToNoseDistance * 2.0

property farClip

Distance to the far clipping plane in meters.

property firmwareVersion

Get the firmware version of the active HMD (int, int).

flip(clearBuffer=True, drawMirror=True)
Submit view buffer images to the HMD’s compositor for display at next V-SYNC and draw the mirror
texture to the on-screen window. This must be called every frame.

Parameters
• clearBuffer (bool) – Clear the frame after flipping.

• drawMirror (bool) – Draw the HMD mirror texture from the compositor to the window.

Returns
Absolute time in seconds when control was given back to the application. The difference
between the current and previous values should be very close to 1 / refreshRate of the HMD.

Return type
float

Notes

• The HMD compositor and application are asynchronous, therefore there is no guarantee that the times-
tamp returned by ‘flip’ corresponds to the exact vertical retrace time of the HMD.

fps()

Report the frames per second since the last call to this function (or since the window was created if this is
first call)

property frameBufferSize

Size of the framebuffer in pixels (w, h).

property frontFace

Face winding order to define front, either ccw or cw.

fullscr

Set whether fullscreen mode is True or False (not all backends can toggle an open window).

gamma

Set the monitor gamma for linearization.

10.4. psychopy.visual - many visual stimuli 371

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

Warning: Don’t use this if using a Bits++ or Bits#, as it overrides monitor settings.

gammaRamp

Sets the hardware CLUT using a specified 3xN array of floats ranging between 0.0 and 1.0.

Array must have a number of rows equal to 2 ^ max(bpc).

getActualFrameRate(nIdentical=10, nMaxFrames=100, nWarmUpFrames=10, threshold=1)
Measures the actual frames-per-second (FPS) for the screen.

This is done by waiting (for a max of nMaxFrames) until nIdentical frames in a row have identical frame
times (std dev below threshold ms).

Parameters
• nIdentical (int, optional) – The number of consecutive frames that will be evalu-

ated. Higher –> greater precision. Lower –> faster.

• nMaxFrames (int, optional) – The maximum number of frames to wait for a matching
set of nIdentical.

• nWarmUpFrames (int, optional) – The number of frames to display before starting the
test (this is in place to allow the system to settle after opening the Window for the first time.

• threshold (int or float, optional) – The threshold for the std deviation (in ms)
before the set are considered a match.

Returns
Frame rate (FPS) in seconds. If there is no such sequence of identical frames a warning is
logged and None will be returned.

Return type
float or None

getBoundaryDimensions(boundaryType='PlayArea')
Get boundary dimensions.

Parameters
boundaryType (str) – Boundary type, can be ‘PlayArea’ or ‘Outer’.

Returns
Dimensions of the boundary meters [x, y, z].

Return type
ndarray

getButtons(buttons, controller='Xbox', testState='continuous')
Get button states from a controller.

Returns True if any names specified to buttons reflect testState since the last updateInputState or flip
call. If multiple button names are specified as a list or tuple to buttons, multiple button states are tested,
returning True if all the buttons presently satisfy the testState. Note that not all controllers available share
the same buttons. If a button is not available, this function will always return False.

Parameters
• buttons (list of str or str) – Buttons to test. Valid buttons names are ‘A’, ‘B’, ‘RThumb’,

‘RShoulder’ ‘X’, ‘Y’, ‘LThumb’, ‘LShoulder’, ‘Up’, ‘Down’, ‘Left’, ‘Right’, ‘Enter’, ‘Back’,
‘VolUp’, ‘VolDown’, and ‘Home’. Names can be passed as a list to test multiple button
states.

10.4. psychopy.visual - many visual stimuli 372

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

• controller (str) – Controller name.

• testState (str) – State to test. Valid values are:

– continuous - Button is presently being held down.

– rising or pressed - Button has been pressed since the last update.

– falling or released - Button has been released since the last update.

Returns
Button state and timestamp in seconds the controller was polled.

Return type
tuple of bool, float

Examples

Check if the ‘Enter’ button on the Oculus remote was released:

isPressed, tsec = hmd.getButtons(['Enter'], 'Remote', 'falling')

Check if the ‘A’ button was pressed on the touch controller:

isPressed, tsec = hmd.getButtons(['A'], 'Touch', 'pressed')

getContentScaleFactor()

Get the scaling factor required for scaling correctly on high-DPI displays.

If the returned value is 1.0, no scaling needs to be applied to objects drawn on the backbuffer. A value >1.0
indicates that the backbuffer is larger than the reported client area, requiring points to be scaled to maintain
constant size across similarly sized displays. In other words, the scaling required to convert framebuffer to
client coordinates.

Returns
Scaling factor to be applied along both horizontal and vertical dimensions.

Return type
float

Examples

Get the size of the client area:

clientSize = win.frameBufferSize / win.getContentScaleFactor()

Get the framebuffer size from the client size:

frameBufferSize = win.clientSize * win.getContentScaleFactor()

Convert client (window) to framebuffer pixel coordinates (eg., a mouse coordinate, vertices, etc.):

`mousePosXY` is an array ...
frameBufferXY = mousePosXY * win.getContentScaleFactor()
you can also use the attribute ...
frameBufferXY = mousePosXY * win.contentScaleFactor

10.4. psychopy.visual - many visual stimuli 373

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

Notes

• This value is only valid after the window has been fully realized.

getDevicePose(deviceName, absTime=None, latencyMarker=False)
Get the pose of a tracked device. For head (HMD) and hand poses (Touch controllers) it is better to use
getTrackingState() instead.

Parameters
• deviceName (str) – Name of the device. Valid device names are: ‘HMD’, ‘LTouch’,

‘RTouch’, ‘Touch’, ‘Object0’, ‘Object1’, ‘Object2’, and ‘Object3’.

• absTime (float, optional) – Absolute time in seconds the device pose refers to. If not
specified, the predicted time is used.

• latencyMarker (bool) – Insert a marker for motion-to-photon latency calculation.
Should only be True if the HMD pose is being used to compute eye poses.

Returns
Pose state object. None if device tracking was lost.

Return type
LibOVRPoseState or None

getFutureFlipTime(targetTime=0, clock=None)
The expected time of the next screen refresh. This is currently calculated as win._lastFrameTime + refresh-
Interval

Parameters
• targetTime (float) – The delay from now for which you want the flip time. 0 will give

the because that the earliest we can achieve. 0.15 will give the schedule flip time that gets
as close to 150 ms as possible

• clock (None, 'ptb', 'now' or any Clock object) – If True then the time returned is
compatible with ptb.GetSecs()

• verbose (bool) – Set to True to view the calculations along the way

getHandTriggerValues(controller='Touch', deadzone=False)
Get the values of the hand triggers.

Parameters
• controller (str) – Name of the controller to get hand trigger values. Possible values

for controller are ‘Touch’, ‘RTouch’, ‘LTouch’, ‘Object0’, ‘Object1’, ‘Object2’, and ‘Ob-
ject3’; the only devices with hand triggers the SDK manages. For additional controllers,
use PsychPy’s built-in event or hardware support.

• deadzone (bool) – Apply the deadzone to hand trigger values. This pre-filters stick input
to apply a dead-zone where 0.0 will be returned if the trigger returns a displacement within
0.2746.

Returns
Left and right hand trigger values. Displacements are represented as tuple of two float rep-
resenting the left anr right displacement values, which range from 0.0 to 1.0. The returned
values reflect the controller state since the last updateInputState or flip call.

Return type
tuple

10.4. psychopy.visual - many visual stimuli 374

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

getIndexTriggerValues(controller='Xbox', deadzone=False)
Get the values of the index triggers.

Parameters
• controller (str) – Name of the controller to get index trigger values. Possible values

for controller are ‘Xbox’, ‘Touch’, ‘RTouch’, ‘LTouch’, ‘Object0’, ‘Object1’, ‘Object2’,
and ‘Object3’; the only devices with index triggers the SDK manages. For additional con-
trollers, use PsychPy’s built-in event or hardware support.

• deadzone (bool) – Apply the deadzone to index trigger values. This pre-filters stick input
to apply a dead-zone where 0.0 will be returned if the trigger returns a displacement within
0.2746.

Returns
Left and right index trigger values. Displacements are represented as tuple of two float rep-
resenting the left anr right displacement values, which range from 0.0 to 1.0. The returned
values reflect the controller state since the last updateInputState or flip call.

Return type
tuple of float

getMovieFrame(buffer='mirror')
Capture the current HMD frame as an image.

Saves to stack for saveMovieFrames(). As of v1.81.00 this also returns the frame as a PIL image.

This can be done at any time (usually after a flip() command).

Frames are stored in memory until a saveMovieFrames() command is issued. You can issue
getMovieFrame() as often as you like and then save them all in one go when finished.

For HMD frames, you should call getMovieFrame after calling flip to ensure that the mirror texture saved
reflects what is presently being shown on the HMD. Note, that this function is somewhat slow and may
impact performance. Only call this function when you’re not collecting experimental data.

Parameters
buffer (str, optional) – Buffer to capture. For the HMD, only ‘mirror’ is available at
this time.

Returns
Buffer pixel contents as a PIL/Pillow image object.

Return type
Image

getMsPerFrame(nFrames=60, showVisual=False, msg='', msDelay=0.0)
Assesses the monitor refresh rate (average, median, SD) under current conditions, over at least 60 frames.

Records time for each refresh (frame) for n frames (at least 60), while displaying an optional visual. The
visual is just eye-candy to show that something is happening when assessing many frames. You can also
give it text to display instead of a visual, e.g., msg='(testing refresh rate...)'; setting msg implies
showVisual == False.

To simulate refresh rate under cpu load, you can specify a time to wait within the loop prior to doing the
flip(). If 0 < msDelay < 100, wait for that long in ms.

Returns timing stats (in ms) of:

• average time per frame, for all frames

• standard deviation of all frames

10.4. psychopy.visual - many visual stimuli 375

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

• median, as the average of 12 frame times around the median (~monitor refresh rate)

Author
• 2010 written by Jeremy Gray

getPredictedDisplayTime()

Get the predicted time the next frame will be displayed on the HMD. The returned time is referenced to the
clock LibOVR is using.

Returns
Absolute frame mid-point time for the given frame index in seconds.

Return type
float

getThumbstickValues(controller='Xbox', deadzone=False)
Get controller thumbstick values.

Parameters
• controller (str) – Name of the controller to get thumbstick values. Possible values for

controller are ‘Xbox’, ‘Touch’, ‘RTouch’, ‘LTouch’, ‘Object0’, ‘Object1’, ‘Object2’, and
‘Object3’; the only devices with thumbsticks the SDK manages. For additional controllers,
use PsychPy’s built-in event or hardware support.

• deadzone (bool) – Apply the deadzone to thumbstick values. This pre-filters stick input
to apply a dead-zone where 0.0 will be returned if the sticks return a displacement within
-0.2746 to 0.2746.

Returns
Left and right, X and Y thumbstick values. Axis displacements are represented in each tuple
by floats ranging from -1.0 (full left/down) to 1.0 (full right/up). The returned values reflect
the controller state since the last updateInputState or flip call.

Return type
tuple

getTimeInSeconds()

Absolute time in seconds. The returned time is referenced to the clock LibOVR is using.

Returns
Time in seconds.

Return type
float

getTouches(touches, controller='Touch', testState='continuous')
Get touch states from a controller.

Returns True if any names specified to touches reflect testState since the last updateInputState or flip
call. If multiple button names are specified as a list or tuple to touches, multiple button states are tested,
returning True if all the touches presently satisfy the testState. Note that not all controllers available support
touches. If a touch is not supported or available, this function will always return False.

Special states can be used for basic gesture recognition, such as ‘LThumbUp’, ‘RThumbUp’, ‘LIndexPoint-
ing’, and ‘RIndexPointing’.

Parameters

10.4. psychopy.visual - many visual stimuli 376

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

• touches (list of str or str) – Buttons to test. Valid touches names are ‘A’, ‘B’, ‘RThumb’,
‘RThumbRest’ ‘RThumbUp’, ‘RIndexPointing’, ‘LThumb’, ‘LThumbRest’, ‘LThumbUp’,
‘LIndexPointing’, ‘X’, and ‘Y’. Names can be passed as a list to test multiple button states.

• controller (str) – Controller name.

• testState (str) – State to test. Valid values are:

– continuous - User is touching something on the controller.

– rising or pressed - User began touching something since the last call to updateInput-
State.

– falling or released - User stopped touching something since the last call to updateInput-
State.

Returns
Touch state and timestamp in seconds the controller was polled.

Return type
tuple of bool, float

Examples

Check if the ‘Enter’ button on the Oculus remote was released:

isPressed, tsec = hmd.getButtons(['Enter'], 'Remote', 'falling')

Check if the ‘A’ button was pressed on the touch controller:

isPressed, tsec = hmd.getButtons(['A'], 'Touch', 'pressed')

getTrackerInfo(trackerIdx)
Get tracker information.

Parameters
trackerIdx (int) – Tracker index, ranging from 0 to trackerCount.

Returns
Object containing tracker information.

Return type
LibOVRTrackerInfo

Raises
IndexError – Raised when trackerIdx out of range.

getTrackingState(absTime=None, latencyMarker=True)
Get the tracking state of the head and hands.

Calling this function retrieves the tracking state of the head (HMD) and hands at absTime from the LibOVR
runtime. The returned object is a LibOVRTrackingState instance with poses, motion derivatives (i.e.
linear and angular velocity/acceleration), and tracking status flags accessible through its attributes.

The pose states of the head and hands are available by accessing the headPose and handPoses attributes,
respectively.

Parameters
• absTime (float, optional) – Absolute time the the tracking state refers to. If not spec-

ified, the predicted display time is used.

10.4. psychopy.visual - many visual stimuli 377

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

• latencyMarker (bool, optional) – Set a latency marker upon getting the tracking
state. This is used for motion-to-photon calculations.

Returns
Tracking state object. For more information about this type see:

Return type
LibOVRTrackingState

See also:

getPredictedDisplayTime
Time at mid-frame for the current frame index.

Examples

Get the tracked head pose and use it to calculate render eye poses:

get tracking state at predicted mid-frame time
absTime = getPredictedDisplayTime()
trackingState = hmd.getTrackingState(absTime)

get the head pose from the tracking state
headPose = trackingState.headPose.thePose
hmd.calcEyePoses(headPose) # compute eye poses

Get linear/angular velocity and acceleration vectors of the right touch controller:

right hand is the second value (index 1) at `handPoses`
rightHandState = trackingState.handPoses[1] # is `LibOVRPoseState`

access `LibOVRPoseState` fields to get the data
linearVel = rightHandState.linearVelocity # m/s
angularVel = rightHandState.angularVelocity # rad/s
linearAcc = rightHandState.linearAcceleration # m/s^2
angularAcc = rightHandState.angularAcceleration # rad/s^2

extract components like this if desired
vx, vy, vz = linearVel
ax, ay, az = angularVel

Above is useful for physics simulations, where one can compute the magnitude and direction of a force
applied to a virtual object.

It’s often the case that object tracking becomes unreliable for some reason, for instance, if it becomes
occluded and is no longer visible to the sensors. In such cases, the reported pose state is invalid and may not
be useful. You can check if the position and orientation of a tracked object is invalid using flags associated
with the tracking state. This shows how to check if head position and orientation tracking was valid when
sampled:

if trackingState.positionValid and trackingState.orientationValid:
print('Tracking valid.')

It’s up to the programmer to determine what to do in such cases. Note that tracking may still be valid even
if

10.4. psychopy.visual - many visual stimuli 378

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Get the calibrated origin used for tracking during the sample period of the tracking state:

calibratedOrigin = trackingState.calibratedOrigin
calibPos, calibOri = calibratedOrigin.posOri

Time integrate a tracking state. This extrapolates the pose over time given the present computed motion
derivatives. The contrived example below shows how to implement head pose forward prediction:

get current system time
absTime = getTimeInSeconds()

get the elapsed time from `absTime` to predicted v-sync time,
again this is an example, you would usually pass predicted time to
`getTrackingState` directly.
dt = getPredictedDisplayTime() - absTime

get the tracking state for the current time, poses will lag where
they are expected at predicted time by `dt` seconds
trackingState = hmd.getTrackingState(absTime)

time integrate a pose by `dt`
headPoseState = trackingState.headPose
headPosePredicted = headPoseState.timeIntegrate(dt)

calc eye poses with predicted head pose, this is a custom pose to
head-locking should be enabled!
hmd.calcEyePoses(headPosePredicted)

The resulting head pose is usually very close to what getTrackingState would return if the predicted time
was used. Simple forward prediction with time integration becomes increasingly unstable as the prediction
interval increases. Under normal circumstances, let the runtime handle forward prediction by using the
pose states returned at the predicted display time. If you plan on doing your own forward prediction, you
need enable head-locking, clamp the prediction interval, and apply some sort of smoothing to keep the
image as stable as possible.

property hasInputFocus

True if the application currently has input focus.

property hasMagYawCorrection

True if this HMD supports yaw drift correction.

property hasOrientationTracking

True if the HMD is capable of tracking orientation.

property hasPositionTracking

True if the HMD is capable of tracking position.

property headLocked

True if head locking is enabled.

property hid

USB human interface device (HID) identifiers (int, int).

hideMessage()

Remove any message that is currently being displayed.

10.4. psychopy.visual - many visual stimuli 379

PsychoPy - Psychology software for Python, Release 2023.2.3

hidePerfHud()

Hide the performance HUD.

property hmdMounted

True if the HMD is mounted on the user’s head.

property hmdPresent

True if the HMD is present.

property isBoundaryVisible

True if the VR boundary is visible.

isPoseVisible(pose)
Check if a pose object if visible to the present eye. This method can be used to perform visibility culling
to avoid executing draw commands for objects that fall outside the FOV for the current eye buffer.

If boundingBox has a valid bounding box object, this function will return False if all the box points fall
completely to one side of the view frustum. If boundingBox is None, the point at pos is checked, returning
False if it falls outside of the frustum. If the present buffer is not ‘left’ or ‘right’, this function will always
return False.

Parameters
pose (LibOVRPose) – Pose to test for visibility.

Returns
True if pose’s bounding box or origin is outside of the view frustum.

Return type
bool

property isVisible

True if the app has focus in the HMD and is visible to the viewer.

property lights

Scene lights.

This is specified as an array of ~psychopy.visual.LightSource objects. If a single value is given, it will
be converted to a list before setting. Set useLights to True before rendering to enable lighting/shading on
subsequent objects. If lights is None or an empty list, no lights will be enabled if useLights=True, however,
the scene ambient light set with ambientLight will be still be used.

Examples

Create a directional light source and add it to scene lights:

dirLight = gltools.LightSource((0., 1., 0.), lightType='directional')
win.lights = dirLight # `win.lights` will be a list when accessed!

Multiple lights can be specified by passing values as a list:

myLights = [gltools.LightSource((0., 5., 0.)),
gltools.LightSource((-2., -2., 0.))

win.lights = myLights

logOnFlip(msg, level, obj=None)
Send a log message that should be time-stamped at the next flip() command.

Parameters

10.4. psychopy.visual - many visual stimuli 380

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

• msg (str) – The message to be logged.

• level (int) – The level of importance for the message.

• obj (object, optional) – The python object that might be associated with this message
if desired.

property manufacturer

Get the connected HMD’s manufacturer (str).

mouseVisible

Sets the visibility of the mouse cursor.

If Window was initialized with allowGUI=False then the mouse is initially set to invisible, otherwise it
will initially be visible.

Usage:

win.mouseVisible = False
win.mouseVisible = True

multiFlip(flips=1, clearBuffer=True)
Flip multiple times while maintaining the display constant. Use this method for precise timing.

WARNING: This function should not be used. See the Notes section for details.

Parameters
• flips (int, optional) – The number of monitor frames to flip. Floats will be rounded

to integers, and a warning will be emitted. Window.multiFlip(flips=1) is equivalent
to Window.flip(). Defaults to 1.

• clearBuffer (bool, optional) – Whether to clear the screen after the last flip. Defaults
to True.

Notes

• This function can behave unpredictably, and the PsychoPy authors recommend against using it. See
https://github.com/psychopy/psychopy/issues/867 for more information.

Examples

Example of using multiFlip:

Draws myStim1 to buffer
myStim1.draw()
Show stimulus for 4 frames (90 ms at 60Hz)
myWin.multiFlip(clearBuffer=False, flips=6)
Draw myStim2 "on top of" myStim1
(because buffer was not cleared above)
myStim2.draw()
Show this for 2 frames (30 ms at 60Hz)
myWin.multiFlip(flips=2)
Show blank screen for 3 frames (buffer was cleared above)
myWin.multiFlip(flips=3)

10.4. psychopy.visual - many visual stimuli 381

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://github.com/psychopy/psychopy/issues/867

PsychoPy - Psychology software for Python, Release 2023.2.3

multiplyProjectionMatrixGL()

Multiply the current projection modelMatrix obtained from the SDK using glMultMatrixf. The projec-
tion matrix used depends on the current eye buffer set by setBuffer().

multiplyViewMatrixGL()

Multiply the local eye pose transformation modelMatrix obtained from the SDK using glMultMatrixf.
The modelMatrix used depends on the current eye buffer set by setBuffer().

Return type
None

property nearClip

Distance to the near clipping plane in meters.

nextEditable()

Moves focus of the cursor to the next editable window

onResize(width, height)
A default resize event handler.

This default handler updates the GL viewport to cover the entire window and sets the GL_PROJECTION
matrix to be orthogonal in window space. The bottom-left corner is (0, 0) and the top-right corner is the
width and height of the Window in pixels.

Override this event handler with your own to create another projection, for example in perspective.

property overlayPresent

perfHudMode(mode='Off')
Set the performance HUD mode.

Parameters
mode (str) – HUD mode to use.

property pixelsPerTanAngleAtCenter

Horizontal and vertical pixels per tangent angle (=1) at the center of the display.

This can be used to compute pixels-per-degree for the display.

property productName

Get the HMD’s product name (str).

property projectionMatrix

Get the projection matrix for the current eye buffer. Note that setting projectionMatrix manually will break
visibility culling.

recenterTrackingOrigin()

Recenter the tracking origin using the current head position.

recordFrameIntervals

Record time elapsed per frame.

Provides accurate measures of frame intervals to determine whether frames are being dropped. The inter-
vals are the times between calls to flip(). Set to True only during the time-critical parts of the script. Set
this to False while the screen is not being updated, i.e., during any slow, non-frame-time-critical sections
of your code, including inter-trial-intervals, event.waitkeys(), core.wait(), or image.setImage().

10.4. psychopy.visual - many visual stimuli 382

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Enable frame interval recording, successive frame intervals will be stored:

win.recordFrameIntervals = True

Frame intervals can be saved by calling the saveFrameIntervals method:

win.saveFrameIntervals()

removeEditable(editable)

resetEyeTransform(clearDepth=True)
Restore the default projection and view settings to PsychoPy defaults. Call this prior to drawing 2D stimuli
objects (i.e. GratingStim, ImageStim, Rect, etc.) if any eye transformations were applied for the stimuli to
be drawn correctly.

Parameters
clearDepth (bool) – Clear the depth buffer upon reset. This ensures successive draw com-
mands are not affected by previous data written to the depth buffer. Default is True.

Notes

• Calling flip() automatically resets the view and projection to defaults. So you don’t need to call this
unless you are mixing 3D and 2D stimuli.

Examples

Going between 3D and 2D stimuli:

2D stimuli can be drawn before setting a perspective projection
win.setPerspectiveView()
draw 3D stimuli here ...
win.resetEyeTransform()
2D stimuli can be drawn here again ...
win.flip()

resetViewport()

Reset the viewport to cover the whole framebuffer.

Set the viewport to match the dimensions of the back buffer or framebuffer (if useFBO=True). The scissor
rectangle is also set to match the dimensions of the viewport.

retrieveAutoDraw()

Add all stimuli which are on ‘hold’ back into the autoDraw list, and clear the hold list.

property rgb

saveFrameIntervals(fileName=None, clear=True)
Save recorded screen frame intervals to disk, as comma-separated values.

Parameters
• fileName (None or str) – None or the filename (including path if necessary) in which to

store the data. If None then ‘lastFrameIntervals.log’ will be used.

10.4. psychopy.visual - many visual stimuli 383

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

• clear (bool) – Clear buffer frames intervals were stored after saving. Default is True.

saveMovieFrames(fileName, codec='libx264', fps=30, clearFrames=True)
Writes any captured frames to disk.

Will write any format that is understood by PIL (tif, jpg, png, . . .)

Parameters
• filename (str) – Name of file, including path. The extension at the end of the file deter-

mines the type of file(s) created. If an image type (e.g. .png) is given, then multiple static
frames are created. If it is .gif then an animated GIF image is created (although you will get
higher quality GIF by saving PNG files and then combining them in dedicated image ma-
nipulation software, such as GIMP). On Windows and Linux .mpeg files can be created if
pymedia is installed. On macOS .mov files can be created if the pyobjc-frameworks-QTKit
is installed. Unfortunately the libs used for movie generation can be flaky and poor quality.
As for animated GIFs, better results can be achieved by saving as individual .png frames
and then combining them into a movie using software like ffmpeg.

• codec (str, optional) – The codec to be used by moviepy for mp4/mpg/mov files.
If None then the default will depend on file extension. Can be one of libx264, mpeg4
for mp4/mov files. Can be rawvideo, png for avi files (not recommended). Can be
libvorbis for ogv files. Default is libx264.

• fps (int, optional) – The frame rate to be used throughout the movie. Only for quick-
time (.mov) movies.. Default is 30.

• clearFrames (bool, optional) – Set this to False if you want the frames to be kept for
additional calls to saveMovieFrames. Default is True.

Examples

Writes a series of static frames as frame001.tif, frame002.tif etc.:

myWin.saveMovieFrames('frame.tif')

As of PsychoPy 1.84.1 the following are written with moviepy:

myWin.saveMovieFrames('stimuli.mp4') # codec = 'libx264' or 'mpeg4'
myWin.saveMovieFrames('stimuli.mov')
myWin.saveMovieFrames('stimuli.gif')

property scissor

Scissor rectangle (x, y, w, h) for the current draw buffer.

Values x and y define the origin, and w and h the size of the rectangle in pixels. The scissor operation is
only active if scissorTest=True.

Usually, the scissor and viewport are set to the same rectangle to prevent drawing operations from spilling
into other regions of the screen. For instance, calling clearBuffer will only clear within the scissor rectangle.

Setting the scissor rectangle but not the viewport will restrict drawing within the defined region (like a
rectangular aperture), not changing the positions of stimuli.

property scissorTest

True if scissor testing is enabled.

property screenshot

10.4. psychopy.visual - many visual stimuli 384

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

property sensorSampleTime

Sensor sample time (float). This value corresponds to the time the head (HMD) position was sampled,
which is required for computing motion-to-photon latency. This does not need to be specified if getTrack-
ingState was called with latencyMarker=True.

property serialNumber

Get the connected HMD’s unique serial number (str).

Use this to identify a particular unit if you own many.

setBlendMode(blendMode, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setBuffer(buffer, clear=True)
Set the active draw buffer.

Warning: The window.Window.size property will return the buffer’s dimensions in pixels instead of
the window’s when setBuffer is set to ‘left’ or ‘right’.

Parameters
• buffer (str) – View buffer to divert successive drawing operations to, can be either ‘left’

or ‘right’.

• clear (boolean) – Clear the color, stencil and depth buffer.

setColor(color, colorSpace=None, operation='', log=None)
Usually you can use stim.attribute = value syntax instead, but use this method if you want to set
color and colorSpace simultaneously.

See color for documentation on colors.

setDefaultView(clearDepth=True)
Return to default projection. Call this before drawing PsychoPy’s 2D stimuli after a stereo projection
change.

Note: This only has an effect if using Rift in legacy immediate mode OpenGL.

Parameters
clearDepth (bool) – Clear the depth buffer prior after configuring the view parameters.

setGamma(gamma, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setMouseType(name='arrow')
Change the appearance of the cursor for this window. Cursor types provide contextual hints about how to
interact with on-screen objects.

The graphics used ‘standard cursors’ provided by the operating system. They may vary in appearance and
hot spot location across platforms. The following names are valid on most platforms:

• arrow : Default pointer.

• ibeam : Indicates text can be edited.

• crosshair : Crosshair with hot-spot at center.

10.4. psychopy.visual - many visual stimuli 385

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

• hand : A pointing hand.

• hresize : Double arrows pointing horizontally.

• vresize : Double arrows pointing vertically.

Parameters
name (str) – Type of standard cursor to use (see above). Default is arrow.

Notes

• On Windows the crosshair option is negated with the background color. It will not be visible when
placed over 50% grey fields.

setMouseVisible(visibility, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setOffAxisView(applyTransform=True, clearDepth=True)
Set an off-axis projection.

Create an off-axis projection for subsequent rendering calls. Sets the viewMatrix and projectionMatrix ac-
cordingly so the scene origin is on the screen plane. If eyeOffset is correct and the view distance and screen
size is defined in the monitor configuration, the resulting view will approximate ortho-stereo viewing.

The convergence plane can be adjusted by setting convergeOffset. By default, the convergence plane is set
to the screen plane. Any points on the screen plane will have zero disparity.

Parameters
• applyTransform (bool) – Apply transformations after computing them in immediate

mode. Same as calling applyEyeTransform() afterwards.

• clearDepth (bool, optional) – Clear the depth buffer.

setPerspectiveView(applyTransform=True, clearDepth=True)
Set the projection and view matrix to render with perspective.

Matrices are computed using values specified in the monitor configuration with the scene origin on the
screen plane. Calculations assume units are in meters. If eyeOffset != 0, the view will be transformed
laterally, however the frustum shape will remain the same.

Note that the values of projectionMatrix and viewMatrix will be replaced when calling this function.

Parameters
• applyTransform (bool) – Apply transformations after computing them in immediate

mode. Same as calling applyEyeTransform() afterwards if False.

• clearDepth (bool, optional) – Clear the depth buffer.

setRGB(newRGB)
Deprecated: As of v1.61.00 please use setColor() instead

setRecordFrameIntervals(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

10.4. psychopy.visual - many visual stimuli 386

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

setRiftView(clearDepth=True)
Set head-mounted display view. Gets the projection and view matrices from the HMD and applies them.

Note: This only has an effect if using Rift in legacy immediate mode OpenGL.

Parameters
clearDepth (bool) – Clear the depth buffer prior after configuring the view parameters.

setScale(units, font='dummyFont', prevScale=(1.0, 1.0))
DEPRECATED: this method used to be used to switch between units for stimulus drawing but this is now
handled by the stimuli themselves and the window should always be left in units of ‘pix’

setSize(value, log=True)

setStereoDebugHudOption(option, value)
Configure stereo debug HUD guides.

Parameters
• option (str) – Option to set. Valid options are InfoEnable, Size, Position, YawPitchRoll,

and Color.

• value (array_like or bool) – Value to set for a given option. Appropriate types for
each option are:

– InfoEnable - bool, True to show, False to hide.

– Size - array_like, [w, h] in meters.

– Position - array_like, [x, y, z] in meters.

– YawPitchRoll - array_like, [pitch, yaw, roll] in degrees.

– Color - array_like, [r, g, b] as floats ranging 0.0 to 1.0.

Returns
True if the option was successfully set.

Return type
bool

Examples

Configuring a stereo debug HUD guide:

show a quad with a crosshair
hmd.stereoDebugHudMode('QuadWithCrosshair')
enable displaying guide information
hmd.setStereoDebugHudOption('InfoEnable', True)
set the position of the guide quad in the scene
hmd.setStereoDebugHudOption('Position', [0.0, 1.7, -2.0])

setToeInView(applyTransform=True, clearDepth=True)
Set toe-in projection.

Create a toe-in projection for subsequent rendering calls. Sets the viewMatrix and projectionMatrix accord-
ingly so the scene origin is on the screen plane. The value of convergeOffset will define the convergence
point of the view, which is offset perpendicular to the center of the screen plane. Points falling on a vertical
line at the convergence point will have zero disparity.

Parameters

10.4. psychopy.visual - many visual stimuli 387

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

• applyTransform (bool) – Apply transformations after computing them in immediate
mode. Same as calling applyEyeTransform() afterwards.

• clearDepth (bool, optional) – Clear the depth buffer.

Notes

• This projection mode is only ‘correct’ if the viewer’s eyes are converged at the convergence point.
Due to perspective, this projection introduces vertical disparities which increase in magnitude with
eccentricity. Use setOffAxisView if you want to display something the viewer can look around the
screen comfortably.

setUnits(value, log=True)

setViewPos(value, log=True)

property shouldQuit

True if the user requested the application should quit through the headset’s interface.

property shouldRecenter

True if the user requested the origin be re-centered through the headset’s interface.

showMessage(msg)
Show a message in the window. This can be used to show information to the participant.

This creates a TextBox2 object that is displayed in the window. The text can be updated by calling this
method again with a new message. The updated text will appear the next time draw() is called.

Parameters
msg (str or None) – Message text to display. If None, then any existing message is re-
moved.

property size

Size property to get the dimensions of the view buffer instead of the window. If there are no view buffers,
always return the dims of the window.

specifyTrackingOrigin(pose)
Specify a tracking origin. If trackingOriginType=’floor’, this function sets the origin of the scene in the
ground plane. If trackingOriginType=’eye’, the scene origin is set to the known eye height.

Parameters
pose (LibOVRPose) – Tracking origin pose.

specifyTrackingOriginPosOri(pos=(0.0, 0.0, 0.0), ori=(0.0, 0.0, 0.0, 1.0))
Specify a tracking origin using a pose and orientation. This is the same as specifyTrackingOrigin, but
accepts a position vector [x, y, z] and orientation quaternion [x, y, z, w].

Parameters
• pos (tuple or list of float, or ndarray) – Position coordinate of origin (x, y,

z).

• ori (tuple or list of float, or ndarray) – Quaternion specifying orientation
(x, y, z, w).

10.4. psychopy.visual - many visual stimuli 388

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

startHaptics(controller, frequency='low', amplitude=1.0)
Start haptic feedback (vibration).

Vibration is constant at fixed frequency and amplitude. Vibration lasts 2.5 seconds, so this function needs
to be called more often than that for sustained vibration. Only controllers which support vibration can be
used here.

There are only two frequencies permitted ‘high’ and ‘low’, however, amplitude can vary from 0.0 to 1.0.
Specifying `frequency`=’off’ stops vibration if in progress.

Parameters
• controller (str) – Name of the controller to vibrate.

• frequency (str) – Vibration frequency. Valid values are: ‘off’, ‘low’, or ‘high’.

• amplitude (float) – Vibration amplitude in the range of [0.0 and 1.0]. Values outside
this range are clamped.

stashAutoDraw()

Put autoDraw components on ‘hold’, meaning they get autoDraw set to False but are added to an internal
list to be ‘released’ when .releaseAutoDraw is called.

property stencilTest

True if stencil testing is enabled.

stereoDebugHudMode(mode)
Set the debug stereo HUD mode.

This makes the compositor add stereoscopic reference guides to the scene. You can configure the HUD can
be configured using other methods.

Parameters
mode (str) – Stereo debug mode to use. Valid options are Off, Quad, QuadWithCrosshair,
and CrosshairAtInfinity.

Examples

Enable a stereo debugging guide:

hmd.stereoDebugHudMode('CrosshairAtInfinity')

Hide the debugging guide. Should be called before exiting the application since it’s persistent until the
Oculus service is restarted:

hmd.stereoDebugHudMode('Off')

stopHaptics(controller)
Stop haptic feedback.

Convenience function to stop controller vibration initiated by the last vibrateController call. This is
the same as calling vibrateController(controller, frequency='off').

Parameters
controller (str) – Name of the controller to stop vibrating.

submitControllerVibration(controller, hapticsBuffer)
Submit a haptics buffer to begin controller vibration.

Parameters

10.4. psychopy.visual - many visual stimuli 389

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

• controller (str) – Name of controller to vibrate.

• hapticsBuffer (LibOVRHapticsBuffer) – Haptics buffer to playback.

Notes

Methods startHaptics and stopHaptics cannot be used interchangeably with this function.

tanAngleToNDC(horzTan, vertTan)
Convert tan angles to the normalized device coordinates for the current buffer.

Parameters
• horzTan (float) – Horizontal tan angle.

• vertTan (float) – Vertical tan angle.

Returns
Normalized device coordinates X, Y. Coordinates range between -1.0 and 1.0. Returns None
if an invalid buffer is selected.

Return type
tuple of float

testBoundary(deviceType, bounadryType='PlayArea')
Test if tracked devices are colliding with the play area boundary.

This returns an object containing test result data.

Parameters
• deviceType (str, list or tuple) – The device to check for boundary collision. If a

list of names is provided, they will be combined and all tested.

• boundaryType (str) – Boundary type to test.

timeOnFlip(obj, attrib)
Retrieves the time on the next flip and assigns it to the attrib for this obj.

Parameters
• obj (dict or object) – A mutable object (usually a dict of class instance).

• attrib (str) – Key or attribute of obj to assign the flip time to.

Examples

Assign time on flip to the tStartRefresh key of myTimingDict:

win.getTimeOnFlip(myTimingDict, 'tStartRefresh')

title

property trackerCount

Number of attached trackers.

property trackingOriginType

Current tracking origin type (str).

Valid tracking origin types are ‘floor’ and ‘eye’.

10.4. psychopy.visual - many visual stimuli 390

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

units

None, ‘height’ (of the window), ‘norm’, ‘deg’, ‘cm’, ‘pix’ Defines the default units of stimuli initialized in
the window. I.e. if you change units, already initialized stimuli won’t change their units.

Can be overridden by each stimulus, if units is specified on initialization.

See Units for the window and stimuli for explanation of options.

update()

Deprecated: use Window.flip() instead

updateInputState(controllers=None)
Update all connected controller states. This updates controller input states for an input device managed by
LibOVR.

The polling time for each device is accessible through the controllerPollTimes attribute. This attribute
returns a dictionary where the polling time from the last updateInputState call for a given controller can be
retrieved by using the name as a key.

Parameters
controllers (tuple or list, optional) – List of controllers to poll. If None, all avail-
able controllers will be polled.

Examples

Poll the state of specific controllers by name:

controllers = ['XBox', 'Touch']
updateInputState(controllers)

updateLights(index=None)
Explicitly update scene lights if they were modified.

This is required if modifications to objects referenced in lights have been changed since assignment. If you
removed or added items of lights you must refresh all of them.

Parameters
index (int, optional) – Index of light source in lights to update. If None, all lights will
be refreshed.

Examples

Call updateLights if you modified lights directly like this:

win.lights[1].diffuseColor = [1., 0., 0.]
win.updateLights(1)

property useLights

Enable scene lighting.

Lights will be enabled if using legacy OpenGL lighting. Stimuli using shaders for lighting should check
if useLights is True since this will have no effect on them, and disable or use a no lighting shader instead.
Lights will be transformed to the current view matrix upon setting to True.

Lights are transformed by the present GL_MODELVIEW matrix. Setting useLights will result in their
positions being transformed by it. If you want lights to appear at the specified positions in world space,
make sure the current matrix defines the view/eye transformation when setting useLights=True.

10.4. psychopy.visual - many visual stimuli 391

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

This flag is reset to False at the beginning of each frame. Should be False if rendering 2D stimuli or else
the colors will be incorrect.

property userHeight

Get user height in meters (float).

property viewMatrix

The view matrix for the current eye buffer. Only valid after a calcEyePoses() call. Note that setting
viewMatrix manually will break visibility culling.

viewPos

The origin of the window onto which stimulus-objects are drawn.

The value should be given in the units defined for the window. NB: Never change a single component (x or
y) of the origin, instead replace the viewPos-attribute in one shot, e.g.:

win.viewPos = [new_xval, new_yval] # This is the way to do it
win.viewPos[0] = new_xval # DO NOT DO THIS! Errors will result.

property viewport

Viewport rectangle (x, y, w, h) for the current draw buffer.

Values x and y define the origin, and w and h the size of the rectangle in pixels.

This is typically set to cover the whole buffer, however it can be changed for applications like multi-view
rendering. Stimuli will draw according to the new shape of the viewport, for instance and stimulus with
position (0, 0) will be drawn at the center of the viewport, not the window.

Examples

Constrain drawing to the left and right halves of the screen, where stimuli will be drawn centered on the
new rectangle. Note that you need to set both the viewport and the scissor rectangle:

x, y, w, h = win.frameBufferSize # size of the framebuffer
win.viewport = win.scissor = [x, y, w / 2.0, h]
draw left stimuli ...

win.viewport = win.scissor = [x + (w / 2.0), y, w / 2.0, h]
draw right stimuli ...

restore drawing to the whole screen
win.viewport = win.scissor = [x, y, w, h]

waitBlanking

After a call to flip() should we wait for the blank before the script continues.

property windowedSize

Size of the window to use when not fullscreen (w, h).

10.4. psychopy.visual - many visual stimuli 392

PsychoPy - Psychology software for Python, Release 2023.2.3

10.4.28 RigidBodyPose

Attributes

RigidBodyPose([pos, ori]) Class for representing rigid body poses.

Details

class psychopy.visual.RigidBodyPose(pos=(0.0, 0.0, 0.0), ori=(0.0, 0.0, 0.0, 1.0))
Class for representing rigid body poses.

This class is an abstract representation of a rigid body pose, where the position of the body in a scene is repre-
sented by a vector/coordinate and the orientation with a quaternion. Pose can be manipulated and interacted with
using class methods and attributes. Rigid body poses assume a right-handed coordinate system (-Z is forward
and +Y is up).

Poses can be converted to 4x4 transformation matrices with getModelMatrix. One can use these matrices when
rendering to transform the vertices of a model associated with the pose by passing them to OpenGL. Matrices
are cached internally to avoid recomputing them if pos and ori attributes have not been updated.

Operators * and ~ can be used on RigidBodyPose objects to combine and invert poses. For instance, you can
multiply (*) poses to get a new pose which is the combination of both orientations and translations by:

newPose = rb1 * rb2

Likewise, a pose can be inverted by using the ~ operator:

invPose = ~rb

Multiplying a pose by its inverse will result in an identity pose with no translation and default orientation where
pos=[0, 0, 0] and ori=[0, 0, 0, 1]:

identityPose = ~rb * rb

Warning: This class is experimental and may result in undefined behavior.

Parameters
• pos (array_like) – Position vector [x, y, z] for the origin of the rigid body.

• ori (array_like) – Orientation quaternion [x, y, z, w] where x, y, z are imaginary and w
is real.

alignTo(alignTo)
Align this pose to another point or pose.

This sets the orientation of this pose to one which orients the forward axis towards alignTo.

Parameters
alignTo (array_like or LibOVRPose) – Position vector [x, y, z] or pose to align to.

property at

Vector defining the forward direction (-Z) of this pose.

10.4. psychopy.visual - many visual stimuli 393

PsychoPy - Psychology software for Python, Release 2023.2.3

property bounds

Bounding box associated with this pose.

copy()

Get a new RigidBodyPose object which copies the position and orientation of this one. Copies are inde-
pendent and do not reference each others data.

Returns
Copy of this pose.

Return type
RigidBodyPose

distanceTo(v)
Get the distance to a pose or point in scene units.

Parameters
v (RigidBodyPose or array_like) – Pose or point [x, y, z] to compute distance to.

Returns
Distance to v from this pose’s origin.

Return type
float

getModelMatrix(inverse=False, out=None)
Get the present rigid body transformation as a 4x4 matrix.

Matrices are computed only if the pos and ori attributes have been updated since the last call to getModel-
Matrix. The returned matrix is an ndarray and row-major.

Parameters
• inverse (bool, optional) – Return the inverse of the model matrix.

• out (ndarray or None) – Optional 4x4 array to write values to. Values written are com-
puted using 32-bit float precision regardless of the data type of out.

Returns
4x4 transformation matrix.

Return type
ndarray

Examples

Using a rigid body pose to transform something in OpenGL:

rb = RigidBodyPose((0, 0, -2)) # 2 meters away from origin

Use `array2pointer` from `psychopy.tools.arraytools` to convert
array to something OpenGL accepts.
mv = array2pointer(rb.modelMatrix)

use the matrix to transform the scene
glMatrixMode(GL_MODELVIEW)
glPushMatrix()
glLoadIdentity()
glMultTransposeMatrixf(mv)

(continues on next page)

10.4. psychopy.visual - many visual stimuli 394

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

draw the thing here ...

glPopMatrix()

getNormalMatrix(out=None)
Get the present normal matrix.

Parameters
out (ndarray or None) – Optional 4x4 array to write values to. Values written are com-
puted using 32-bit float precision regardless of the data type of out.

Returns
4x4 normal transformation matrix.

Return type
ndarray

getOriAxisAngle(degrees=True)
Get the axis and angle of rotation for the rigid body. Converts the orientation defined by the ori quaternion
to and axis-angle representation.

Parameters
degrees (bool, optional) – Specify True if angle is in degrees, or else it will be treated
as radians. Default is True.

Returns
Axis [rx, ry, rz] and angle.

Return type
tuple

getViewMatrix(inverse=False)
Convert this pose into a view matrix.

Creates a view matrix which transforms points into eye space using the current pose as the eye position in
the scene. Furthermore, you can use view matrices for rendering shadows if light positions are defined as
RigidBodyPose objects.

Parameters
inverse (bool) – Return the inverse of the view matrix. Default is False.

Returns
4x4 transformation matrix.

Return type
ndarray

getYawPitchRoll(degrees=True)
Get the yaw, pitch and roll angles for this pose relative to the -Z world axis.

Parameters
degrees (bool, optional) – Specify True if angle is in degrees, or else it will be treated
as radians. Default is True.

interp(end, s)
Interpolate between poses.

Linear interpolation is used on position (Lerp) while the orientation has spherical linear interpolation
(Slerp) applied taking the shortest arc on the hypersphere.

10.4. psychopy.visual - many visual stimuli 395

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
• end (LibOVRPose) – End pose.

• s (float) – Interpolation factor between interval 0.0 and 1.0.

Returns
Rigid body pose whose position and orientation is at s between this pose and end.

Return type
RigidBodyPose

property inverseModelMatrix

Inverse of the pose as a 4x4 model matrix (read-only).

invert()

Invert this pose.

inverted()

Get a pose which is the inverse of this one.

Returns
This pose inverted.

Return type
RigidBodyPose

isEqual(other)
Check if poses have similar orientation and position.

Parameters
other (RigidBodyPose) – Other pose to compare.

Returns
Returns True is poses are effectively equal.

Return type
bool

property modelMatrix

Pose as a 4x4 model matrix (read-only).

property normalMatrix

The normal transformation matrix.

property ori

Orientation quaternion (X, Y, Z, W).

property pos

Position vector (X, Y, Z).

property posOri

The position (x, y, z) and orientation (x, y, z, w).

setIdentity()

Clear rigid body transformations.

setOriAxisAngle(axis, angle, degrees=True)
Set the orientation of the rigid body using an axis and angle. This sets the quaternion at ori.

Parameters

10.4. psychopy.visual - many visual stimuli 396

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

• axis (array_like) – Axis of rotation [rx, ry, rz].

• angle (float) – Angle of rotation.

• degrees (bool, optional) – Specify True if angle is in degrees, or else it will be treated
as radians. Default is True.

transform(v, out=None)
Transform a vector using this pose.

Parameters
• v (array_like) – Vector to transform [x, y, z].

• out (ndarray or None, optional) – Optional array to write values to. Must have the
same shape as v.

Returns
Transformed points.

Return type
ndarray

transformNormal(n)
Rotate a normal vector with respect to this pose.

Rotates a normal vector n using the orientation quaternion at ori.

Parameters
n (array_like) – Normal to rotate (1-D with length 3).

Returns
Rotated normal n.

Return type
ndarray

property up

Vector defining the up direction (+Y) of this pose.

10.4.29 SceneSkybox

Attributes

SceneSkybox(win[, tex, ori, axis]) Class to render scene skyboxes.

Details

class psychopy.visual.SceneSkybox(win, tex=(), ori=0.0, axis=(0, 1, 0))
Class to render scene skyboxes.

A skybox provides background imagery to serve as a visual reference for the scene. Background images are
projected onto faces of a cube centered about the viewpoint regardless of any viewpoint translations, giving the
illusion that the background is very far away. Usually, only one skybox can be rendered per buffer each frame.
Render targets must have a depth buffer associated with them.

Background images are specified as a set of image paths passed to faceTextures:

10.4. psychopy.visual - many visual stimuli 397

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

sky = SceneSkybox(
win, ('rt.jpg', 'lf.jpg', 'up.jpg', 'dn.jpg', 'bk.jpg', 'ft.jpg'))

The skybox is rendered by calling draw() after drawing all other 3D stimuli.

Skyboxes are not affected by lighting, however, their colors can be modulated by setting the window’s sceneAm-
bient value. Skyboxes should be drawn after all other 3D stimuli, but before any successive call that clears the
depth buffer (eg. setPerspectiveView, resetEyeTransform, etc.)

Parameters
• win (~psychopy.visual.Window) – Window this skybox is associated with.

• tex (list or tuple or TexCubeMap) – List of files paths to images to use for each face.
Images are assigned to faces depending on their index within the list ([+X, -X, +Y, -Y, +Z, -Z]
or [right, left, top, bottom, back, front]). If None is specified, the cube map may be specified
later by setting the cubemap attribute. Alternatively, you can specify a TexCubeMap object
to set the cube map directly.

• ori (float) – Rotation of the skybox about axis in degrees.

• axis (array_like) – Axis [ax, ay, az] to rotate about, default is (0, 1, 0).

draw(win=None)
Draw the skybox.

This should be called last after drawing other 3D stimuli for performance reasons.

Parameters
win (~psychopy.visual.Window, optional) – Window to draw the skybox to. If None, the
window set when initializing this object will be used. The window must share a context with
the window which this objects was initialized with.

property skyCubeMap

Cubemap for the sky.

10.4.30 EnvelopeGrating

Attributes

Details

class psychopy.visual.EnvelopeGrating(*args, **kwargs)
Second-order envelope stimuli with 3 textures; a carrier, an envelope and a mask

Examples:
env1 = EnvelopeGrating(win,ori=0, carrier=’sin’, envelope=’sin’,

mask = ‘gauss’, sf=24, envsf=4, size=1, contrast=0.5, moddepth=1.0, envori=0, pos=[-.5,.5],interpolate=0)
gives a circular patch of high frequency carrier with a # low frequency envelope

env2 = EnvelopeGrating(win,ori=0, carrier=noise, envelope=’sin’,
mask = None, sf=1, envsf=4, size=1, contrast=0.5, moddepth=0.8, envori=0, pos=[-.5,-.5],interpolate=0)
If noise is some numpy array containing random values gives a # patch of noise with a low frequency
sinewave envelope

env4 = EnvelopeGrating(win,ori=90, carrier=’sin’, envelope=’sin’,
mask = ‘gauss’, sf=24, envsf=4, size=1, contrast=0.5, moddepth=1.0, envori=0, pos=[.5,.5], beat=True,

10.4. psychopy.visual - many visual stimuli 398

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

interpolate=0) # Setting beat will create a second order beat stimulus which # critically contains no net
energy at the carrier frequency # even though it appears to be present. In this case carrier # and envelope
are at 90 degree to each other

With an EnvelopeStim the carrier and envelope can have different spatial frequencies, phases and orientations.
Its position can be shifted as a whole.

contrast controls the contrast of the carrier and moddepth the modulation depth of the envelope. contrast and
moddepth must work together, for moddepth=1 the max carrier contrast is 0.5 otherwise the displayable range
will be exceeded. If moddepth < 1 higher contrasts can be accommodated.

Opacity controls the transparency of the whole stimulus.

Because orientation is implemented very differently for the carrier and envelope using this function without a
broadly circular mask may produce unexpected results

Using EnvelopeStim with images from disk (jpg, tif, png, . . .)
Ideally texture images to be rendered should be square with ‘power-of-2’ dimensions e.g. 16x16, 128x128. Any
image that is not will be upscaled (with linear interpolation) to the nearest such texture by PsychoPy. The size of
the stimulus should be specified in the normal way using the appropriate units (deg, pix, cm, . . .). Be sure to get
the aspect ratio the same as the image (if you don’t want it stretched!).

10.4.31 psychopy.visual.ShapeStim

ShapeStim is the base class for drawing lines and polygons.

10.4. psychopy.visual - many visual stimuli 399

PsychoPy - Psychology software for Python, Release 2023.2.3

Overview

ShapeStim(win[, units, colorSpace, ...]) A class for arbitrary shapes defined as lists of vertices
(x,y).

ShapeStim.units

ShapeStim.lineWidth Width of the line in pixels.
ShapeStim.lineColor Alternative way of setting borderColor.
ShapeStim.fillColor Set the fill color for the shape.
ShapeStim.colorSpace The name of the color space currently being used
ShapeStim.vertices A list of lists or a numpy array (Nx2) specifying xy po-

sitions of each vertex, relative to the center of the field.
ShapeStim.closeShape Should the last vertex be automatically connected to the

first?
ShapeStim.pos The position of the center of the stimulus in the stimulus

units
ShapeStim.size The size (width, height) of the stimulus in the stimulus

units
ShapeStim.ori The orientation of the stimulus (in degrees).
ShapeStim.opacity Determines how visible the stimulus is relative to back-

ground.
ShapeStim.contrast A value that is simply multiplied by the color.
ShapeStim.depth DEPRECATED, depth is now controlled simply by

drawing order.
ShapeStim.interpolate If True the edge of the line will be anti-aliased.
ShapeStim.lineRGB Legacy property for setting the border color of a stimulus

in RGB, instead use obj._borderColor.rgb
ShapeStim.fillRGB Legacy property for setting the fill color of a stimulus in

RGB, instead use obj._fillColor.rgb
ShapeStim.name The name (str) of the object to be using during logged

messages about this stim.
ShapeStim.autoLog Whether every change in this stimulus should be auto

logged.
ShapeStim.autoDraw Determines whether the stimulus should be automati-

cally drawn on every frame flip.
ShapeStim.color Set the color of the shape.
ShapeStim.lineColorSpace Deprecated, please use colorSpace to set color space for

the entire object
ShapeStim.fillColorSpace Deprecated, please use colorSpace to set color space for

the entire object.

Details

class psychopy.visual.shape.ShapeStim(win, units='', colorSpace='rgb', fillColor=False, lineColor=False,
lineWidth=1.5, vertices=((-0.5, 0), (0, 0.5), (0.5, 0)),
windingRule=None, closeShape=True, pos=(0, 0), size=1,
anchor=None, ori=0.0, opacity=1.0, contrast=1.0, depth=0,
interpolate=True, draggable=False, name=None, autoLog=None,
autoDraw=False, color=False, lineRGB=False, fillRGB=False,
fillColorSpace=None, lineColorSpace=None)

A class for arbitrary shapes defined as lists of vertices (x,y).

10.4. psychopy.visual - many visual stimuli 400

PsychoPy - Psychology software for Python, Release 2023.2.3

Shapes can be lines, polygons (concave, convex, self-crossing), or have holes or multiple regions.

vertices is typically a list of points (x,y). By default, these are assumed to define a closed figure (polygon); set
closeShape=False for a line. closeShape cannot be changed dynamically, but individual vertices can be changed
on a frame-by-frame basis. The stimulus as a whole can be rotated, translated, or scaled dynamically (using .ori,
.pos, .size).

Vertices can be a string, giving the name of a known set of vertices, although “cross” is the only named shape
available at present.

Advanced shapes: vertices can also be a list of loops, where each loop is a list of points (x,y), e.g., to define a
shape with a hole. Borders and contains() are not supported for multi-loop stimuli.

windingRule is an advanced feature to allow control over the GLU tessellator winding rule (default:
GLU_TESS_WINDING_ODD). This is relevant only for self-crossing or multi-loop shapes. Cannot be set dy-
namically.

See Coder demo > stimuli > shapes.py

Changed Nov 2015: v1.84.00. Now allows filling of complex shapes. This is almost completely backwards
compatible (see changelog). The old version is accessible as psychopy.visual.BaseShapeStim.

Parameters
• win (Window) – Window this shape is being drawn to. The stimulus instance will allocate its

required resources using that Windows context. In many cases, a stimulus instance cannot be
drawn on different windows unless those windows share the same OpenGL context, which
permits resources to be shared between them.

• units (str) – Units to use when drawing. This will affect how parameters and attributes
pos, size and radius are interpreted.

• colorSpace (str) – Sets the colorspace, changing how values passed to lineColor and
fillColor are interpreted.

• lineWidth (float) – Width of the shape outline.

• lineColor (array_like, str, Color or None) – Color of the shape outline and fill. If None, a
fully transparent color is used which makes the fill or outline invisible.

• fillColor (array_like, str, Color or None) – Color of the shape outline and fill. If None, a
fully transparent color is used which makes the fill or outline invisible.

• vertices (array_like) – Nx2 array of points (eg., [[-0.5, 0], [0, 0.5], [0.5, 0]).

• windingRule (GLenum or None) – Winding rule to use for tesselation, default is
GLU_TESS_WINDING_ODD if None is specified.

• closeShape (bool) – Close the shape’s outline. If True the first and last vertex will be
joined by an edge. Must be True to use tesselation. Default is True.

• pos (array_like) – Initial position (x, y) of the shape on-screen relative to the origin located
at the center of the window or buffer in units. This can be updated after initialization by
setting the pos property. The default value is (0.0, 0.0) which results in no translation.

• size (array_like, float, int or None) – Width and height of the shape as (w, h) or
[w, h]. If a single value is provided, the width and height will be set to the same specified
value. If None is specified, the size will be set with values passed to width and height.

• ori (float) – Initial orientation of the shape in degrees about its origin. Positive values will
rotate the shape clockwise, while negative values will rotate counterclockwise. The default
value for ori is 0.0 degrees.

10.4. psychopy.visual - many visual stimuli 401

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

• opacity (float) – Opacity of the shape. A value of 1.0 indicates fully opaque and 0.0 is
fully transparent (therefore invisible). Values between 1.0 and 0.0 will result in colors being
blended with objects in the background. This value affects the fill (fillColor) and outline
(lineColor) colors of the shape.

• contrast (float) – Contrast level of the shape (0.0 to 1.0). This value is used to modulate
the contrast of colors passed to lineColor and fillColor.

• depth (int) – Depth layer to draw the shape when autoDraw is enabled. DEPRECATED

• interpolate (bool) – Enable smoothing (anti-aliasing) when drawing shape outlines. This
produces a smoother (less-pixelated) outline of the shape.

• draggable (bool) – Can this stimulus be dragged by a mouse click?

• name (str) – Optional name of the stimuli for logging.

• autoLog (bool) – Enable auto-logging of events associated with this stimuli. Useful for
debugging and to track timing when used in conjunction with autoDraw.

• autoDraw (bool) – Enable auto drawing. When True, the stimulus will be drawn every
frame without the need to explicitly call the draw() method.

• color (array_like, str, Color or None) – Sets both the initial lineColor and fillColor of the
shape.

• lineRGB (array_like, Color or None) – Deprecated. Please use lineColor and fillColor.
These arguments may be removed in a future version.

• fillRGB (array_like, Color or None) – Deprecated. Please use lineColor and fillColor.
These arguments may be removed in a future version.

• lineColorSpace (str) – Colorspace to use for the outline and fill. These change how the
values passed to lineColor and fillColor are interpreted. Deprecated. Please use colorSpace
to set both outline and fill colorspace. These arguments may be removed in a future version.

• fillColorSpace (str) – Colorspace to use for the outline and fill. These change how the
values passed to lineColor and fillColor are interpreted. Deprecated. Please use colorSpace
to set both outline and fill colorspace. These arguments may be removed in a future version.

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

static _calcEquilateralVertices(edges, radius=0.5)
Get vertices for an equilateral shape with a given number of sides, will assume radius is 0.5 (relative) but
can be manually specified

_calcPosRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix.

_calcSizeRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix

static _calculateMinEdges(lineWidth, threshold=180)
Calculate how many points are needed in an equilateral polygon for the gap between line rects to be < 1px
and for corner angles to exceed a threshold.

In other words, how many edges does a polygon need to have to appear smooth?

10.4. psychopy.visual - many visual stimuli 402

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

lineWidth
[int, float, np.ndarray] Width of the line in pixels

threshold
[int] Maximum angle (degrees) for corners of the polygon, useful for drawing a circle. Supply 180 for
no maximum angle.

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_getPolyAsRendered()

DEPRECATED. Return a list of vertices as rendered.

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_set(attrib, val, op='', log=None)
DEPRECATED since 1.80.04 + 1. Use setAttribute() and val2array() instead.

_tesselate(newVertices)
Set the .vertices and .border to new values, invoking tessellation.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property backgroundColor

Alternative way of setting fillColor

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

10.4. psychopy.visual - many visual stimuli 403

PsychoPy - Psychology software for Python, Release 2023.2.3

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

closeShape

Should the last vertex be automatically connected to the first?

If you’re using Polygon, Circle or Rect, closeShape=True is assumed and shouldn’t be changed.

color

Set the color of the shape. Sets both fillColor and lineColor simultaneously if applicable.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

contains(x, y=None, units=None)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

property contrast

A value that is simply multiplied by the color.

10.4. psychopy.visual - many visual stimuli 404

PsychoPy - Psychology software for Python, Release 2023.2.3

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

depth

DEPRECATED, depth is now controlled simply by drawing order.

doDragging()

If this stimulus is draggable, do the necessary actions on a frame flip to drag it.

draggable

Can this stimulus be dragged by a mouse click?

draw(win=None, keepMatrix=False)
Draw the stimulus in the relevant window.

You must call this method after every win.flip() if you want the stimulus to appear on that frame and then
update the screen again.

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property fontColor

Alternative way of setting foreColor.

property foreColor

Foreground color of the stimulus

Value should be one of:

10.4. psychopy.visual - many visual stimuli 405

PsychoPy - Psychology software for Python, Release 2023.2.3

• string: to specify a Colors by name. Any of the standard html/X11 color names
<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':

a blue stimulus using rgb255 space
stim.color = 255 # interpreted as (255, 255, 255)

which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

interpolate

If True the edge of the line will be anti-aliased.

property lineColor

Alternative way of setting borderColor.

10.4. psychopy.visual - many visual stimuli 406

PsychoPy - Psychology software for Python, Release 2023.2.3

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

lineWidth

Width of the line in pixels.
Operations supported.

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

property opacity

Determines how visible the stimulus is relative to background.

The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent). Operations are supported.
Precisely how this is used depends on the Blend Mode.

ori

The orientation of the stimulus (in degrees).

Should be a single value (scalar). Operations are supported.

Orientation convention is like a clock: 0 is vertical, and positive values rotate clockwise. Beyond 360 and
below zero values wrap appropriately.

overlaps(polygon)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

See coder demo, shapeContains.py

property pos

The position of the center of the stimulus in the stimulus units

value should be an x,y-pair. Operations are also supported.

Example:

stim.pos = (0.5, 0) # Set slightly to the right of center
stim.pos += (0.5, -1) # Increment pos rightwards and upwards.

Is now (1.0, -1.0)
stim.pos *= 0.2 # Move stim towards the center.

Is now (0.2, -0.2)

10.4. psychopy.visual - many visual stimuli 407

PsychoPy - Psychology software for Python, Release 2023.2.3

Tip: If you need the position of stim in pixels, you can obtain it like this:

from psychopy.tools.monitorunittools import posToPix
posPix = posToPix(stim)

setAutoDraw(value, log=None)
Sets autoDraw. Usually you can use ‘stim.attribute = value’ syntax instead, but use this method to suppress
the log message.

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setColor(color, colorSpace=None, operation='', log=None)
Sets both the line and fill to be the same color.

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setDepth(newDepth, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

10.4. psychopy.visual - many visual stimuli 408

PsychoPy - Psychology software for Python, Release 2023.2.3

setOpacity(newOpacity, operation='', log=None)
Hard setter for opacity, allows the suppression of log messages and calls the update method

setOri(newOri, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setPos(newPos, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setSize(newSize, operation='', units=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setVertices(value=None, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

property size

The size (width, height) of the stimulus in the stimulus units

Value should be x,y-pair, scalar (applies to both dimensions) or None (resets to default). Operations are
supported.

Sizes can be negative (causing a mirror-image reversal) and can extend beyond the window.

Example:

stim.size = 0.8 # Set size to (xsize, ysize) = (0.8, 0.8)
print(stim.size) # Outputs array([0.8, 0.8])
stim.size += (0.5, -0.5) # make wider and flatter: (1.3, 0.3)

Tip: if you can see the actual pixel range this corresponds to by looking at stim._sizeRendered

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

updateOpacity()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox.

property vertices

A list of lists or a numpy array (Nx2) specifying xy positions of each vertex, relative to the center of the
field.

Assigning to vertices can be slow if there are many vertices.

Operations supported with .setVertices().

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

10.4. psychopy.visual - many visual stimuli 409

PsychoPy - Psychology software for Python, Release 2023.2.3

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.32 SimpleImageStim

class psychopy.visual.SimpleImageStim(*args, **kwargs)
A simple stimulus for loading images from a file and presenting at exactly the resolution and color in the file
(subject to gamma correction if set).

Unlike the ImageStim, this type of stimulus cannot be rescaled, rotated or masked (although flipping horizontally
or vertically is possible). Drawing will also tend to be marginally slower, because the image isn’t preloaded to
the graphics card. The slight advantage, however is that the stimulus will always be in its original aspect ratio,
with no interplotation or other transformation, and it is slightly faster to load into PsychoPy.

10.4.33 Slider

10.4. psychopy.visual - many visual stimuli 410

PsychoPy - Psychology software for Python, Release 2023.2.3

Attributes

Slider(win[, ticks, labels, startValue, ...]) A class for obtaining ratings, e.g., on a 1-to-7 or categor-
ical scale.

Slider.getRating() Get the current value of rating (or None if no response
yet)

Slider.getRT() Get the RT for most recent rating (or None if no response
yet)

Slider.markerPos The position on the scale where the marker should be.
Slider.setReadOnly([value, log]) When the rating scale is read only no responses can be

made and the scale contrast is reduced
Slider.contrast Set all elements of the Slider (labels, ticks, line) to a con-

trast
Slider.style

Slider.getHistory() Return a list of the subject's history as (rating, time) tu-
ples.

Slider.getMouseResponses() Instructs the rating scale to check for valid mouse re-
sponses.

Slider.reset() Resets the slider to its starting state (so that it can be
restarted on each trial with a new stimulus)

Details

class psychopy.visual.Slider(win, ticks=(1, 2, 3, 4, 5), labels=None, startValue=None, pos=(0, 0),
size=None, units=None, flip=False, ori=0, style='rating', styleTweaks=[],
granularity=0, readOnly=False, labelColor='White', markerColor='Red',
lineColor='White', colorSpace='rgb', opacity=None, font='Helvetica Bold',
depth=0, name=None, labelHeight=None, labelWrapWidth=None,
autoDraw=False, autoLog=True, color=False, fillColor=False,
borderColor=False)

A class for obtaining ratings, e.g., on a 1-to-7 or categorical scale.

A simpler alternative to RatingScale, to be customised with code rather than with arguments.

A RatingScale instance is a re-usable visual object having a draw() method, with customizable appearance and
response options. draw() displays the rating scale, handles the subject’s mouse or key responses, and updates
the display. When the subject accepts a selection, .noResponse goes False (i.e., there is a response).

You can call the getRating() method anytime to get a rating, getRT() to get the decision time, or
getHistory() to obtain the entire set of (rating, RT) pairs.

For other examples see Coder Demos -> stimuli -> ratingsNew.py.

Authors
• 2018: Jon Peirce

Parameters
• win (psychopy.visual.Window) – Into which the scale will be rendered

• ticks (list or tuple) – A set of values for tick locations. If given a list of numbers then
these determine the locations of the ticks (the first and last determine the endpoints and the
rest are spaced according to their values between these endpoints.

10.4. psychopy.visual - many visual stimuli 411

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

• labels (a list or tuple) – The text to go with each tick (or spaced evenly across the
ticks). If you give 3 labels but 5 tick locations then the end and middle ticks will be given
labels. If the labels can’t be distributed across the ticks then an error will be raised. If you
want an uneven distribution you should include a list matching the length of ticks but with
some values set to None

• pos (XY pair (tuple, array or list)) –

• size (w,h pair (tuple, array or list)) – The size for the scale defines the area
taken up by the line and the ticks. This also controls whether the scale is horizontal or
vertical.

• units (the units to interpret the pos and size) –

• flip (bool) – By default the labels will be below or left of the line. This puts them above
(or right)

• granularity (int or float) – The smallest valid increments for the scale. 0 gives a
continuous (e.g. “VAS”) scale. 1 gives a traditional likert scale. Something like 0.1 gives a
limited fine-grained scale.

• color (labelColor /) – Color of the labels according to the color space

• fillColor (markerColor /) – Color of the marker according to the color space

• borderColor (lineColor /) – Color of the line and ticks according to the color space

• font (font name) –

• autodraw –

• depth –

• name –

• autoLog –

_getHitboxParams()

Calculates hitbox size and pos from own size and pos

_getLineParams()

Calculates location and size of the line based on own location and size

_getMarkerParams()

Calculates location and size of marker based on own location and size

_getTickParams()

Calculates the locations of the line, tickLines and labels from the rating info

_granularRating(rating)
Handle granularity for the rating

property borderColor

property categorical

(readonly) determines from labels and ticks whether the slider is categorical

contrast

Set all elements of the Slider (labels, ticks, line) to a contrast

Parameters
contrast –

10.4. psychopy.visual - many visual stimuli 412

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

draw()

Draw the Slider, with all its constituent elements on this frame

property extent

The distance from the leftmost point on the slider to the rightmost point, and from the highest point to the
lowest.

property fillColor

Set the fill color for the shape.

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':

a blue stimulus using rgb255 space
stim.color = 255 # interpreted as (255, 255, 255)

which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

10.4. psychopy.visual - many visual stimuli 413

PsychoPy - Psychology software for Python, Release 2023.2.3

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

getHistory()

Return a list of the subject’s history as (rating, time) tuples.

The history can be retrieved at any time, allowing for continuous ratings to be obtained in real-time. Both
numerical and categorical choices are stored automatically in the history.

getMarkerPos()

Get the current marker position (or None if no response yet)

getMouseResponses()

Instructs the rating scale to check for valid mouse responses.

This is usually done during the draw() method but can be done by the user as well at any point in time. The
rating will be returned but will ALSO automatically be set as the current rating response.

While the mouse button is down we will alter self.markerPos but don’t set a value for self.rating until button
comes up

Return type
A rating value or None

getRT()

Get the RT for most recent rating (or None if no response yet)

getRating()

Get the current value of rating (or None if no response yet)

property horiz

(readonly) determines from self.size whether the scale is horizontal

knownStyleTweaks = ['labels45', 'triangleMarker']

knownStyles = ['slider', 'rating', 'radio', 'scrollbar', 'choice']

property labelColor

Synonym of Slider.foreColor

property labelHeight

property labelWrapWidth

legacyStyleTweaks = ['whiteOnBlack']

legacyStyles = []

property markerColor

Synonym of Slider.fillColor

markerPos

The position on the scale where the marker should be. Note that this does not alter the value of the reported
rating, only its visible display. Also note that this position is in scale units, not in coordinates

property opacity

10.4. psychopy.visual - many visual stimuli 414

PsychoPy - Psychology software for Python, Release 2023.2.3

property pos

property rating

recordRating(rating, rt=None, log=None)
Sets the current rating value

reset()

Resets the slider to its starting state (so that it can be restarted on each trial with a new stimulus)

setMarkerPos(rating)
Set the current marker position (or None if no response yet)

Parameters
rating (int or float) – The rating on the scale where we want to set the marker

setOpacity(newOpacity, operation='', log=None)

setOri(newOri, operation='', log=None)

setPos(newPos, operation='', log=None)

setReadOnly(value=True, log=None)
When the rating scale is read only no responses can be made and the scale contrast is reduced

Parameters
• value (bool (True)) – The value to which we should set the readOnly flag

• log (bool or None) – Force the autologging to occur or leave as default

setSize(newSize, operation='', units=None, log=None)

property size

property style

styleTweaks

Sets some predefined style tweaks or use these to create your own.

If you fancy creating and including your own style tweaks that would be great!

Parameters
styleTweaks (list of strings) – Known style tweaks currently include:

’triangleMarker’: the marker is a triangle ‘labels45’: the text is rotated by 45 degrees

Legacy style tweaks include:

’whiteOnBlack’: a sort of color-inverse rating scale

Legacy style tweaks will work if set in code, but are not exposed in Builder as they are redun-
dant

Style tweaks can be combined in a list e.g. [‘labels45’]

ticks

property units

updateOpacity()

property value

Synonymous with .rating

10.4. psychopy.visual - many visual stimuli 415

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

PsychoPy - Psychology software for Python, Release 2023.2.3

10.4.34 SphereStim

Attributes

SphereStim(win[, radius, subdiv, flipFaces, ...]) Class for drawing a UV sphere.

Details

class psychopy.visual.SphereStim(win, radius=0.5, subdiv=(32, 32), flipFaces=False, pos=(0.0, 0.0, 0.0),
ori=(0.0, 0.0, 0.0, 1.0), color=(0.0, 0.0, 0.0), colorSpace='rgb',
contrast=1.0, opacity=1.0, useMaterial=None, name='', autoLog=True)

Class for drawing a UV sphere.

The resolution of the sphere mesh can be controlled by setting sectors and stacks which controls the number
of latitudinal and longitudinal subdivisions, respectively. The radius of the sphere is defined by setting radius
expressed in scene units (meters if using a perspective projection).

Calling the draw method will render the sphere to the current buffer. The render target (FBO or back buffer) must
have a depth buffer attached to it for the object to be rendered correctly. Shading is used if the current window
has light sources defined and lighting is enabled (by setting useLights=True before drawing the stimulus).

Warning: This class is experimental and may result in undefined behavior.

Examples

Creating a red sphere 1.5 meters away from the viewer with radius 0.25:

redSphere = SphereStim(win,
pos=(0., 0., -1.5),
radius=0.25,
color=(1, 0, 0))

Parameters
• win (~psychopy.visual.Window) – Window this stimulus is associated with. Stimuli cannot

be shared across windows unless they share the same context.

• radius (float) – Radius of the sphere in scene units.

• subdiv (array_like) – Number of latitudinal and longitudinal subdivisions (lat, long) for
the sphere mesh. The greater the number, the smoother the sphere will appear.

• flipFaces (bool, optional) – If True, normals and face windings will be set to point
inward towards the center of the sphere. Texture coordinates will remain the same. Default
is False.

• pos (array_like) – Position vector [x, y, z] for the origin of the rigid body.

• ori (array_like) – Orientation quaternion [x, y, z, w] where x, y, z are imaginary and
w is real. If you prefer specifying rotations in axis-angle format, call setOriAxisAngle after
initialization.

10.4. psychopy.visual - many visual stimuli 416

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

• useMaterial (PhongMaterial, optional) – Material to use. The material can be con-
figured by accessing the material attribute after initialization. If not material is specified, the
diffuse and ambient color of the shape will be set by color.

• color (array_like) – Diffuse and ambient color of the stimulus if useMaterial is not spec-
ified. Values are with respect to colorSpace.

• colorSpace (str) – Colorspace of color to use.

• contrast (float) – Contrast of the stimulus, value modulates the color.

• opacity (float) – Opacity of the stimulus ranging from 0.0 to 1.0. Note that transparent
objects look best when rendered from farthest to nearest.

• name (str) – Name of this object for logging purposes.

• autoLog (bool) – Enable automatic logging on attribute changes.

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

_createVAO(vertices, textureCoords, normals, faces)
Create a vertex array object for handling vertex attribute data.

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

property anchor

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property backgroundColor

Alternative way of setting fillColor

property borderColor

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

10.4. psychopy.visual - many visual stimuli 417

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

borderWidth

property color

Alternative way of setting foreColor.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

draw(win=None)
Draw the stimulus.

10.4. psychopy.visual - many visual stimuli 418

PsychoPy - Psychology software for Python, Release 2023.2.3

This should work for stimuli using a single VAO and material. More complex stimuli with multiple materials
should override this method to correctly handle that case.

Parameters
win (~psychopy.visual.Window) – Window this stimulus is associated with. Stimuli cannot
be shared across windows unless they share the same context.

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property flipHoriz

property flipVert

property fontColor

Alternative way of setting foreColor.

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
(continues on next page)

10.4. psychopy.visual - many visual stimuli 419

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':
a blue stimulus using rgb255 space

stim.color = 255 # interpreted as (255, 255, 255)
which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

getOri()

getOriAxisAngle(degrees=True)
Get the axis and angle of rotation for the 3D stimulus. Converts the orientation defined by the ori quaternion
to and axis-angle representation.

Parameters
degrees (bool, optional) – Specify True if angle is in degrees, or else it will be treated
as radians. Default is True.

Returns
Axis [rx, ry, rz] and angle.

Return type
tuple

getPos()

getRayIntersectBounds(rayOrig, rayDir)
Get the point which a ray intersects the bounding box of this mesh.

Parameters
• rayOrig (array_like) – Origin of the ray in space [x, y, z].

• rayDir (array_like) – Direction vector of the ray [x, y, z], should be normalized.

10.4. psychopy.visual - many visual stimuli 420

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

Returns
Coordinate in world space of the intersection and distance in scene units from rayOrig. Re-
turns None if there is no intersection.

Return type
tuple

getRayIntersectSphere(rayOrig, rayDir)
Get the point which a ray intersects the sphere.

Parameters
• rayOrig (array_like) – Origin of the ray in space [x, y, z].

• rayDir (array_like) – Direction vector of the ray [x, y, z], should be normalized.

Returns
Coordinate in world space of the intersection and distance in scene units from rayOrig. Re-
turns None if there is no intersection.

Return type
tuple

property height

isVisible()

Check if the object is visible to the observer.

Test if a pose’s bounding box or position falls outside of an eye’s view frustum.

Poses can be assigned bounding boxes which enclose any 3D models associated with them. A model is not
visible if all the corners of the bounding box fall outside the viewing frustum. Therefore any primitives
(i.e. triangles) associated with the pose can be culled during rendering to reduce CPU/GPU workload.

Returns
True if the object’s bounding box is visible.

Return type
bool

Examples

You can avoid running draw commands if the object is not visible by doing a visibility test first:

if myStim.isVisible():
myStim.draw()

property lineColor

Alternative way of setting borderColor.

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

lineWidth

10.4. psychopy.visual - many visual stimuli 421

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

property ori

Orientation quaternion (X, Y, Z, W).

property pos

Position vector (X, Y, Z).

setAnchor(value, log=None)

setBackColor(color, colorSpace=None, operation='', log=None)

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setBackgroundColor(color, colorSpace=None, operation='', log=None)

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setBorderWidth(newWidth, operation='', log=None)

setColor(color, colorSpace=None, operation='', log=None)

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setFontColor(color, colorSpace=None, operation='', log=None)

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setLineColor(color, colorSpace=None, operation='', log=None)

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setLineWidth(newWidth, operation='', log=None)

10.4. psychopy.visual - many visual stimuli 422

PsychoPy - Psychology software for Python, Release 2023.2.3

setOri(ori)

setOriAxisAngle(axis, angle, degrees=True)
Set the orientation of the 3D stimulus using an axis and angle. This sets the quaternion at ori.

Parameters
• axis (array_like) – Axis of rotation [rx, ry, rz].

• angle (float) – Angle of rotation.

• degrees (bool, optional) – Specify True if angle is in degrees, or else it will be treated
as radians. Default is True.

setPos(pos)

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

property size

property thePose

The pose of the rigid body. This is a class which has pos and ori attributes.

units

None, ‘norm’, ‘cm’, ‘deg’, ‘degFlat’, ‘degFlatPos’, or ‘pix’

If None then the current units of the Window will be used. See Units for the window and stimuli for expla-
nation of other options.

Note that when you change units, you don’t change the stimulus parameters and it is likely to change ap-
pearance. Example:

This stimulus is 20% wide and 50% tall with respect to window
stim = visual.PatchStim(win, units='norm', size=(0.2, 0.5)

This stimulus is 0.2 degrees wide and 0.5 degrees tall.
stim.units = 'deg'

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

property vertices

property width

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

10.4. psychopy.visual - many visual stimuli 423

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.35 TextBox

Warning: TextBox is deprecated. Please use TextBox2 instead which supports similar editable high-performance
rendering of text but also supports non-monospaced fonts and a wider range of formatting and alignment options.

Attributes

TextBox([window, text, font_name, bold, ...]) Similar to the visual.TextStim component, TextBox can
be used to display text within a psychopy window.

The following `set______()` attributes all have equivalent `get______()` attributes:

TextBox.setText(text_source) Set the text to be displayed within the Textbox.
TextBox.setPosition(pos) Set the (x,y) position of the TextBox on the Monitor.
TextBox.setHorzAlign(v) Specify how the horizontal (x) component of the

TextBox position is to be interpreted.
TextBox.setVertAlign(v) Specify how the vertical (y) component of the TextBox

position is to be interpreted.
TextBox.setHorzJust(v) Specify how text within the TextBox should be aligned

horizontally.
TextBox.setVertJust(v) Specify how text within the TextBox should be aligned

vertically.
TextBox.setFontColor(c) Set the color to use when drawing text glyphs within the

TextBox.
TextBox.setBorderColor(c) Set the color to use for the border of the textBox.
TextBox.setBackgroundColor(c) Set the fill color used to fill the rectangular area of the

TextBox stim.
TextBox.setTextGridLineColor(c) Set the color used when drawing text grid lines.
TextBox.setTextGridLineWidth (c) Set the stroke width (in pixels) to use for the text grid

character bounding boxes.
TextBox.setInterpolated(interpolate) Specify whether interpolation should be enabled for the

TextBox when it is drawn.
TextBox.setOpacity(o) Sets the TextBox transparency level to use for color re-

lated attributes of the Textbox.
TextBox.setAutoLog(v) Specify if changes to textBox attribute values should be

logged automatically by PsychoPy.
TextBox.draw() Draws the TextBox to the back buffer of the graphics

card.

TextBox also provides the following read-only functions:

10.4. psychopy.visual - many visual stimuli 424

PsychoPy - Psychology software for Python, Release 2023.2.3

TextBox.getSize() Return the width,height of the TextBox, using the unit
type being used by the stimulus.

TextBox.getName() Same as the GetLabel method.
TextBox.getDisplayedText() Return the text that fits within the TextBox and therefore

is actually seen. This is equal to::.
TextBox.getValidStrokeWidths() Returns the stroke width range supported by the graphics

card being used.
TextBox.getLineSpacing() Return the additional spacing being applied between

rows of text.
TextBox.getGlyphPositionForTextIndex(char_index)For the provided char_index, which is the index of one

character in
TextBox.getTextGridCellPlacement() Returns a 3D numpy array containing position informa-

tion for each text grid cell in the TextBox.

Helper Functions

getFontManager()
FontManager provides a simple API for finding and loading font files (.ttf) via the FreeType library.

The FontManager finds supported font files on the computer and initially creates a dictionary containing the information
about available fonts. This can be used to quickly determine what font family names are available on the computer and
what styles (bold, italic) are supported for each family.

This font information can then be used to create the resources necessary to display text using a given font family, style,
size, color, and dpi.

The FontManager is currently used by the psychopy.visual.TextBox stim type. A user script can access the FontManager
via:

font_mngr=visual.textbox.getFontManager()

Once a font of a given size and dpi has been created; it is cached by the FontManager and can be used by all TextBox
instances created within the experiment.

Details

class psychopy.visual.TextBox(window=None, text='Default Test Text.', font_name=None, bold=False,
italic=False, font_size=32, font_color=(0, 0, 0, 1), dpi=72, line_spacing=0,
line_spacing_units='pix', background_color=None, border_color=None,
border_stroke_width=1, size=None, textgrid_shape=None, pos=(0.0, 0.0),
align_horz='center', align_vert='center', units='norm', grid_color=None,
grid_stroke_width=1, color_space='rgb', opacity=1.0,
grid_horz_justification='left', grid_vert_justification='top', autoLog=True,
interpolate=False, name=None)

Similar to the visual.TextStim component, TextBox can be used to display text within a psychopy window.
TextBox and TextStim each have different strengths and weaknesses. You should select the most appropriate
text component type based on how it will be used within the experiment.

NOTE: As of PsychoPy 1.79, TextBox should be considered experimental. The two TextBox demo scripts pro-
vided have been tested on all PsychoPy supported OS’s and run without exceptions. However there are very likely
bugs in the existing TextBox code and the TextBox API will be further enhanced and improved (i.e. changed)
over the next couple months.

10.4. psychopy.visual - many visual stimuli 425

PsychoPy - Psychology software for Python, Release 2023.2.3

TextBox Features
• Text character placement is very well defined, useful when the exact positioning of each letter needs to be

known.

• The text string that is displayed can be changed (setText()) and drawn (win.draw()) very quickly. See the
TextBox vs. TextStim comparison table for details.

• Built-in font manager; providing easy access to the font family names and styles that are available on the
computer being used.

• TextBox is a composite stimulus type, with the following graphical elements, many of which can be changed
to control many aspects of how the TextBox is displayed.:

– TextBox Border / Outline

– TextBox Fill Area

– Text Grid Cell Lines

– Text Glyphs

• When using ‘rgb’ or ‘rgb255’ color spaces, colors can be specified as a list/tuple of 3 elements (red, green,
blue), or with four elements (reg, green, blue, alpha) which allows different elements of the TextBox to
use different opacity settings if desired. For colors that include the alpha channel value, it will be applied
instead of the opacity setting of the TextBox, effectively overriding the stimulus defined opacity for that
part of the textbox graphics. Colors that do not include an alpha channel use the opacity setting as normal.

• Text Line Spacing can be controlled.

Textbox Limitations
• Only Monospace Fonts are supported.

• TextBox component is not a completely standard psychopy visual stim and has the following functional
difference:

– TextBox attributes are never accessed directly; get* and set* methods are always used (this will be
changed to use class properties in the future).

– Setting an attribute of a TextBox only supports value replacement, (textbox.setFontColor([1.0,1.0,1.0])
) and does not support specifying operators.

• Some key word arguments supported by other stimulus types in general, or by TextStim itself, are not
supported by TextBox. See the TextBox class definition for the arguments that are supported.

• When a new font, style, and size are used it takes about 1 second to load and process the font. This is a one
time delay for a given font name, style, and size. After first being loaded, the same font style can be used
or re-applied to multiple TextBox components with no significant delay.

• Auto logging or auto drawing is not currently supported.

TextStim and TextBox Comparison:

10.4. psychopy.visual - many visual stimuli 426

PsychoPy - Psychology software for Python, Release 2023.2.3

Feature TextBox TextStim
Change text + redraw time^ 1.513 msec 28.537 msec
No change + redraw time^ 0.240 msec 0.931 msec
Initial Creation time^ 0.927 msec 0.194 msec
MonoSpace Font Support Yes Yes
Non MonoSpace Font Support No Yes
Adjustable Line Spacing Yes No
Precise Text Pos. Info Yes No
Auto logging Support No Yes
Rotation Support No Yes
Word Wrapping Support Yes Yes

^ Times are in msec.usec format. Tested using the textstim_vs_textbox.py
demo script provided with the PsychoPy distribution. Results are dependent on text length, video card,
and OS. Displayed results are based on 120 character string with an average of 24 words. Test computer
used Windows 7 64 bit, PsychoPy 1.79, with a i7 3.4 Ghz CPU, 8 GB RAM, and NVIDIA 480 GTX 2GB
graphics card.

Example:

from psychopy import visual

win=visual.Window(...)

A Textbox stim that will look similar to a TextStim component

textstimlike=visual.TextBox(
window=win,
text="This textbox looks most like a textstim.",
font_size=18,
font_color=[-1,-1,1],
color_space='rgb',
size=(1.8,.1),
pos=(0.0,.5),
units='norm')

A Textbox stim that uses more of the supported graphical features
#
textboxloaded=visual.TextBox(

window=win
text='TextBox showing all supported graphical elements',
font_size=32,
font_color=[1,1,1],
border_color=[-1,-1,1], # draw a blue border around stim
border_stroke_width=4, # border width of 4 pix.
background_color=[-1,-1,-1], # fill the stim background
grid_color=[1,-1,-1,0.5], # draw a red line around each

possible letter area,
50% transparent

grid_stroke_width=1, # with a width of 1 pix
textgrid_shape=[20,2], # specify area of text box

(continues on next page)

10.4. psychopy.visual - many visual stimuli 427

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

by the number of cols x
number of rows of text to support
instead of by a screen
units width x height.

pos=(0.0,-.5),
If the text string length < num rows * num cols in
textgrid_shape, how should text be justified?
#
grid_horz_justification='center',
grid_vert_justification='center')

textstimlike.draw()
textboxloaded.draw()
win.flip()

draw()

Draws the TextBox to the back buffer of the graphics card. Then call win.flip() to display the changes drawn.
If draw() is not called prior to a call to win.flip(), the textBox will not be displayed for that retrace.

getAutoLog()

Indicates if changes to textBox attribute values should be logged automatically by PsychoPy. Currently not
supported by TextBox.

getBackgroundColor()

Get the color used to fill the rectangular area of the TextBox stim. All other graphical elements of the
TextBox are drawn on top of the background.

getBorderColor()

A border can be drawn around the perimeter of the TextBox. This method sets the color of that border.

getBorderWidth()

Get the stroke width of the optional TextBox area outline. This is always given in pixel units.

getColorSpace()

Returns the psychopy color space used when specifying colors for the TextBox. Supported values are:

• ‘rgb’

• ‘rbg255’

• ‘norm’

• hex (implicit)

• html name (implicit)

See the Color Space section of the PsychoPy docs for details.

getDisplayedText()

Return the text that fits within the TextBox and therefore is actually seen. This is equal to:

text_length=len(self.getText())
cols,rows=self.getTextGridShape()

displayed_text=self.getText()[0:min(text_length,rows*cols]

10.4. psychopy.visual - many visual stimuli 428

PsychoPy - Psychology software for Python, Release 2023.2.3

getFontColor()

Return the color used when drawing text glyphs.

getFontSize()

getGlyphPositionForTextIndex(char_index)

For the provided char_index, which is the index of one character in
the current text being displayed by the TextBox (getDisplayedText()), return the bounding box posi-
tion, width, and height for the associated glyph drawn to the screen. This factors in the glyphs position
within the textgrid cell it is being drawn in, so the returned bounding box is for the actual glyph it-
self, not the textgrid cell. For textgrid cell placement information, see the getTextGridCellPlacement()
method.

The glyph position for the given text index is returned as a tuple (x,y,width,height), where x,y is the
top left hand corner of the bounding box.

Special Cases:

• If the index provided is out of bounds for the currently displayed text, None is returned.

• For u’ ‘ (space) characters, the full textgrid cell bounding box is returned.

• For u’

‘ (new line) characters,the textgrid cell bounding box
is returned, but with the box width set to 0.

getHorzAlign()

Return what textbox x position should be interpreted as. Valid options are ‘left’, ‘center’, or ‘right’ .

getHorzJust()

Return how text should laid out horizontally when the number of columns of each text grid row is greater
than the number needed to display the text for that text row.

getInterpolated()

Returns whether interpolation is enabled for the TextBox when it is drawn. When True,
GL_LINE_SMOOTH and GL_POLYGON_SMOOTH are enabled within OpenGL; otherwise they are
disabled.

getLabel()

Return the label / name assigned to the textbox. This does not impact how the stimulus looks when drawn,
and instead is used for internal purposes only.

getLineSpacing()

Return the additional spacing being applied between rows of text. The value is in units specified by the
textbox getUnits() method.

getName()

Same as the GetLabel method.

getOpacity()

Get the default TextBox transparency level used for color related attributes. 0.0 equals fully transparent,
1.0 equals fully opaque.

getPosition()

Return the x,y position of the textbox, in getUnitType() coord space.

getSize()

Return the width,height of the TextBox, using the unit type being used by the stimulus.

10.4. psychopy.visual - many visual stimuli 429

PsychoPy - Psychology software for Python, Release 2023.2.3

getText()

Return the text to display.

getTextGridCellForCharIndex(char_index)

getTextGridCellPlacement()

Returns a 3D numpy array containing position information for each text grid cell in the TextBox. The array
has the shape (num_cols, num_rows, cell_bounds), where num_cols is the number of textgrid columns in
the TextBox. num_rows is the number of textgrid rows in the TextBox. cell_bounds is a 4 element array
containing the (x pos, y pos, width, height) data for the given cell. Position fields are for the top left hand
corner of the cell box. Column and Row indices start at 0.

To get the shape of the textgrid in terms of columns and rows, use:

cell_pos_array=textbox.getTextGridCellPlacement()
col_row_count=cell_pos_array.shape[:2]

To access the position, width, and height for textgrid cell at column 0 and row 0 (so the top left cell in the
textgrid):

cell00=cell_pos_array[0,0,:]

For the cell at col 3, row 1 (so 4th cell on second row):

cell41=cell_pos_array[4,1,:]

getTextGridLineColor()

Return the color used when drawing the outline of the text grid cells. Each letter displayed in a TextBox
populates one of the text cells defined by the shape of the TextBox text grid. Color value must be valid for
the color space being used by the TextBox.

A value of None indicates drawing of the textgrid lines is disabled.

getTextGridLineWidth()

Return the stroke width (in pixels) of the optional lines drawn around the text grid cell areas.

getUnitType()

Returns which of the psychopy coordinate systems are used by the TextBox. Position and size related
attributes mush be specified relative to the unit type being used. Valid options are:

• pix

• norm

• cm

getValidStrokeWidths()

Returns the stroke width range supported by the graphics card being used. If the TextBox is Interpolated, a
tuple is returns using float values, with the following structure:

((min_line_width, max_line_width), line_width_granularity)

If Interpolation is disabled for the TextBox, the returned tuple elements are int values, with the following
structure:

(min_line_width, max_line_width)

getVertAlign()

Return what textbox y position should be interpreted as. Valid options are ‘top’, ‘center’, or ‘bottom’ .

10.4. psychopy.visual - many visual stimuli 430

PsychoPy - Psychology software for Python, Release 2023.2.3

getVertJust()

Return how text should laid out vertically when the number of text grid rows is greater than the number
needed to display the current text

getWindow()

Returns the psychopy window that the textBox is associated with.

setAutoLog(v)
Specify if changes to textBox attribute values should be logged automatically by PsychoPy. True enables
auto logging; False disables it. Currently not supported by TextBox.

setBackgroundColor(c)
Set the fill color used to fill the rectangular area of the TextBox stim. Color value must be valid for the color
space being used by the TextBox.

A value of None will disable drawing of the TextBox background.

setBorderColor(c)
Set the color to use for the border of the textBox. The TextBox border is a rectangular outline drawn around
the edges of the TextBox stim. Color value must be valid for the color space being used by the TextBox.

A value of None will disable drawing of the border.

setBorderWidth(c)
Set the stroke width (in pixels) to use for the border of the TextBox stim. Border values must be within the
range of stroke widths supported by the OpenGL driver used by the graphics. Setting the width outside the
valid range will result in the stroke width being clamped to the nearest end of the valid range.

Use the TextBox.getValidStrokeWidths() to access the minimum - maximum range of valid line widths.

setFontColor(c)
Set the color to use when drawing text glyphs within the TextBox. Color value must be valid for the color
space being used by the TextBox. For ‘rgb’, ‘rgb255’, and ‘norm’ based colors, three or four element lists
are valid. Three element colors use the TextBox getOpacity() value to determine the alpha channel for the
color. Four element colors use the value of the fourth element to set the alpha value for the color.

setHorzAlign(v)
Specify how the horizontal (x) component of the TextBox position is to be interpreted. left = x position is
the left edge, right = x position is the right edge x position, and center = the x position is used to center the
stim horizontally.

setHorzJust(v)
Specify how text within the TextBox should be aligned horizontally. For example, if a text grid has 10
columns, and the text being displayed is 6 characters in length, the horizontal justification determines if
the text should be draw starting at the left of the text columns (left), or should be centered on the columns
(‘center’, in this example there would be two empty text cells to the left and right of the text.), or should be
drawn such that the last letter of text is drawn in the last column of the text row (‘right’).

setInterpolated(interpolate)
Specify whether interpolation should be enabled for the TextBox when it is drawn. When interpolate ==
True, GL_LINE_SMOOTH and GL_POLYGON_SMOOTH are enabled within OpenGL. When interpo-
late is set to False, GL_POLYGON_SMOOTH and GL_LINE_SMOOTH are disabled.

setOpacity(o)
Sets the TextBox transparency level to use for color related attributes of the Textbox. 0.0 equals fully
transparent, 1.0 equals fully opaque.

If opacity is set to None, it is assumed to have a default value of 1.0.

10.4. psychopy.visual - many visual stimuli 431

PsychoPy - Psychology software for Python, Release 2023.2.3

When a color is defined with a 4th element in the colors element list, then this opacity value is ignored and
the alpha value provided in the color itself is used for that TextGrid element instead.

setPosition(pos)
Set the (x,y) position of the TextBox on the Monitor. The position must be given using the unit coord type
used by the stim.

The TextBox position is interpreted differently depending on the Horizontal and Vertical Alignment settings
of the stim. See getHorzAlignment() and getVertAlignment() for more information.

For example, if the TextBox alignment is specified as left, top, then the position specifies the top left hand
corner of where the stim will be drawn. An alignment of bottom,right indicates that the position value will
define where the bottom right corner of the TextBox will be drawn. A horz., vert. alignment of center,
center will place the center of the TextBox at pos.

setText(text_source)
Set the text to be displayed within the Textbox.

Note that once a TextBox has been created, the number of character rows and columns is static. To change
the size of a TextBox, a new TextBox stim must be created to replace the current Textbox stim. Therefore
ensure that the textbox is large enough to display the largest length string to be presented in the TextBox.
Characters that do not fit within the TextBox will not be displayed.

Color value must be valid for the color space being used by the TextBox.

setTextGridLineColor(c)
Set the color used when drawing text grid lines. These are lines that can be drawn which mark the bounding
box for each character within the TextBox text grid. Color value must be valid for the color space being
used by the TextBox.

Provide a value of None to disable drawing of textgrid lines.

setTextGridLineWidth(c)
Set the stroke width (in pixels) to use for the text grid character bounding boxes. Border values must be
within the range of stroke widths supported by the OpenGL driver used by the computer graphics card.
Setting the width outside the valid range will result in the stroke width being clamped to the nearest end of
the valid range.

Use the TextBox.getGLineRanges() to access a dict containing some OpenGL parameters which provide
the minimum, maximum, and resolution of valid line widths.

setVertAlign(v)
Specify how the vertical (y) component of the TextBox position is to be interpreted. top = y position is the
top edge, bottom = y position is the bottom edge y position, and center = the y position is used to center
the stim vertically.

setVertJust(v)
Specify how text within the TextBox should be aligned vertically. For example, if a text grid has 3 rows for
text, and the text being displayed all fits on one row, the vertical justification determines if the text should
be draw on the top row of the text grid (top), or should be centered on the rows (‘center’, in this example
there would be one row above and below the row used to draw the text), or should be drawn on the last row
of the text grid, (‘bottom’).

10.4. psychopy.visual - many visual stimuli 432

PsychoPy - Psychology software for Python, Release 2023.2.3

10.4.36 TextBox2

Attributes

TextBox2(win, text[, font, pos, units, ...])
param win

The following `set______()` attributes all have equivalent `get______()` attributes:

TextBox2.text

TextBox2.alignment

TextBox2.hasFocus

TextBox2.overlaps(polygon[, tight]) Returns True if this stimulus intersects another one.
TextBox2.contains(x[, y, units, tight]) Returns True if a point x,y is inside the stimulus' border.
TextBox2.clear() Resets the TextBox2 to a blank string
TextBox2.reset() Resets the TextBox2 to hold whatever it was given on

initialisation
TextBox2.font

TextBox2.height

TextBox2.anchor

TextBox2.editable Determines whether or not the TextBox2 instance can
receive typed text

TextBox2.padding

TextBox2.size The (requested) size of the TextBox (w,h) in whatever
units the stimulus is using

TextBox2.pos The position of the center of the TextBox in the stimulus
units

TextBox2.units

TextBox2.draw() Draw the text to the back buffer

Details

class psychopy.visual.TextBox2(win, text, font='Open Sans', pos=(0, 0), units=None, letterHeight=None,
size=None, color=(1.0, 1.0, 1.0), colorSpace='rgb', fillColor=None,
fillColorSpace=None, borderWidth=2, borderColor=None,
borderColorSpace=None, contrast=1, opacity=None, bold=False,
italic=False, placeholder='Type here...', lineSpacing=None,
letterSpacing=None, padding=None, speechPoint=None, anchor='center',
alignment='left', flipHoriz=False, flipVert=False, languageStyle='LTR',
editable=False, overflow='visible', lineBreaking='default',
draggable=False, name='', autoLog=None, autoDraw=False, depth=0,
onTextCallback=None)

10.4. psychopy.visual - many visual stimuli 433

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
• win –

• text –

• font –

• pos –

• units –

• letterHeight –

• size (Specifying None gets the default size for this type of unit.) –
Specifying [None, None] gets a TextBox that’s expandable in both dimensions. Specifying
[0.75, None] gets a textbox that expands in the length but fixed at 0.75 units in the width

• color –

• colorSpace –

• contrast –

• opacity –

• bold –

• italic –

• lineSpacing –

• padding –

• speechPoint (list, tuple, np.ndarray or None) – Location of the end of a speech
bubble tail on the textbox, in the same units as this textbox. If the point sits within the textbox,
the tail will be inverted. Use None for no tail.

• anchor –

• alignment –

• fillColor –

• borderWidth –

• borderColor –

• flipHoriz –

• flipVert –

• editable –

• lineBreaking (Specifying 'default', text will be broken at a set of) –
characters defined in the module. Specifying ‘uax14’, text will be broken in accordance
with UAX#14 (Unicode Line Breaking Algorithm).

• draggable (bool) – Can this stimulus be dragged by a mouse click?

• name –

• autoLog –

10.4. psychopy.visual - many visual stimuli 434

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

_addRenderOnlyChar(i, x, y, vertices, glyph, alphaCorrection=1)
Add a character at index i which is drawn but not actually part of the text

_calcPosRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix.

_calcSizeRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_getPolyAsRendered()

DEPRECATED. Return a list of vertices as rendered.

_layout()

Layout the text, calculating the vertex locations

_onCursorKeys(key)
Called by the window when cursor/del/backspace. . . are received

_onText(chr)
Called by the window when characters are received

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_set(attrib, val, op='', log=None)
DEPRECATED since 1.80.04 + 1. Use setAttribute() and val2array() instead.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

addCharAtCaret(char)
Allows a character to be added programmatically at the current caret

property alignment

property anchor

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

10.4. psychopy.visual - many visual stimuli 435

PsychoPy - Psychology software for Python, Release 2023.2.3

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

property backColor

Alternative way of setting fillColor

property backColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property backRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property backgroundColor

Alternative way of setting fillColor

property borderColor

property borderColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property borderRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

borderWidth

clear()

Resets the TextBox2 to a blank string

property color

Alternative way of setting foreColor.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

(continues on next page)

10.4. psychopy.visual - many visual stimuli 436

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

Make it light green again
stim.color = (128, 255, 128)

contains(x, y=None, units=None, tight=False)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

deleteCaretLeft()

Deletes 1 character to the left of the caret

deleteCaretRight()

Deletes 1 character to the right of the caret

depth

DEPRECATED, depth is now controlled simply by drawing order.

10.4. psychopy.visual - many visual stimuli 437

PsychoPy - Psychology software for Python, Release 2023.2.3

doDragging()

If this stimulus is draggable, do the necessary actions on a frame flip to drag it.

draggable

Can this stimulus be dragged by a mouse click?

draw()

Draw the text to the back buffer

property editable

Determines whether or not the TextBox2 instance can receive typed text

property fillColor

Set the fill color for the shape.

property fillColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property fillRGB

Legacy property for setting the fill color of a stimulus in RGB, instead use obj._fillColor.rgb

Type
DEPRECATED

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property flipHoriz

property flipVert

font

property fontColor

Alternative way of setting foreColor.

property fontMGR

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

10.4. psychopy.visual - many visual stimuli 438

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':

a blue stimulus using rgb255 space
stim.color = 255 # interpreted as (255, 255, 255)

which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

getText()

Returns the current text in the box, including formatting tokens.

getVisibleText()

Returns the current visible text in the box

property hasFocus

property height

isDragging = False

property languageStyle

How is text laid out? Left to right (LTR), right to left (RTL) or using Arabic layout rules?

property letterHeight

10.4. psychopy.visual - many visual stimuli 439

PsychoPy - Psychology software for Python, Release 2023.2.3

property letterHeightPix

Convenience function to get self._letterHeight.pix and be guaranteed a return that is a single integer

letterSpacing

Distance between letters, relative to the current font’s default. Set as None or 1 to use font default unchanged.

property lineColor

Alternative way of setting borderColor.

property lineColorSpace

Deprecated, please use colorSpace to set color space for the entire object

property lineRGB

Legacy property for setting the border color of a stimulus in RGB, instead use obj._borderColor.rgb

Type
DEPRECATED

property lineSpacing

lineWidth

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

property opacity

Determines how visible the stimulus is relative to background.

The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent). Operations are supported.
Precisely how this is used depends on the Blend Mode.

ori

The orientation of the stimulus (in degrees).

Should be a single value (scalar). Operations are supported.

Orientation convention is like a clock: 0 is vertical, and positive values rotate clockwise. Beyond 360 and
below zero values wrap appropriately.

overflow

overlaps(polygon, tight=False)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

Parameters

See coder demo, shapeContains.py

property padding

10.4. psychopy.visual - many visual stimuli 440

PsychoPy - Psychology software for Python, Release 2023.2.3

property palette

Describes the current visual properties of the TextBox in a dict

property pallette

Disambiguation for palette.

placeholder

Text to display when textbox is editable and has no content.

property pos

The position of the center of the TextBox in the stimulus units

value should be an x,y-pair. Operations are also supported.

Example:

stim.pos = (0.5, 0) # Set slightly to the right of center
stim.pos += (0.5, -1) # Increment pos rightwards and upwards.

Is now (1.0, -1.0)
stim.pos *= 0.2 # Move stim towards the center.

Is now (0.2, -0.2)

Tip: If you need the position of stim in pixels, you can obtain it like this:

myTextbox._pos.pix

reset()

Resets the TextBox2 to hold whatever it was given on initialisation
setAnchor(value, log=None)

setAutoDraw(value, log=None)
Sets autoDraw. Usually you can use ‘stim.attribute = value’ syntax instead, but use this method to suppress
the log message.

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setBackColor(color, colorSpace=None, operation='', log=None)

setBackRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setBackgroundColor(color, colorSpace=None, operation='', log=None)

setBorderColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setBorderRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setBorderWidth(newWidth, operation='', log=None)

setColor(color, colorSpace=None, operation='', log=None)

10.4. psychopy.visual - many visual stimuli 441

PsychoPy - Psychology software for Python, Release 2023.2.3

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setDepth(newDepth, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setFillColor(color, colorSpace=None, operation='', log=None)
Hard setter for fillColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setFillRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for fill RGB, instead set obj._fillColor.rgb

setFont(font, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setFontColor(color, colorSpace=None, operation='', log=None)

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setHeight(height, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setLineColor(color, colorSpace=None, operation='', log=None)

setLineRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for border RGB, instead set obj._borderColor.rgb

setLineWidth(newWidth, operation='', log=None)

setOpacity(newOpacity, operation='', log=None)
Hard setter for opacity, allows the suppression of log messages and calls the update method

setOri(newOri, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setPlaceholder(value, log=False)
Set text to display when textbox is editable and has no content.

setPos(newPos, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

10.4. psychopy.visual - many visual stimuli 442

PsychoPy - Psychology software for Python, Release 2023.2.3

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setSize(newSize, operation='', units=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setSpeechPoint(value, log=None)

setText(text=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

property size

The (requested) size of the TextBox (w,h) in whatever units the stimulus is using

This determines the outer extent of the area.

If the width is set to None then the text will continue extending and not wrap. If the height is set to None
then the text will continue to grow downwards as needed.

speechPoint

property text

property units

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

updateOpacity()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox.

property vertices

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

property visibleText

Returns the current visible text in the box

property width

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

10.4. psychopy.visual - many visual stimuli 443

PsychoPy - Psychology software for Python, Release 2023.2.3

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.37 TextStim

class psychopy.visual.TextStim(win, text='Hello World', font='', pos=(0.0, 0.0), depth=0, rgb=None,
color=(1.0, 1.0, 1.0), colorSpace='rgb', opacity=1.0, contrast=1.0, units='',
ori=0.0, height=None, antialias=True, bold=False, italic=False,
alignHoriz=None, alignVert=None, alignText='center',
anchorHoriz='center', anchorVert='center', fontFiles=(), wrapWidth=None,
flipHoriz=False, flipVert=False, languageStyle='LTR', draggable=False,
name=None, autoLog=None, autoDraw=False)

Class of text stimuli to be displayed in a Window

Performance OBS: in general, TextStim is slower than many other visual stimuli, i.e. it takes longer to change
some attributes. In general, it’s the attributes that affect the shapes of the letters: text, height, font, bold etc.
These make the next .draw() slower because that sets the text again. You can make the draw() quick by calling
re-setting the text (myTextStim.text = myTextStim.text) when you’ve changed the parameters.

In general, other attributes which merely affect the presentation of unchanged shapes are as fast as usual. This
includes pos, opacity etc.

The following attribute can only be set at initialization (see further down for a list of attributes which can be
changed after initialization):

languageStyle
Apply settings to correctly display content from some languages that are written right-to-left. Currently
there are three (case- insensitive) values for this parameter:

• 'LTR' is the default, for typical left-to-right, Latin-style
languages.

• 'RTL' will correctly display text in right-to-left languages
such as Hebrew. By applying the bidirectional algorithm, it allows mixing portions of left-to-right
content (such as numbers or Latin script) within the string.

• 'Arabic' applies the bidirectional algorithm but additionally
will _reshape_ Arabic characters so they appear in the cursive, linked form that depends on neigh-
bouring characters, rather than in their isolated form. May also be applied in other scripts, such
as Farsi or Urdu, that use Arabic-style alphabets.

Parameters

property RGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

Type
DEPRECATED

_calcPosRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix.

10.4. psychopy.visual - many visual stimuli 444

PsychoPy - Psychology software for Python, Release 2023.2.3

_calcSizeRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix

_getDesiredRGB(rgb, colorSpace, contrast)
Convert color to RGB while adding contrast. Requires self.rgb, self.colorSpace and self.contrast

_getPolyAsRendered()

DEPRECATED. Return a list of vertices as rendered.

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_set(attrib, val, op='', log=None)
DEPRECATED since 1.80.04 + 1. Use setAttribute() and val2array() instead.

_setTextShaders(value=None)
Set the text to be rendered using the current font

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

_updateListShaders()

Only used with pygame text - pyglet handles all from the draw()

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

alignHoriz

Deprecated in PsychoPy 3.3. Use alignText and anchorHoriz instead

alignText

Aligns the text content within the bounding box (‘left’, ‘right’ or ‘center’) See also anchorX to set alignment
of the box itself relative to pos

alignVert

Deprecated in PsychoPy 3.3. Use anchorVert

anchorHoriz

The horizontal alignment (‘left’, ‘right’ or ‘center’)

anchorVert

The vertical alignment (‘top’, ‘bottom’ or ‘center’) of the box relative to the text pos.

antialias

Allow antialiasing the text (True or False). Sets text, slow.

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

10.4. psychopy.visual - many visual stimuli 445

PsychoPy - Psychology software for Python, Release 2023.2.3

bold

Make the text bold (True, False) (better to use a bold font name).

property boundingBox

(read only) attribute representing the bounding box of the text (w,h). This differs from width in that the
width represents the width of the margins, which might differ from the width of the text within them.

NOTE: currently always returns the size in pixels (this will change to return in stimulus units)

property color

Alternative way of setting foreColor.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

contains(x, y=None, units=None)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

property contrast

A value that is simply multiplied by the color.

Value should be: a float between -1 (negative) and 1 (unchanged).
Operations supported.

10.4. psychopy.visual - many visual stimuli 446

PsychoPy - Psychology software for Python, Release 2023.2.3

Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. You can
also use the stimulus opacity to control contrast, but that cannot be negative.

Examples:

stim.contrast = 1.0 # unchanged contrast
stim.contrast = 0.5 # decrease contrast
stim.contrast = 0.0 # uniform, no contrast
stim.contrast = -0.5 # slightly inverted
stim.contrast = -1.0 # totally inverted

Setting contrast outside range -1 to 1 is permitted, but may produce strange results if color values exceeds
the monitor limits.:

stim.contrast = 1.2 # increases contrast
stim.contrast = -1.2 # inverts with increased contrast

depth

DEPRECATED, depth is now controlled simply by drawing order.

doDragging()

If this stimulus is draggable, do the necessary actions on a frame flip to drag it.

draggable

Can this stimulus be dragged by a mouse click?

draw(win=None)
Draw the stimulus in its relevant window. You must call this method after every MyWin.flip() if you want
the stimulus to appear on that frame and then update the screen again.

If win is specified then override the normal window of this stimulus.

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

flipHoriz

If set to True then the text will be flipped left-to-right. The flip is relative to the original, not relative to the
current state.

flipVert

If set to True then the text will be flipped top-to-bottom. The flip is relative to the original, not relative to
the current state.

font

String. Set the font to be used for text rendering. font should be a string specifying the name of the font (in
system resources).

property fontColor

Alternative way of setting foreColor.

fontFiles

A list of additional files if the font is not in the standard system location (include the full path).

OBS: fonts are added every time this value is set. Previous are not deleted.

E.g.:

10.4. psychopy.visual - many visual stimuli 447

PsychoPy - Psychology software for Python, Release 2023.2.3

stim.fontFiles = ['SpringRage.ttf'] # load file(s)
stim.font = 'SpringRage' # set to font

property foreColor

Foreground color of the stimulus

Value should be one of:
• string: to specify a Colors by name. Any of the standard html/X11 color names

<http://www.w3schools.com/html/html_colornames.asp> can be used.

• Colors by hex value

• numerically: (scalar or triplet) for DKL, RGB or
other Color spaces. For these, operations are supported.

When color is specified using numbers, it is interpreted with respect to the stimulus’ current colorSpace. If
color is given as a single value (scalar) then this will be applied to all 3 channels.

Examples

For whatever stim you have:

stim.color = 'white'
stim.color = 'RoyalBlue' # (the case is actually ignored)
stim.color = '#DDA0DD' # DDA0DD is hexadecimal for plum
stim.color = [1.0, -1.0, -1.0] # if stim.colorSpace='rgb':

a red color in rgb space
stim.color = [0.0, 45.0, 1.0] # if stim.colorSpace='dkl':

DKL space with elev=0, azimuth=45
stim.color = [0, 0, 255] # if stim.colorSpace='rgb255':

a blue stimulus using rgb255 space
stim.color = 255 # interpreted as (255, 255, 255)

which is white in rgb255.

Operations work as normal for all numeric colorSpaces (e.g. ‘rgb’, ‘hsv’ and ‘rgb255’) but not for strings,
like named and hex. For example, assuming that colorSpace=’rgb’:

stim.color += [1, 1, 1] # increment all guns by 1 value
stim.color *= -1 # multiply the color by -1 (which in this

space inverts the contrast)
stim.color *= [0.5, 0, 1] # decrease red, remove green, keep blue

You can use setColor if you want to set color and colorSpace in one line. These two are equivalent:

stim.setColor((0, 128, 255), 'rgb255')
... is equivalent to
stim.colorSpace = 'rgb255'
stim.color = (0, 128, 255)

property foreColorSpace

Deprecated, please use colorSpace to set color space for the entire object.

property foreRGB

Legacy property for setting the foreground color of a stimulus in RGB, instead use obj._foreColor.rgb

10.4. psychopy.visual - many visual stimuli 448

PsychoPy - Psychology software for Python, Release 2023.2.3

Type
DEPRECATED

height

The height of the letters (Float/int or None = set default).

Height includes the entire box that surrounds the letters in the font. The width of the letters is then defined
by the font.

Operations supported.

italic

True/False. Make the text italic (better to use a italic font name).

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

property opacity

Determines how visible the stimulus is relative to background.

The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent). Operations are supported.
Precisely how this is used depends on the Blend Mode.

ori

The orientation of the stimulus (in degrees).

Should be a single value (scalar). Operations are supported.

Orientation convention is like a clock: 0 is vertical, and positive values rotate clockwise. Beyond 360 and
below zero values wrap appropriately.

overlaps(polygon)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

See coder demo, shapeContains.py

property pos

The position of the center of the stimulus in the stimulus units

value should be an x,y-pair. Operations are also supported.

Example:

stim.pos = (0.5, 0) # Set slightly to the right of center
stim.pos += (0.5, -1) # Increment pos rightwards and upwards.

Is now (1.0, -1.0)
stim.pos *= 0.2 # Move stim towards the center.

Is now (0.2, -0.2)

10.4. psychopy.visual - many visual stimuli 449

PsychoPy - Psychology software for Python, Release 2023.2.3

Tip: If you need the position of stim in pixels, you can obtain it like this:

from psychopy.tools.monitorunittools import posToPix
posPix = posToPix(stim)

property posPix

This determines the coordinates in pixels of the position for the current stimulus, accounting for pos and
units. This property should automatically update if pos is changed

setAutoDraw(value, log=None)
Sets autoDraw. Usually you can use ‘stim.attribute = value’ syntax instead, but use this method to suppress
the log message.

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setContrast(newContrast, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setDKL(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

setDepth(newDepth, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setFlip(direction, log=None)
(used by Builder to simplify the dialog)

setFlipHoriz(newVal=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setFlipVert(newVal=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setFont(font, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setForeColor(color, colorSpace=None, operation='', log=None)
Hard setter for foreColor, allows suppression of the log message, simultaneous colorSpace setting and calls
update methods.

setForeRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setHeight(height, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setLMS(color, operation='')
DEPRECATED since v1.60.05: Please use the color attribute

10.4. psychopy.visual - many visual stimuli 450

PsychoPy - Psychology software for Python, Release 2023.2.3

setOpacity(newOpacity, operation='', log=None)
Hard setter for opacity, allows the suppression of log messages and calls the update method

setOri(newOri, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setPos(newPos, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setRGB(color, operation='', log=None)
DEPRECATED: Legacy setter for foreground RGB, instead set obj._foreColor.rgb

setSize(newSize, operation='', units=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setText(text=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

property size

The size (width, height) of the stimulus in the stimulus units

Value should be x,y-pair, scalar (applies to both dimensions) or None (resets to default). Operations are
supported.

Sizes can be negative (causing a mirror-image reversal) and can extend beyond the window.

Example:

stim.size = 0.8 # Set size to (xsize, ysize) = (0.8, 0.8)
print(stim.size) # Outputs array([0.8, 0.8])
stim.size += (0.5, -0.5) # make wider and flatter: (1.3, 0.3)

Tip: if you can see the actual pixel range this corresponds to by looking at stim._sizeRendered

text

The text to be rendered. Use \n to make new lines.

Issues: May be slow, and pyglet has a memory leak when setting text. For these reasons, this function
checks so that it only updates the text if it has changed. So scripts can safely set the text on every frame,
with no need to check if it has actually altered.

updateColors()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox

updateOpacity()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox.

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

10.4. psychopy.visual - many visual stimuli 451

PsychoPy - Psychology software for Python, Release 2023.2.3

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

wrapWidth

Int/float or None (set default). The width the text should run before wrapping.

Operations supported.

10.4.38 VlcMovieStim

A stimulus class for playing movies (mpeg, avi, etc. . .) in using a local installation of VLC media player (https:
//www.videolan.org/).

Requires version 3.0.11115 of python-vlc on Windows. Other platforms (MacOS and Linux) may use a newer
version.

Attributes

VlcMovieStim(win[, filename, units, size, ...]) A stimulus class for playing movies in various formats
(mpeg, avi, etc...) in PsychoPy using the VLC media
player as a decoder.

VlcMovieStim.win The Window object in which the stimulus will be ren-
dered by default.

VlcMovieStim.units

VlcMovieStim.pos The position of the center of the stimulus in the stimulus
units

VlcMovieStim.ori The orientation of the stimulus (in degrees).
VlcMovieStim.size The size (width, height) of the stimulus in the stimulus

units
VlcMovieStim.opacity Determines how visible the stimulus is relative to back-

ground.
VlcMovieStim.name The name (str) of the object to be using during logged

messages about this stim.
continues on next page

10.4. psychopy.visual - many visual stimuli 452

https://www.videolan.org/
https://www.videolan.org/

PsychoPy - Psychology software for Python, Release 2023.2.3

Table 10.3 – continued from previous page
VlcMovieStim.autoLog Whether every change in this stimulus should be auto

logged.
VlcMovieStim.draw([win]) Draw the current frame to a particular Window (or to the

default win for this object if not specified).
VlcMovieStim.autoDraw Determines whether the stimulus should be automati-

cally drawn on every frame flip.
VlcMovieStim.setMovie(filename[, log]) See ~MovieStim.loadMovie (the functions are identical).
VlcMovieStim.loadMovie(filename[, log]) Load a movie from file
VlcMovieStim.isPlaying True if the video is presently playing (bool).
VlcMovieStim.isNotStarted True if the video has not be started yet (bool).
VlcMovieStim.isStopped True if the video is stopped (bool).
VlcMovieStim.isPaused True if the video is presently paused (bool).
VlcMovieStim.isFinished True if the video is finished (bool).
VlcMovieStim.play([log]) Start or continue a paused movie from current position.
VlcMovieStim.pause([log]) Pause the current point in the movie.
VlcMovieStim.stop([log]) Stop the current point in the movie (sound will stop, cur-

rent frame will not advance).
VlcMovieStim.seek(timestamp[, log]) Seek to a particular timestamp in the movie.
VlcMovieStim.rewind([seconds]) Rewind the video.
VlcMovieStim.fastForward([seconds]) Fast-forward the video.
VlcMovieStim.replay([autoPlay]) Replay the movie from the beginning.
VlcMovieStim.volume Audio track volume (int or float).
VlcMovieStim.setVolume(volume) Set the audio track volume.
VlcMovieStim.getVolume() Returns the current movie audio volume.
VlcMovieStim.increaseVolume([amount]) Increase the volume.
VlcMovieStim.decreaseVolume([amount]) Decrease the volume.
VlcMovieStim.frameIndex Current frame index being displayed (int).
VlcMovieStim.getCurrentFrameNumber() Get the current movie frame number (int), same as

frameIndex.
VlcMovieStim.duration Duration of the loaded video in seconds (float).
VlcMovieStim.loopCount Number of loops completed since playback started (int).
VlcMovieStim.fps Movie frames per second (float).
VlcMovieStim.getFPS() Movie frames per second.
VlcMovieStim.frameTime Current frame time in seconds (float).
VlcMovieStim.getCurrentFrameTime() Get the time that the movie file specified the current

video frame as having.
VlcMovieStim.percentageComplete Percentage of the video completed (float).
VlcMovieStim.getPercentageComplete() Provides a value between 0.0 and 100.0, indicating the

amount of the movie that has been already played.
VlcMovieStim.videoSize Size of the video (w, h) in pixels (tuple).
VlcMovieStim.interpolate Enable linear interpolation (`bool').
VlcMovieStim.setFlipHoriz([newVal, log]) If set to True then the movie will be flipped horizontally

(left-to-right).
VlcMovieStim.setFlipVert([newVal, log]) If set to True then the movie will be flipped vertically

(top-to-bottom).
VlcMovieStim.filename File name for the loaded video (str).
VlcMovieStim.autoStart Start playback when .draw() is called (bool).

10.4. psychopy.visual - many visual stimuli 453

PsychoPy - Psychology software for Python, Release 2023.2.3

Details

class psychopy.visual.VlcMovieStim(win, filename='', units='pix', size=None, pos=(0.0, 0.0), ori=0.0,
flipVert=False, flipHoriz=False, color=(1.0, 1.0, 1.0),
colorSpace='rgb', opacity=1.0, volume=1.0, name='', loop=False,
autoLog=True, depth=0.0, noAudio=False, interpolate=True,
autoStart=True)

A stimulus class for playing movies in various formats (mpeg, avi, etc. . .) in PsychoPy using the VLC media
player as a decoder.

This movie class is very efficient and better suited for playing high-resolution videos (720p+) than the other
movie classes. However, audio is only played using the default output device. This may be adequate for most
applications where the user is not concerned about precision audio onset times.

The VLC media player (https://www.videolan.org/) must be installed on the machine running PsychoPy to use
this class. Make certain that the version of VLC installed matches the architecture of the Python interpreter
hosting PsychoPy.

Parameters
• win (Window) – Window the video is being drawn to.

• filename (str) – Name of the file or stream URL to play. If an empty string, no file will
be loaded on initialization but can be set later.

• units (str) – Units to use when sizing the video frame on the window, affects how size is
interpreted.

• size (ArrayLike or None) – Size of the video frame on the window in units. If None, the
native size of the video will be used.

• flipVert (bool) – If True then the movie will be top-bottom flipped.

• flipHoriz (bool) – If True then the movie will be right-left flipped.

• volume (int or float) – If specifying an int the nominal level is 100, and 0 is silence. If
a float, values between 0 and 1 may be used.

• loop (bool) – Whether to start the movie over from the beginning if draw is called and the
movie is done. Default is `False.

• autoStart (bool) – Automatically begin playback of the video when flip() is called.

Notes

• You may see error messages in your log output from VLC (e.g., get_buffer() failed, no frame!, etc.) after
shutting down. These errors originate from the decoder and can be safely ignored.

_calcPosRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix.

_calcSizeRendered()

DEPRECATED in 1.80.00. This functionality is now handled by _updateVertices() and verticesPix

_closeMedia()

Internal method to release the presently loaded stream (if any).

10.4. psychopy.visual - many visual stimuli 454

https://www.videolan.org/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

_createVLCInstance()

Internal method to create a new VLC instance.

Raises an error if an instance is already spawned and hasn’t been released.

_drawRectangle()

Draw the frame to the window. This is called by the draw() method.

_freeBuffers()

Free texture and pixel buffers. Call this when tearing down this class or if a movie is stopped.

_getPolyAsRendered()

DEPRECATED. Return a list of vertices as rendered.

_onEos()

Internal method called when the decoder encounters the end of the stream.

_openMedia(uri=None)
Internal method that opens a new stream using filename. This will close the previous stream. Raises an
error if a VLC instance is not available.

_pixelTransfer()

Internal method which maps the pixel buffer for the video texture to client memory, allowing for VLC to
directly draw a video frame to it.

This method is not thread-safe and should never be called without the pixel lock semaphore being first set
by VLC.

_releaseVLCInstance()

Internal method to release a VLC instance. Calling this implicitly stops and releases any stream presently
loaded and playing.

_selectWindow(win)
Switch drawing to the specified window. Calls the window’s _setCurrent() method which handles the
switch.

_set(attrib, val, op='', log=None)
DEPRECATED since 1.80.04 + 1. Use setAttribute() and val2array() instead.

_setupTextureBuffers()

Setup texture buffers which hold frame data. This creates a 2D RGB texture and pixel buffer. The pixel
buffer serves as the store for texture color data. Each frame, the pixel buffer memory is mapped and frame
data is copied over to the GPU from the decoder.

This is called every time a video file is loaded. The _freeBuffers method is called in this routine prior to
creating new buffers, so it’s safe to call this right after loading a new movie without having to _freeBuffers
first.

_updateList()

The user shouldn’t need this method since it gets called after every call to .set() Chooses between using and
not using shaders each call.

_updateVertices()

Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz

property anchor

10.4. psychopy.visual - many visual stimuli 455

PsychoPy - Psychology software for Python, Release 2023.2.3

autoDraw

Determines whether the stimulus should be automatically drawn on every frame flip.

Value should be: True or False. You do NOT need to set this on every frame flip!

autoLog

Whether every change in this stimulus should be auto logged.

Value should be: True or False. Set to False if your stimulus is updating frequently (e.g. updating its
position every frame) and you want to avoid swamping the log file with messages that aren’t likely to be
useful.

property autoStart

Start playback when .draw() is called (bool).

contains(x, y=None, units=None)
Returns True if a point x,y is inside the stimulus’ border.

Can accept variety of input options:
• two separate args, x and y

• one arg (list, tuple or array) containing two vals (x,y)

• an object with a getPos() method that returns x,y, such
as a Mouse.

Returns True if the point is within the area defined either by its border attribute (if one defined), or its
vertices attribute if there is no .border. This method handles complex shapes, including concavities and
self-crossings.

Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the contains
method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori)
settings (and by the vertices for shape stimuli).

See Coder demos: shapeContains.py See Coder demos: shapeContains.py

decreaseVolume(amount=10)
Decrease the volume.

Parameters
amount (int) – Decrease the volume by this amount (percent). This gets subtracted from the
present volume level. If the value of amount and the current volume is outside the valid range
of 0 to 100, the value will be clipped. The default value is 10 (or 10% decrease).

Returns
Volume after changed.

Return type
int

See also:
getVolume, setVolume, increaseVolume

10.4. psychopy.visual - many visual stimuli 456

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Adjust the volume of the current video using key presses:

assume `mov` is an instance of this class defined previously
for key in event.getKeys():

if key == 'minus':
mov.decreaseVolume()

elif key == 'equals':
mov.increaseVolume()

depth

DEPRECATED, depth is now controlled simply by drawing order.

draw(win=None)
Draw the current frame to a particular Window (or to the default win for this object if not specified).

The current position in the movie will be determined automatically. This method should be called on every
frame that the movie is meant to appear.

Parameters
win (Window or None) – Window the video is being drawn to. If None, the window specified
at initialization will be used instead.

Returns
True if the frame was updated this draw call.

Return type
bool

property duration

Duration of the loaded video in seconds (float). Not valid unless the video has been started.

fastForward(seconds=5)
Fast-forward the video.

Parameters
seconds (float) – Time in seconds to fast forward from the current position. Default is 5
seconds.

Returns
Timestamp at new position after fast forwarding the video.

Return type
float

property filename

File name for the loaded video (str).

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip. If set as a single value,
will duplicate across both axes. Accessing the protected attribute (._flip) will give an array of 1s and -1s
with which to multiply vertices.

property flipHoriz

property flipVert

10.4. psychopy.visual - many visual stimuli 457

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

property fps

Movie frames per second (float).

property frameIndex

Current frame index being displayed (int).

property frameTexture

Texture ID for the current video frame (GLuint). You can use this as a video texture. However, you must
periodically call updateTexture to keep this up to date.

property frameTime

Current frame time in seconds (float).

getCurrentFrameNumber()

Get the current movie frame number (int), same as frameIndex.

getCurrentFrameTime()

Get the time that the movie file specified the current video frame as having.

Returns
Current video time in seconds.

Return type
float

getFPS()

Movie frames per second.

Returns
Nominal number of frames to be displayed per second.

Return type
float

getPercentageComplete()

Provides a value between 0.0 and 100.0, indicating the amount of the movie that has been already played.

getVolume()

Returns the current movie audio volume.

Returns
Volume level, 0 is no audio, 100 is max audio volume.

Return type
int

property height

increaseVolume(amount=10)
Increase the volume.

Parameters
amount (int) – Increase the volume by this amount (percent). This gets added to the present
volume level. If the value of amount and the current volume is outside the valid range of 0 to
100, the value will be clipped. The default value is 10 (or 10% increase).

Returns
Volume after changed.

Return type
int

10.4. psychopy.visual - many visual stimuli 458

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

See also:
getVolume, setVolume, decreaseVolume

Examples

Adjust the volume of the current video using key presses:

assume `mov` is an instance of this class defined previously
for key in event.getKeys():

if key == 'minus':
mov.decreaseVolume()

elif key == 'equals':
mov.increaseVolume()

property interpolate

Enable linear interpolation (`bool’).

If True linear filtering will be applied to the video making the image less pixelated if scaled. You may leave
this off if the native size of the video is used.

property isFinished

True if the video is finished (bool).

property isNotStarted

True if the video has not be started yet (bool). This status is given after a video is loaded and play has yet
to be called.

property isPaused

True if the video is presently paused (bool).

property isPlaying

True if the video is presently playing (bool).

property isStopped

True if the video is stopped (bool).

loadMovie(filename, log=True)
Load a movie from file

Parameters
• filename (str) – The name of the file or URL, including path if necessary.

• log (bool) – Log this event.

Notes

• Due to VLC oddness, .duration is not correct until the movie starts playing.

property loopCount

Number of loops completed since playback started (int). This value is reset when either stop or loadMovie
is called.

10.4. psychopy.visual - many visual stimuli 459

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

name

The name (str) of the object to be using during logged messages about this stim. If you have multiple
stimuli in your experiment this really helps to make sense of log files!

If name = None your stimulus will be called “unnamed <type>”, e.g. visual.TextStim(win) will be called
“unnamed TextStim” in the logs.

property opacity

Determines how visible the stimulus is relative to background.

The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent). Operations are supported.
Precisely how this is used depends on the Blend Mode.

ori

The orientation of the stimulus (in degrees).

Should be a single value (scalar). Operations are supported.

Orientation convention is like a clock: 0 is vertical, and positive values rotate clockwise. Beyond 360 and
below zero values wrap appropriately.

overlaps(polygon)
Returns True if this stimulus intersects another one.

If polygon is another stimulus instance, then the vertices and location of that stimulus will be used as the
polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords
configuration.

Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the
overlaps method; the extent of the stimulus is determined purely by the size, pos, and orientation settings
(and by the vertices for shape stimuli).

See coder demo, shapeContains.py

pause(log=True)
Pause the current point in the movie.

Parameters
log (bool) – Log the pause event.

property percentageComplete

Percentage of the video completed (float).

play(log=True)
Start or continue a paused movie from current position.

Parameters
log (bool) – Log the play event.

Returns
Frame index playback started at. Should always be 0 if starting at the beginning of the video.
Returns None if the player has not been initialized.

Return type
int or None

property pos

The position of the center of the stimulus in the stimulus units

value should be an x,y-pair. Operations are also supported.

Example:

10.4. psychopy.visual - many visual stimuli 460

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

stim.pos = (0.5, 0) # Set slightly to the right of center
stim.pos += (0.5, -1) # Increment pos rightwards and upwards.

Is now (1.0, -1.0)
stim.pos *= 0.2 # Move stim towards the center.

Is now (0.2, -0.2)

Tip: If you need the position of stim in pixels, you can obtain it like this:

from psychopy.tools.monitorunittools import posToPix
posPix = posToPix(stim)

replay(autoPlay=True)
Replay the movie from the beginning.

Parameters
autoPlay (bool) – Start playback immediately. If False, you must call play() afterwards to
initiate playback.

Notes

• This tears down the current VLC instance and creates a new one. Similar to calling stop() and load-
Movie(). Use seek(0.0) if you would like to restart the movie without reloading.

rewind(seconds=5)
Rewind the video.

Parameters
seconds (float) – Time in seconds to rewind from the current position. Default is 5 seconds.

Returns
Timestamp after rewinding the video.

Return type
float

seek(timestamp, log=True)
Seek to a particular timestamp in the movie.

Parameters
• timestamp (float) – Time in seconds.

• log (bool) – Log the seek event.

setAnchor(value, log=None)

setAutoDraw(val, log=None)
Add or remove a stimulus from the list of stimuli that will be automatically drawn on each flip

Parameters
• val: True/False

True to add the stimulus to the draw list, False to remove it

setAutoLog(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

10.4. psychopy.visual - many visual stimuli 461

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

setDepth(newDepth, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setFlipHoriz(newVal=True, log=True)
If set to True then the movie will be flipped horizontally (left-to-right). Note that this is relative to the
original, not relative to the current state.

setFlipVert(newVal=True, log=True)
If set to True then the movie will be flipped vertically (top-to-bottom). Note that this is relative to the
original, not relative to the current state.

setMovie(filename, log=True)
See ~MovieStim.loadMovie (the functions are identical).

This form is provided for syntactic consistency with other visual stimuli.

setOpacity(newOpacity, operation='', log=None)
Hard setter for opacity, allows the suppression of log messages and calls the update method

setOri(newOri, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setPos(newPos, operation='', log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setSize(newSize, operation='', units=None, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message

setVolume(volume)
Set the audio track volume.

Parameters
volume (int or float) – Volume level to set. 0 = mute, 100 = 0 dB. float values between
0.0 and 1.0 are also accepted, and scaled to an int between 0 and 100.

property size

The size (width, height) of the stimulus in the stimulus units

Value should be x,y-pair, scalar (applies to both dimensions) or None (resets to default). Operations are
supported.

Sizes can be negative (causing a mirror-image reversal) and can extend beyond the window.

Example:

stim.size = 0.8 # Set size to (xsize, ysize) = (0.8, 0.8)
print(stim.size) # Outputs array([0.8, 0.8])
stim.size += (0.5, -0.5) # make wider and flatter: (1.3, 0.3)

Tip: if you can see the actual pixel range this corresponds to by looking at stim._sizeRendered

stop(log=True)
Stop the current point in the movie (sound will stop, current frame will not advance). Once stopped the
movie cannot be restarted - it must be loaded again.

Use pause() instead if you may need to restart the movie.

10.4. psychopy.visual - many visual stimuli 462

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
log (bool) – Log the stop event.

property units

updateOpacity()

Placeholder method to update colours when set externally, for example updating the pallette attribute of a
textbox.

updateTexture()

Update the video texture buffer to the most recent video frame.

property vertices

property verticesPix

This determines the coordinates of the vertices for the current stimulus in pixels, accounting for size, ori,
pos and units

property videoSize

Size of the video (w, h) in pixels (tuple). Returns (0, 0) if no video is loaded.

property volume

Audio track volume (int or float). See setVolume for more information about valid values.

property width

property win

The Window object in which the stimulus will be rendered by default. (required)

Example, drawing same stimulus in two different windows and display simultaneously. Assuming that you
have two windows and a stimulus (win1, win2 and stim):

stim.win = win1 # stimulus will be drawn in win1
stim.draw() # stimulus is now drawn to win1
stim.win = win2 # stimulus will be drawn in win2
stim.draw() # it is now drawn in win2
win1.flip(waitBlanking=False) # do not wait for next

monitor update
win2.flip() # wait for vertical blanking.

Note that this just changes default window for stimulus.

You could also specify window-to-draw-to when drawing:

stim.draw(win1)
stim.draw(win2)

10.4.39 psychopy.visual.VisualSystemHD

Classes for using NordicNeuralLab’s VisualSystemHD in-scanner display for presenting visual stimuli. Support is
preliminary so users must empirically verify whether the default settings for barrel distortion and FOV are correct.
Support may be good enough at this point for studies that do not require precise stereoscopy or stimulus sizes.

10.4. psychopy.visual - many visual stimuli 463

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Overview

VisualSystemHD([monoscopic, diopters, ...]) Class provides support for NordicNeuralLab's Visual-
SystemHD(tm) fMRI display hardware.

VisualSystemHD.monoscopic True if using monoscopic mode.
VisualSystemHD.lensCorrection True if using lens correction.
VisualSystemHD.distCoef Distortion coefficient (float).
VisualSystemHD.diopters Diopters value of the current eye buffer.
VisualSystemHD.setDiopters(diopters[, eye]) Set the diopters for a given eye.
VisualSystemHD.eyeOffset Eye offset for the current buffer in centimeters used for

stereoscopic rendering.
VisualSystemHD.setEyeOffset(dist[, eye]) Set the eye offset in centimeters.
VisualSystemHD.setBuffer(buffer[, clear]) Set the eye buffer to draw to.
VisualSystemHD.setPerspectiveView([...]) Set the projection and view matrix to render with per-

spective.

Details

class psychopy.visual.nnlvs.VisualSystemHD(monoscopic=False, diopters=(-1, -1), lensCorrection=True,
distCoef=None, directDraw=False, model='vshd', *args,
**kwargs)

Class provides support for NordicNeuralLab’s VisualSystemHD(tm) fMRI display hardware.

Use this class in-place of the Window class for use with the VSHD hardware. Ensure that the VSHD headset
display output is configured in extended desktop mode (eg. nVidia Surround). Extended desktops are only
supported on Windows and Linux systems.

The VSHD is capable of both 2D and stereoscopic 3D rendering. You can select which eye to draw to by calling
setBuffer, much like how stereoscopic rendering is implemented in the base Window class.

Notes

• This class handles drawing differently than the default window class, as a result, stimuli autoDraw is not
supported.

• Edges of the warped image may appear jagged. To correct this, create a window using multiSample=True
and numSamples > 1 to smooth out these artifacts.

Examples

Here is a basic example of 2D rendering using the VisualSystemHD(tm). This is the binocular version of the
dynamic ‘plaid.py’ demo:

from psychopy import visual, core, event

Create a visual window
win = visual.VisualSystemHD(fullscr=True, screen=1)

Initialize some stimuli, note contrast, opacity, ori
grating1 = visual.GratingStim(win, mask="circle", color='white',

contrast=0.5, size=(1.0, 1.0), sf=(4, 0), ori = 45, autoLog=False)
(continues on next page)

10.4. psychopy.visual - many visual stimuli 464

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

grating2 = visual.GratingStim(win, mask="circle", color='white',
opacity=0.5, size=(1.0, 1.0), sf=(4, 0), ori = -45, autoLog=False,
pos=(0.1, 0.1))

trialClock = core.Clock()
t = 0
while not event.getKeys() and t < 20:

t = trialClock.getTime()

for eye in ('left', 'right'):
win.setBuffer(eye) # change the buffer
grating1.phase = 1 * t # drift at 1Hz
grating1.draw() # redraw it
grating2.phase = 2 * t # drift at 2Hz
grating2.draw() # redraw it

win.flip()

win.close()
core.quit()

As you can see above, there are few changes needed to convert an existing 2D experiment to run on the VSHD.
For 3D rendering with perspective, you need set eyeOffset and apply the projection by calling setPerspectiveView.
(other projection modes are not implemented or supported right now):

from psychopy import visual, core, event

Create a visual window
win = visual.VisualSystemHD(fullscr=True, screen=1,

multiSample=True, nSamples=8)

text to display
instr = visual.TextStim(win, text="Any key to quit", pos=(0, -.7))

create scene light at the pivot point
win.lights = [

visual.LightSource(win, pos=(0.4, 4.0, -2.0), lightType='point',
diffuseColor=(0, 0, 0), specularColor=(1, 1, 1))

]
win.ambientLight = (0.2, 0.2, 0.2)

Initialize some stimuli, note contrast, opacity, ori
ball = visual.SphereStim(win, radius=0.1, pos=(0, 0, -2), color='green',

useShaders=False)

iod = 6.2 # interocular separation in CM
win.setEyeOffset(-iod / 2.0, 'left')
win.setEyeOffset(iod / 2.0, 'right')

trialClock = core.Clock()
t = 0
while not event.getKeys() and t < 20:

(continues on next page)

10.4. psychopy.visual - many visual stimuli 465

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

t = trialClock.getTime()

for eye in ('left', 'right'):
win.setBuffer(eye) # change the buffer

setup drawing with perspective
win.setPerspectiveView()

win.useLights = True # switch on lights
ball.draw() # draw the ball
shut the lights, needed to prevent light color from affecting
2D stim
win.useLights = False

reset transform to draw text correctly
win.resetEyeTransform()

instr.draw()

win.flip()

win.close()
core.quit()

Parameters
• monoscopic (bool) – Use monoscopic rendering. If True, the same image will be drawn

to both eye buffers. You will not need to call setBuffer. It is not possible to set monoscopic
mode after the window is created. It is recommended that you use monoscopic mode if you
intend to display only 2D stimuli about the center of the display as it uses a less memory
intensive rendering pipeline.

• diopters (tuple or list) – Initial diopter values for the left and right eye. Default is
(-1, -1), values must be integers.

• lensCorrection (bool) – Apply lens correction (barrel distortion) to the output. The
amount of distortion applied can be specified using distCoef. If False, no distortion will be
applied to the output and the entire display will be used. Not applying correction will result
in pincushion distortion which produces a non-rectilinear output.

• distCoef (float) – Distortion coefficient for barrel distortion. If None, the recommended
value will be used for the model of display. You can adjust the value to fine-tune the barrel
distortion.

• directDraw (bool) – Direct drawing mode. Stimuli are drawn directly to the back buffer
instead of creating separate buffer. This saves video memory but does not permit barrel
distortion or monoscopic rendering. If False, drawing is done with two FBOs containing
each eye’s image.

• hwModel (str) – Model of the VisualSystemHD in use. Used to set viewing parameters
accordingly. Default is ‘vshd’. Cannot be changed after starting the application.

_assignFlipTime(obj, attrib)
Helper function to assign the time of last flip to the obj.attrib

10.4. psychopy.visual - many visual stimuli 466

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
• obj (dict or object) – A mutable object (usually a dict of class instance).

• attrib (str) – Key or attribute of obj to assign the flip time to.

_blitEyeBuffer(eye)
Warp and blit to the appropriate eye buffer.

Parameters
eye (str) – Eye buffer being used.

_checkMatchingSizes(requested, actual)
Checks whether the requested and actual screen sizes differ. If not then a warning is output and the window
size is set to actual

_cleanEditables()

Make sure there are no dead refs in the editables list

_endOfFlip(clearBuffer)
Override end of flip with custom color channel masking if required.

_getFrame(rect=None, buffer='front')
Return the current Window as an image.

_getRegionOfFrame(rect=(-1, 1, 1, -1), buffer='front', power2=False, squarePower2=False)
Deprecated function, here for historical reasons. You may now use :py:attr:`~Window._getFrame() and
specify a rect to get a sub-region, just as used here.

power2 can be useful with older OpenGL versions to avoid interpolation in PatchStim. If power2 or
squarePower2, it will expand rect dimensions up to next power of two. squarePower2 uses the max dimen-
sions. You need to check what your hardware & OpenGL supports, and call _getRegionOfFrame() as
appropriate.

_getWarpExtents(eye)
Get the horizontal and vertical extents of the barrel distortion in normalized device coordinates. This is
used to determine the FOV along each axis after barrel distortion.

Parameters
eye (str) – Eye to compute the extents for.

Returns
2d array of coordinates [+X, -X, +Y, -Y] of the extents of the barrel distortion.

Return type
ndarray

_renderFBO()

Perform a warp operation.

(in this case a copy operation without any warping)

_setCurrent()

Make this window’s OpenGL context current.

If called on a window whose context is current, the function will return immediately. This reduces the
number of redundant calls if no context switch is required. If useFBO=True, the framebuffer is bound after
the context switch.

_setupEyeBuffers()

Setup additional buffers for rendering content to each eye.

10.4. psychopy.visual - many visual stimuli 467

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

_setupGL()

Setup OpenGL state for this window.

_setupGamma(gammaVal)
A private method to work out how to handle gamma for this Window given that the user might have specified
an explicit value, or maybe gave a Monitor.

_setupLensCorrection()

Setup the VAOs needed for lens correction.

_startOfFlip()

Custom _startOfFlip for HMD rendering. This finalizes the HMD texture before diverting drawing
operations back to the on-screen window. This allows flip to swap the on-screen and HMD buffers when
called. This function always returns True.

Return type
True

addEditable(editable)
Adds an editable element to the screen (something to which characters can be sent with meaning from the
keyboard).

The current editable object receiving chars is Window.currentEditable

Parameters
editable –

Returns
property ambientLight

Ambient light color for the scene [r, g, b, a]. Values range from 0.0 to 1.0. Only applicable if useLights is
True.

Examples

Setting the ambient light color:

win.ambientLight = [0.5, 0.5, 0.5]

don't do this!!!
win.ambientLight[0] = 0.5
win.ambientLight[1] = 0.5
win.ambientLight[2] = 0.5

applyEyeTransform(clearDepth=True)
Apply the current view and projection matrices.

Matrices specified by attributes viewMatrix and projectionMatrix are applied using ‘immediate mode’
OpenGL functions. Subsequent drawing operations will be affected until flip() is called.

All transformations in GL_PROJECTION and GL_MODELVIEW matrix stacks will be cleared (set to identity)
prior to applying.

Parameters
clearDepth (bool) – Clear the depth buffer. This may be required prior to rendering 3D
objects.

10.4. psychopy.visual - many visual stimuli 468

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Using a custom view and projection matrix:

Must be called every frame since these values are reset after
`flip()` is called!
win.viewMatrix = viewtools.lookAt(...)
win.projectionMatrix = viewtools.perspectiveProjectionMatrix(...)
win.applyEyeTransform()
draw 3D objects here ...

property aspect

Aspect ratio of the current viewport (width / height).

backgroundFit

How should the background image of this window fit? Options are:

None, “None”, “none”
No scaling is applied, image is present at its pixel size unaltered.

“cover”
Image is scaled such that it covers the whole screen without changing its aspect ratio. In other
words, both dimensions are evenly scaled such that its SHORTEST dimension matches the window’s
LONGEST dimension.

“contain”
Image is scaled such that it is contained within the screen without changing its aspect ratio. In other
words, both dimensions are evenly scaled such that its LONGEST dimension matches the window’s
SHORTEST dimension.

“scaleDown”, “scale-down”, “scaledown”
If image is bigger than the window along any dimension, it will behave as if backgroundFit were
“contain”. Otherwise, it will behave as if backgroundFit were None.

backgroundImage

Background image for the window, can be either a visual.ImageStim object or anything which could be
passed to visual.ImageStim.image to create one. Will be drawn each time win.flip() is called, meaning it is
always below all other contents of the window.

blendMode

Blend mode to use.

callOnFlip(function, *args, **kwargs)
Call a function immediately after the next flip() command.

The first argument should be the function to call, the following args should be used exactly as you would
for your normal call to the function (can use ordered arguments or keyword arguments as normal).

e.g. If you have a function that you would normally call like this:

pingMyDevice(portToPing, channel=2, level=0)

then you could call callOnFlip() to have the function call synchronized with the frame flip like this:

win.callOnFlip(pingMyDevice, portToPing, channel=2, level=0)

10.4. psychopy.visual - many visual stimuli 469

PsychoPy - Psychology software for Python, Release 2023.2.3

clearAutoDraw()

Remove all autoDraw components, meaning they get autoDraw set to False and are not added to any list (as
in .stashAutoDraw)

clearBuffer(color=True, depth=False, stencil=False)
Clear the present buffer (to which you are currently drawing) without flipping the window.

Useful if you want to generate movie sequences from the back buffer without actually taking the time to
flip the window.

Set color prior to clearing to set the color to clear the color buffer to. By default, the depth buffer is cleared
to a value of 1.0.

Parameters
• color (bool) – Buffers to clear.

• depth (bool) – Buffers to clear.

• stencil (bool) – Buffers to clear.

Examples

Clear the color buffer to a specified color:

win.color = (1, 0, 0)
win.clearBuffer(color=True)

Clear only the depth buffer, depthMask must be True or else this will have no effect. Depth mask is usually
True by default, but may change:

win.depthMask = True
win.clearBuffer(color=False, depth=True, stencil=False)

close()

Close the window (and reset the Bits++ if necess).

property color

Set the color of the window.

This command sets the color that the blank screen will have on the next clear operation. As a result it
effectively takes TWO flip() operations to become visible (the first uses the color to create the new
screen, the second presents that screen to the viewer). For this reason, if you want to changed background
color of the window “on the fly”, it might be a better idea to draw a Rect that fills the whole window with
the desired Rect.fillColor attribute. That’ll show up on first flip.

See other stimuli (e.g. GratingStim.color) for more info on the color attribute which essentially works
the same on all PsychoPy stimuli.

See Color spaces for further information about the ways to specify colors and their various implications.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

10.4. psychopy.visual - many visual stimuli 470

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

property contentScaleFactor

Scaling factor (float) to use when drawing to the backbuffer to convert framebuffer to client coordinates.

See also:
getContentScaleFactor

property convergeOffset

Convergence offset from monitor in centimeters.

This is value corresponds to the offset from screen plane to set the convergence plane (or point for toe-in
projections). Positive offsets move the plane farther away from the viewer, while negative offsets nearer.
This value is used by setPerspectiveView and should be set before calling it to take effect.

Notes

• This value is only applicable for setToeIn and setOffAxisView.

coordToRay(screenXY)
Convert a screen coordinate to a direction vector.

Takes a screen/window coordinate and computes a vector which projects a ray from the viewpoint through
it (line-of-sight). Any 3D point touching the ray will appear at the screen coordinate.

Uses the current viewport and projectionMatrix to calculate the vector. The vector is in eye-space, where
the origin of the scene is centered at the viewpoint and the forward direction aligned with the -Z axis. A
ray of (0, 0, -1) results from a point at the very center of the screen assuming symmetric frustums.

Note that if you are using a flipped/mirrored view, you must invert your supplied screen coordinates
(screenXY) prior to passing them to this function.

Parameters
screenXY (array_like) – X, Y screen coordinate. Must be in units of the window.

Returns
Normalized direction vector [x, y, z].

Return type
ndarray

10.4. psychopy.visual - many visual stimuli 471

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Getting the direction vector between the mouse cursor and the eye:

mx, my = mouse.getPos()
dir = win.coordToRay((mx, my))

Set the position of a 3D stimulus object using the mouse, constrained to a plane. The object origin will
always be at the screen coordinate of the mouse cursor:

the eye position in the scene is defined by a rigid body pose
win.viewMatrix = camera.getViewMatrix()
win.applyEyeTransform()

get the mouse location and calculate the intercept
mx, my = mouse.getPos()
ray = win.coordToRay([mx, my])
result = intersectRayPlane(# from mathtools

orig=camera.pos,
dir=camera.transformNormal(ray),
planeOrig=(0, 0, -10),
planeNormal=(0, 1, 0))

if result is `None`, there is no intercept
if result is not None:

pos, dist = result
objModel.thePose.pos = pos

else:
objModel.thePose.pos = (0, 0, -10) # plane origin

If you don’t define the position of the viewer with a RigidBodyPose, you can obtain the appropriate eye
position and rotate the ray by doing the following:

pos = numpy.linalg.inv(win.viewMatrix)[:3, 3]
ray = win.coordToRay([mx, my]).dot(win.viewMatrix[:3, :3])
then ...
result = intersectRayPlane(

orig=pos,
dir=ray,
planeOrig=(0, 0, -10),
planeNormal=(0, 1, 0))

property cullFace

True if face culling is enabled.`

property cullFaceMode

Face culling mode, either back, front or both.

property currentEditable

The editable (Text?) object that currently has key focus

property depthFunc

Depth test comparison function for rendering.

10.4. psychopy.visual - many visual stimuli 472

PsychoPy - Psychology software for Python, Release 2023.2.3

property depthMask

True if depth masking is enabled. Writing to the depth buffer will be disabled.

property depthTest

True if depth testing is enabled.

property diopters

Diopters value of the current eye buffer.

classmethod dispatchAllWindowEvents()

Dispatches events for all pyglet windows. Used by iohub 2.0 psychopy kb event integration.

property distCoef

Distortion coefficient (float).

property draw3d

True if 3D drawing is enabled on this window.

property eyeOffset

Eye offset for the current buffer in centimeters used for stereoscopic rendering. This works differently than
the main window class as it sets the offset for the current buffer. The offset is saved and automatically
restored when the buffer is selected.

property farClip

Distance to the far clipping plane in meters.

flip(clearBuffer=True)
Flip the front and back buffers after drawing everything for your frame. (This replaces the update()
method, better reflecting what is happening underneath).

Parameters
clearBuffer (bool, optional) – Clear the draw buffer after flipping. Default is True.

Returns
Wall-clock time in seconds the flip completed. Returns None if waitBlanking is False.

Return type
float or None

Notes

• The time returned when waitBlanking is True corresponds to when the graphics driver releases the
draw buffer to accept draw commands again. This time is usually close to the vertical sync signal of
the display.

Examples

Results in a clear screen after flipping:

win.flip(clearBuffer=True)

The screen is not cleared (so represent the previous screen):

win.flip(clearBuffer=False)

10.4. psychopy.visual - many visual stimuli 473

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

fps()

Report the frames per second since the last call to this function (or since the window was created if this is
first call)

property frameBufferSize

Size of the framebuffer in pixels (w, h).

property frontFace

Face winding order to define front, either ccw or cw.

fullscr

Set whether fullscreen mode is True or False (not all backends can toggle an open window).

gamma

Set the monitor gamma for linearization.

Warning: Don’t use this if using a Bits++ or Bits#, as it overrides monitor settings.

gammaRamp

Sets the hardware CLUT using a specified 3xN array of floats ranging between 0.0 and 1.0.

Array must have a number of rows equal to 2 ^ max(bpc).

getActualFrameRate(nIdentical=10, nMaxFrames=100, nWarmUpFrames=10, threshold=1)
Measures the actual frames-per-second (FPS) for the screen.

This is done by waiting (for a max of nMaxFrames) until nIdentical frames in a row have identical frame
times (std dev below threshold ms).

Parameters
• nIdentical (int, optional) – The number of consecutive frames that will be evalu-

ated. Higher –> greater precision. Lower –> faster.

• nMaxFrames (int, optional) – The maximum number of frames to wait for a matching
set of nIdentical.

• nWarmUpFrames (int, optional) – The number of frames to display before starting the
test (this is in place to allow the system to settle after opening the Window for the first time.

• threshold (int or float, optional) – The threshold for the std deviation (in ms)
before the set are considered a match.

Returns
Frame rate (FPS) in seconds. If there is no such sequence of identical frames a warning is
logged and None will be returned.

Return type
float or None

getContentScaleFactor()

Get the scaling factor required for scaling correctly on high-DPI displays.

If the returned value is 1.0, no scaling needs to be applied to objects drawn on the backbuffer. A value >1.0
indicates that the backbuffer is larger than the reported client area, requiring points to be scaled to maintain
constant size across similarly sized displays. In other words, the scaling required to convert framebuffer to
client coordinates.

10.4. psychopy.visual - many visual stimuli 474

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

Returns
Scaling factor to be applied along both horizontal and vertical dimensions.

Return type
float

Examples

Get the size of the client area:

clientSize = win.frameBufferSize / win.getContentScaleFactor()

Get the framebuffer size from the client size:

frameBufferSize = win.clientSize * win.getContentScaleFactor()

Convert client (window) to framebuffer pixel coordinates (eg., a mouse coordinate, vertices, etc.):

`mousePosXY` is an array ...
frameBufferXY = mousePosXY * win.getContentScaleFactor()
you can also use the attribute ...
frameBufferXY = mousePosXY * win.contentScaleFactor

Notes

• This value is only valid after the window has been fully realized.

getFutureFlipTime(targetTime=0, clock=None)
The expected time of the next screen refresh. This is currently calculated as win._lastFrameTime + refresh-
Interval

Parameters
• targetTime (float) – The delay from now for which you want the flip time. 0 will give

the because that the earliest we can achieve. 0.15 will give the schedule flip time that gets
as close to 150 ms as possible

• clock (None, 'ptb', 'now' or any Clock object) – If True then the time returned is
compatible with ptb.GetSecs()

• verbose (bool) – Set to True to view the calculations along the way

getMovieFrame(buffer='front')
Capture the current Window as an image.

Saves to stack for saveMovieFrames(). As of v1.81.00 this also returns the frame as a PIL image

This can be done at any time (usually after a flip() command).

Frames are stored in memory until a saveMovieFrames() command is issued. You can issue
getMovieFrame() as often as you like and then save them all in one go when finished.

The back buffer will return the frame that hasn’t yet been ‘flipped’ to be visible on screen but has the
advantage that the mouse and any other overlapping windows won’t get in the way.

The default front buffer is to be called immediately after a flip() and gives a complete copy of the screen
at the window’s coordinates.

10.4. psychopy.visual - many visual stimuli 475

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
buffer (str, optional) – Buffer to capture.

Returns
Buffer pixel contents as a PIL/Pillow image object.

Return type
Image

getMsPerFrame(nFrames=60, showVisual=False, msg='', msDelay=0.0)
Assesses the monitor refresh rate (average, median, SD) under current conditions, over at least 60 frames.

Records time for each refresh (frame) for n frames (at least 60), while displaying an optional visual. The
visual is just eye-candy to show that something is happening when assessing many frames. You can also
give it text to display instead of a visual, e.g., msg='(testing refresh rate...)'; setting msg implies
showVisual == False.

To simulate refresh rate under cpu load, you can specify a time to wait within the loop prior to doing the
flip(). If 0 < msDelay < 100, wait for that long in ms.

Returns timing stats (in ms) of:

• average time per frame, for all frames

• standard deviation of all frames

• median, as the average of 12 frame times around the median (~monitor refresh rate)

Author
• 2010 written by Jeremy Gray

hideMessage()

Remove any message that is currently being displayed.

property lensCorrection

True if using lens correction.

property lights

Scene lights.

This is specified as an array of ~psychopy.visual.LightSource objects. If a single value is given, it will
be converted to a list before setting. Set useLights to True before rendering to enable lighting/shading on
subsequent objects. If lights is None or an empty list, no lights will be enabled if useLights=True, however,
the scene ambient light set with ambientLight will be still be used.

Examples

Create a directional light source and add it to scene lights:

dirLight = gltools.LightSource((0., 1., 0.), lightType='directional')
win.lights = dirLight # `win.lights` will be a list when accessed!

Multiple lights can be specified by passing values as a list:

myLights = [gltools.LightSource((0., 5., 0.)),
gltools.LightSource((-2., -2., 0.))

win.lights = myLights

10.4. psychopy.visual - many visual stimuli 476

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

logOnFlip(msg, level, obj=None)
Send a log message that should be time-stamped at the next flip() command.

Parameters
• msg (str) – The message to be logged.

• level (int) – The level of importance for the message.

• obj (object, optional) – The python object that might be associated with this message
if desired.

property monoscopic

True if using monoscopic mode.

mouseVisible

Sets the visibility of the mouse cursor.

If Window was initialized with allowGUI=False then the mouse is initially set to invisible, otherwise it
will initially be visible.

Usage:

win.mouseVisible = False
win.mouseVisible = True

multiFlip(flips=1, clearBuffer=True)
Flip multiple times while maintaining the display constant. Use this method for precise timing.

WARNING: This function should not be used. See the Notes section for details.

Parameters
• flips (int, optional) – The number of monitor frames to flip. Floats will be rounded

to integers, and a warning will be emitted. Window.multiFlip(flips=1) is equivalent
to Window.flip(). Defaults to 1.

• clearBuffer (bool, optional) – Whether to clear the screen after the last flip. Defaults
to True.

Notes

• This function can behave unpredictably, and the PsychoPy authors recommend against using it. See
https://github.com/psychopy/psychopy/issues/867 for more information.

Examples

Example of using multiFlip:

Draws myStim1 to buffer
myStim1.draw()
Show stimulus for 4 frames (90 ms at 60Hz)
myWin.multiFlip(clearBuffer=False, flips=6)
Draw myStim2 "on top of" myStim1
(because buffer was not cleared above)
myStim2.draw()
Show this for 2 frames (30 ms at 60Hz)

(continues on next page)

10.4. psychopy.visual - many visual stimuli 477

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://github.com/psychopy/psychopy/issues/867

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

myWin.multiFlip(flips=2)
Show blank screen for 3 frames (buffer was cleared above)
myWin.multiFlip(flips=3)

property nearClip

Distance to the near clipping plane in meters.

nextEditable()

Moves focus of the cursor to the next editable window

onResize(width, height)
A default resize event handler.

This default handler updates the GL viewport to cover the entire window and sets the GL_PROJECTION
matrix to be orthogonal in window space. The bottom-left corner is (0, 0) and the top-right corner is the
width and height of the Window in pixels.

Override this event handler with your own to create another projection, for example in perspective.

property projectionMatrix

Projection matrix defined as a 4x4 numpy array.

recordFrameIntervals

Record time elapsed per frame.

Provides accurate measures of frame intervals to determine whether frames are being dropped. The inter-
vals are the times between calls to flip(). Set to True only during the time-critical parts of the script. Set
this to False while the screen is not being updated, i.e., during any slow, non-frame-time-critical sections
of your code, including inter-trial-intervals, event.waitkeys(), core.wait(), or image.setImage().

Examples

Enable frame interval recording, successive frame intervals will be stored:

win.recordFrameIntervals = True

Frame intervals can be saved by calling the saveFrameIntervals method:

win.saveFrameIntervals()

removeEditable(editable)

resetEyeTransform(clearDepth=True)
Restore the default projection and view settings to PsychoPy defaults. Call this prior to drawing 2D stimuli
objects (i.e. GratingStim, ImageStim, Rect, etc.) if any eye transformations were applied for the stimuli to
be drawn correctly.

Parameters
clearDepth (bool) – Clear the depth buffer upon reset. This ensures successive draw com-
mands are not affected by previous data written to the depth buffer. Default is True.

10.4. psychopy.visual - many visual stimuli 478

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Notes

• Calling flip() automatically resets the view and projection to defaults. So you don’t need to call this
unless you are mixing 3D and 2D stimuli.

Examples

Going between 3D and 2D stimuli:

2D stimuli can be drawn before setting a perspective projection
win.setPerspectiveView()
draw 3D stimuli here ...
win.resetEyeTransform()
2D stimuli can be drawn here again ...
win.flip()

resetViewport()

Reset the viewport to cover the whole framebuffer.

Set the viewport to match the dimensions of the back buffer or framebuffer (if useFBO=True). The scissor
rectangle is also set to match the dimensions of the viewport.

retrieveAutoDraw()

Add all stimuli which are on ‘hold’ back into the autoDraw list, and clear the hold list.

property rgb

saveFrameIntervals(fileName=None, clear=True)
Save recorded screen frame intervals to disk, as comma-separated values.

Parameters
• fileName (None or str) – None or the filename (including path if necessary) in which to

store the data. If None then ‘lastFrameIntervals.log’ will be used.

• clear (bool) – Clear buffer frames intervals were stored after saving. Default is True.

saveMovieFrames(fileName, codec='libx264', fps=30, clearFrames=True)
Writes any captured frames to disk.

Will write any format that is understood by PIL (tif, jpg, png, . . .)

Parameters
• filename (str) – Name of file, including path. The extension at the end of the file deter-

mines the type of file(s) created. If an image type (e.g. .png) is given, then multiple static
frames are created. If it is .gif then an animated GIF image is created (although you will get
higher quality GIF by saving PNG files and then combining them in dedicated image ma-
nipulation software, such as GIMP). On Windows and Linux .mpeg files can be created if
pymedia is installed. On macOS .mov files can be created if the pyobjc-frameworks-QTKit
is installed. Unfortunately the libs used for movie generation can be flaky and poor quality.
As for animated GIFs, better results can be achieved by saving as individual .png frames
and then combining them into a movie using software like ffmpeg.

• codec (str, optional) – The codec to be used by moviepy for mp4/mpg/mov files.
If None then the default will depend on file extension. Can be one of libx264, mpeg4
for mp4/mov files. Can be rawvideo, png for avi files (not recommended). Can be
libvorbis for ogv files. Default is libx264.

10.4. psychopy.visual - many visual stimuli 479

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

• fps (int, optional) – The frame rate to be used throughout the movie. Only for quick-
time (.mov) movies.. Default is 30.

• clearFrames (bool, optional) – Set this to False if you want the frames to be kept for
additional calls to saveMovieFrames. Default is True.

Examples

Writes a series of static frames as frame001.tif, frame002.tif etc.:

myWin.saveMovieFrames('frame.tif')

As of PsychoPy 1.84.1 the following are written with moviepy:

myWin.saveMovieFrames('stimuli.mp4') # codec = 'libx264' or 'mpeg4'
myWin.saveMovieFrames('stimuli.mov')
myWin.saveMovieFrames('stimuli.gif')

property scissor

Scissor rectangle (x, y, w, h) for the current draw buffer.

Values x and y define the origin, and w and h the size of the rectangle in pixels. The scissor operation is
only active if scissorTest=True.

Usually, the scissor and viewport are set to the same rectangle to prevent drawing operations from spilling
into other regions of the screen. For instance, calling clearBuffer will only clear within the scissor rectangle.

Setting the scissor rectangle but not the viewport will restrict drawing within the defined region (like a
rectangular aperture), not changing the positions of stimuli.

property scissorTest

True if scissor testing is enabled.

property screenshot

setBlendMode(blendMode, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setBuffer(buffer, clear=True)
Set the eye buffer to draw to. Subsequent draw calls will be diverted to the specified eye.

Parameters
• buffer (str) – Eye buffer to draw to. Values can either be ‘left’ or ‘right’.

• clear (bool) – Clear the buffer prior to drawing.

setColor(color, colorSpace=None, operation='', log=None)
Usually you can use stim.attribute = value syntax instead, but use this method if you want to set
color and colorSpace simultaneously.

See color for documentation on colors.

setDiopters(diopters, eye=None)
Set the diopters for a given eye.

Parameters
• diopters (int) – Set diopters for a given eye, ranging between -7 and +5.

10.4. psychopy.visual - many visual stimuli 480

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

• eye (str or None) – Eye to set, either ‘left’ or ‘right’. If None, the currently set buffer
will be used.

setEyeOffset(dist, eye=None)
Set the eye offset in centimeters.

When set, successive rendering operations will use the new offset.

Parameters
• dist (float or int) – Lateral offset in centimeters from the nose, usually half the inte-

rocular separation. The distance is signed.

• eye (str or None) – Eye offset to set. Can either be ‘left’, ‘right’ or None. If None, the
offset of the current buffer is used.

setGamma(gamma, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setMouseType(name='arrow')
Change the appearance of the cursor for this window. Cursor types provide contextual hints about how to
interact with on-screen objects.

The graphics used ‘standard cursors’ provided by the operating system. They may vary in appearance and
hot spot location across platforms. The following names are valid on most platforms:

• arrow : Default pointer.

• ibeam : Indicates text can be edited.

• crosshair : Crosshair with hot-spot at center.

• hand : A pointing hand.

• hresize : Double arrows pointing horizontally.

• vresize : Double arrows pointing vertically.

Parameters
name (str) – Type of standard cursor to use (see above). Default is arrow.

Notes

• On Windows the crosshair option is negated with the background color. It will not be visible when
placed over 50% grey fields.

setMouseVisible(visibility, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setOffAxisView(applyTransform=True, clearDepth=True)
Set an off-axis projection.

Create an off-axis projection for subsequent rendering calls. Sets the viewMatrix and projectionMatrix ac-
cordingly so the scene origin is on the screen plane. If eyeOffset is correct and the view distance and screen
size is defined in the monitor configuration, the resulting view will approximate ortho-stereo viewing.

The convergence plane can be adjusted by setting convergeOffset. By default, the convergence plane is set
to the screen plane. Any points on the screen plane will have zero disparity.

10.4. psychopy.visual - many visual stimuli 481

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
• applyTransform (bool) – Apply transformations after computing them in immediate

mode. Same as calling applyEyeTransform() afterwards.

• clearDepth (bool, optional) – Clear the depth buffer.

setPerspectiveView(applyTransform=True, clearDepth=True)
Set the projection and view matrix to render with perspective.

Matrices are computed using values specified in the monitor configuration with the scene origin on the
screen plane. Calculations assume units are in meters. If eyeOffset != 0, the view will be transformed
laterally, however the frustum shape will remain the same.

Note that the values of projectionMatrix and viewMatrix will be replaced when calling this function.

Parameters
• applyTransform (bool) – Apply transformations after computing them in immediate

mode. Same as calling applyEyeTransform() afterwards if False.

• clearDepth (bool, optional) – Clear the depth buffer.

setRGB(newRGB)
Deprecated: As of v1.61.00 please use setColor() instead

setRecordFrameIntervals(value=True, log=None)
Usually you can use ‘stim.attribute = value’ syntax instead, but use this method if you need to suppress the
log message.

setScale(units, font='dummyFont', prevScale=(1.0, 1.0))
DEPRECATED: this method used to be used to switch between units for stimulus drawing but this is now
handled by the stimuli themselves and the window should always be left in units of ‘pix’

setToeInView(applyTransform=True, clearDepth=True)
Set toe-in projection.

Create a toe-in projection for subsequent rendering calls. Sets the viewMatrix and projectionMatrix accord-
ingly so the scene origin is on the screen plane. The value of convergeOffset will define the convergence
point of the view, which is offset perpendicular to the center of the screen plane. Points falling on a vertical
line at the convergence point will have zero disparity.

Parameters
• applyTransform (bool) – Apply transformations after computing them in immediate

mode. Same as calling applyEyeTransform() afterwards.

• clearDepth (bool, optional) – Clear the depth buffer.

Notes

• This projection mode is only ‘correct’ if the viewer’s eyes are converged at the convergence point.
Due to perspective, this projection introduces vertical disparities which increase in magnitude with
eccentricity. Use setOffAxisView if you want to display something the viewer can look around the
screen comfortably.

setUnits(value, log=True)

setViewPos(value, log=True)

10.4. psychopy.visual - many visual stimuli 482

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

showMessage(msg)
Show a message in the window. This can be used to show information to the participant.

This creates a TextBox2 object that is displayed in the window. The text can be updated by calling this
method again with a new message. The updated text will appear the next time draw() is called.

Parameters
msg (str or None) – Message text to display. If None, then any existing message is re-
moved.

property size

Size of the drawable area in pixels (w, h).

stashAutoDraw()

Put autoDraw components on ‘hold’, meaning they get autoDraw set to False but are added to an internal
list to be ‘released’ when .releaseAutoDraw is called.

property stencilTest

True if stencil testing is enabled.

timeOnFlip(obj, attrib)
Retrieves the time on the next flip and assigns it to the attrib for this obj.

Parameters
• obj (dict or object) – A mutable object (usually a dict of class instance).

• attrib (str) – Key or attribute of obj to assign the flip time to.

Examples

Assign time on flip to the tStartRefresh key of myTimingDict:

win.getTimeOnFlip(myTimingDict, 'tStartRefresh')

title

units

None, ‘height’ (of the window), ‘norm’, ‘deg’, ‘cm’, ‘pix’ Defines the default units of stimuli initialized in
the window. I.e. if you change units, already initialized stimuli won’t change their units.

Can be overridden by each stimulus, if units is specified on initialization.

See Units for the window and stimuli for explanation of options.

update()

Deprecated: use Window.flip() instead

updateLights(index=None)
Explicitly update scene lights if they were modified.

This is required if modifications to objects referenced in lights have been changed since assignment. If you
removed or added items of lights you must refresh all of them.

Parameters
index (int, optional) – Index of light source in lights to update. If None, all lights will
be refreshed.

10.4. psychopy.visual - many visual stimuli 483

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Call updateLights if you modified lights directly like this:

win.lights[1].diffuseColor = [1., 0., 0.]
win.updateLights(1)

property useLights

Enable scene lighting.

Lights will be enabled if using legacy OpenGL lighting. Stimuli using shaders for lighting should check
if useLights is True since this will have no effect on them, and disable or use a no lighting shader instead.
Lights will be transformed to the current view matrix upon setting to True.

Lights are transformed by the present GL_MODELVIEW matrix. Setting useLights will result in their
positions being transformed by it. If you want lights to appear at the specified positions in world space,
make sure the current matrix defines the view/eye transformation when setting useLights=True.

This flag is reset to False at the beginning of each frame. Should be False if rendering 2D stimuli or else
the colors will be incorrect.

property viewMatrix

View matrix defined as a 4x4 numpy array.

viewPos

The origin of the window onto which stimulus-objects are drawn.

The value should be given in the units defined for the window. NB: Never change a single component (x or
y) of the origin, instead replace the viewPos-attribute in one shot, e.g.:

win.viewPos = [new_xval, new_yval] # This is the way to do it
win.viewPos[0] = new_xval # DO NOT DO THIS! Errors will result.

property viewport

Viewport rectangle (x, y, w, h) for the current draw buffer.

Values x and y define the origin, and w and h the size of the rectangle in pixels.

This is typically set to cover the whole buffer, however it can be changed for applications like multi-view
rendering. Stimuli will draw according to the new shape of the viewport, for instance and stimulus with
position (0, 0) will be drawn at the center of the viewport, not the window.

Examples

Constrain drawing to the left and right halves of the screen, where stimuli will be drawn centered on the
new rectangle. Note that you need to set both the viewport and the scissor rectangle:

x, y, w, h = win.frameBufferSize # size of the framebuffer
win.viewport = win.scissor = [x, y, w / 2.0, h]
draw left stimuli ...

win.viewport = win.scissor = [x + (w / 2.0), y, w / 2.0, h]
draw right stimuli ...

restore drawing to the whole screen
win.viewport = win.scissor = [x, y, w, h]

10.4. psychopy.visual - many visual stimuli 484

PsychoPy - Psychology software for Python, Release 2023.2.3

waitBlanking

After a call to flip() should we wait for the blank before the script continues.

property windowedSize

Size of the window to use when not fullscreen (w, h).

10.4.40 Window

A class representing a window for displaying one or more stimuli.

class psychopy.visual.Window(size=(800, 600), pos=None, color=(0, 0, 0), colorSpace='rgb',
backgroundImage=None, backgroundFit='cover', rgb=None, dkl=None,
lms=None, fullscr=None, allowGUI=None, monitor=None, bitsMode=None,
winType=None, units=None, gamma=None, blendMode='avg', screen=0,
viewScale=None, viewPos=None, viewOri=0.0, waitBlanking=True,
allowStencil=False, multiSample=False, numSamples=2, stereo=False,
name='window1', title='PsychoPy', checkTiming=True, useFBO=False,
useRetina=True, autoLog=True, gammaErrorPolicy='raise', bpc=(8, 8, 8),
depthBits=8, stencilBits=8, backendConf=None)

Used to set up a context in which to draw objects, using either pyglet, pygame, or glfw.

The pyglet backend allows multiple windows to be created, allows the user to specify which screen to use (if
more than one is available, duh!) and allows movies to be rendered.

The GLFW backend is a new addition which provides most of the same features as pyglet, but provides greater
flexibility for complex display configurations.

Pygame may still work for you but it’s officially deprecated in this project (we won’t be fixing pygame-specific
bugs).

These attributes can only be set at initialization. See further down for a list of attributes which can be changed
after initialization of the Window, e.g. color, colorSpace, gamma etc.

Parameters
• size (array-like of int) – Size of the window in pixels [x, y].

• pos (array-like of int) – Location of the top-left corner of the window on the screen
[x, y].

• color (array-like of float) – Color of background as [r, g, b] list or single value.
Each gun can take values between -1.0 and 1.0.

• fullscr (bool or None) – Create a window in ‘full-screen’ mode. Better timing can be
achieved in full-screen mode.

• allowGUI (bool or None) – If set to False, window will be drawn with no frame and no
buttons to close etc., use None for value from preferences.

• winType (str or None) – Set the window type or back-end to use. If None then PsychoPy
will revert to user/site preferences.

• monitor (Monitor or None) – The monitor to be used during the experiment. If None a
default monitor profile will be used.

• units (str or None) – Defines the default units of stimuli drawn in the window (can be
overridden by each stimulus). Values can be None, ‘height’ (of the window), ‘norm’ (nor-
malised), ‘deg’, ‘cm’, ‘pix’. See Units for the window and stimuli for explanation of options.

10.4. psychopy.visual - many visual stimuli 485

http://www.pyglet.org
http://www.pygame.org
https://www.glfw.org
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

• screen (int) – Specifies the physical screen that stimuli will appear on (‘pyglet’ and ‘glfw’
winType only). Values can be >0 if more than one screen is present.

• viewScale (array-like of float or None) – Scaling factors [x, y] to apply custom
scaling to the current units of the Window instance.

• viewPos (array-like of float or None) – If not None, redefines the origin within the
window, in the units of the window. Values outside the borders will be clamped to lie on the
border.

• viewOri (float) – A single value determining the orientation of the view in degrees.

• waitBlanking (bool or None) – After a call to flip() should we wait for the blank
before the script continues.

• bitsMode (bool) – DEPRECATED in 1.80.02. Use BitsSharp class from pycrsltd instead.

• checkTiming (bool) – Whether to calculate frame duration on initialization. Estimated
duration is saved in monitorFramePeriod .

• allowStencil (bool) – When set to True, this allows operations that use the OpenGL
stencil buffer (notably, allowing the Aperture to be used).

• multiSample (bool) – If True and your graphics driver supports multisample buffers, mul-
tiple color samples will be taken per-pixel, providing an anti-aliased image through spatial
filtering. This setting cannot be changed after opening a window. Only works with ‘pyglet’
and ‘glfw’ winTypes, and useFBO is False.

• numSamples (int) – A single value specifying the number of samples per pixel if multi-
sample is enabled. The higher the number, the better the image quality, but can delay frame
flipping. The largest number of samples is determined by GL_MAX_SAMPLES, usually 16 or
32 on newer hardware, will crash if number is invalid.

• stereo (bool) – If True and your graphics card supports quad buffers then this will be
enabled. You can switch between left and right-eye scenes for drawing operations using
setBuffer().

• title (str) – Name of the Window according to your Operating System. This is the text
which appears on the title sash.

• useRetina (bool) – In PsychoPy >1.85.3 this should always be True as pyglet (or Apple)
no longer allows us to create a non-retina display. NB when you use Retina display the initial
win size request will be in the larger pixels but subsequent use of units='pix' should refer
to the tiny Retina pixels. Window.size will give the actual size of the screen in Retina pixels.

• gammaErrorPolicy (str) – If raise, an error is raised if the gamma table is unable to be
retrieved or set. If warn, a warning is raised instead. If ignore, neither an error nor a warning
are raised.

• bpc (array_like or int) – Bits per color (BPC) for the back buffer as a tuple to specify
bit depths for each color channel separately (red, green, blue), or a single value to set all of
them to the same value. Valid values depend on the output color depth of the display (screen)
the window is set to use and the system graphics configuration. By default, it is assumed
the display has 8-bits per color (8, 8, 8). Behaviour may be undefined for non-fullscreen
windows, or if multiple screens are attached with varying color output depths.

• depthBits (int) – Back buffer depth bits. Default is 8, but can be set higher (eg. 24) if
drawing 3D stimuli to minimize artifacts such a ‘Z-fighting’.

• stencilBits (int) – Back buffer stencil bits. Default is 8.

10.4. psychopy.visual - many visual stimuli 486

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

• backendConf (dict or None) – Additional options to pass to the backend specified by
winType. Each backend may provide unique functionality which may not be available across
all of them. This allows you to pass special configuration options to a specific backend to
configure the feature.

Notes

• Some parameters (e.g. units) can now be given default values in the user/site preferences and these will be
used if None is given here. If you do specify a value here it will take precedence over preferences.

size

Dimensions of the window’s drawing area/buffer in pixels [w, h].

Type
array-like (float)

monitorFramePeriod

Refresh rate of the display if checkTiming=True on window instantiation.

Type
float

_assignFlipTime(obj, attrib)
Helper function to assign the time of last flip to the obj.attrib

Parameters
• obj (dict or object) – A mutable object (usually a dict of class instance).

• attrib (str) – Key or attribute of obj to assign the flip time to.

_checkMatchingSizes(requested, actual)
Checks whether the requested and actual screen sizes differ. If not then a warning is output and the window
size is set to actual

_cleanEditables()

Make sure there are no dead refs in the editables list

_endOfFlip(clearBuffer)
Override end of flip with custom color channel masking if required.

_getFrame(rect=None, buffer='front')
Return the current Window as an image.

_getRegionOfFrame(rect=(-1, 1, 1, -1), buffer='front', power2=False, squarePower2=False)
Deprecated function, here for historical reasons. You may now use :py:attr:`~Window._getFrame() and
specify a rect to get a sub-region, just as used here.

power2 can be useful with older OpenGL versions to avoid interpolation in PatchStim . If power2 or
squarePower2, it will expand rect dimensions up to next power of two. squarePower2 uses the max dimen-
sions. You need to check what your hardware & OpenGL supports, and call _getRegionOfFrame() as
appropriate.

_renderFBO()

Perform a warp operation.

(in this case a copy operation without any warping)

10.4. psychopy.visual - many visual stimuli 487

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

_setCurrent()

Make this window’s OpenGL context current.

If called on a window whose context is current, the function will return immediately. This reduces the
number of redundant calls if no context switch is required. If useFBO=True, the framebuffer is bound after
the context switch.

_setupGL()

Setup OpenGL state for this window.

_setupGamma(gammaVal)
A private method to work out how to handle gamma for this Window given that the user might have specified
an explicit value, or maybe gave a Monitor.

_startOfFlip()

Custom hardware classes may want to prevent flipping from occurring and can override this method as
needed.

Return True to indicate hardware flip.

addEditable(editable)
Adds an editable element to the screen (something to which characters can be sent with meaning from the
keyboard).

The current editable object receiving chars is Window.currentEditable

Parameters
editable –

Returns
property ambientLight

Ambient light color for the scene [r, g, b, a]. Values range from 0.0 to 1.0. Only applicable if useLights is
True.

Examples

Setting the ambient light color:

win.ambientLight = [0.5, 0.5, 0.5]

don't do this!!!
win.ambientLight[0] = 0.5
win.ambientLight[1] = 0.5
win.ambientLight[2] = 0.5

applyEyeTransform(clearDepth=True)
Apply the current view and projection matrices.

Matrices specified by attributes viewMatrix and projectionMatrix are applied using ‘immediate mode’
OpenGL functions. Subsequent drawing operations will be affected until flip() is called.

All transformations in GL_PROJECTION and GL_MODELVIEW matrix stacks will be cleared (set to identity)
prior to applying.

Parameters
clearDepth (bool) – Clear the depth buffer. This may be required prior to rendering 3D
objects.

10.4. psychopy.visual - many visual stimuli 488

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Using a custom view and projection matrix:

Must be called every frame since these values are reset after
`flip()` is called!
win.viewMatrix = viewtools.lookAt(...)
win.projectionMatrix = viewtools.perspectiveProjectionMatrix(...)
win.applyEyeTransform()
draw 3D objects here ...

property aspect

Aspect ratio of the current viewport (width / height).

backgroundFit

How should the background image of this window fit? Options are:

None, “None”, “none”
No scaling is applied, image is present at its pixel size unaltered.

“cover”
Image is scaled such that it covers the whole screen without changing its aspect ratio. In other
words, both dimensions are evenly scaled such that its SHORTEST dimension matches the window’s
LONGEST dimension.

“contain”
Image is scaled such that it is contained within the screen without changing its aspect ratio. In other
words, both dimensions are evenly scaled such that its LONGEST dimension matches the window’s
SHORTEST dimension.

“scaleDown”, “scale-down”, “scaledown”
If image is bigger than the window along any dimension, it will behave as if backgroundFit were
“contain”. Otherwise, it will behave as if backgroundFit were None.

backgroundImage

Background image for the window, can be either a visual.ImageStim object or anything which could be
passed to visual.ImageStim.image to create one. Will be drawn each time win.flip() is called, meaning it is
always below all other contents of the window.

blendMode

Blend mode to use.

callOnFlip(function, *args, **kwargs)
Call a function immediately after the next flip() command.

The first argument should be the function to call, the following args should be used exactly as you would
for your normal call to the function (can use ordered arguments or keyword arguments as normal).

e.g. If you have a function that you would normally call like this:

pingMyDevice(portToPing, channel=2, level=0)

then you could call callOnFlip() to have the function call synchronized with the frame flip like this:

win.callOnFlip(pingMyDevice, portToPing, channel=2, level=0)

10.4. psychopy.visual - many visual stimuli 489

PsychoPy - Psychology software for Python, Release 2023.2.3

clearAutoDraw()

Remove all autoDraw components, meaning they get autoDraw set to False and are not added to any list (as
in .stashAutoDraw)

clearBuffer(color=True, depth=False, stencil=False)
Clear the present buffer (to which you are currently drawing) without flipping the window.

Useful if you want to generate movie sequences from the back buffer without actually taking the time to
flip the window.

Set color prior to clearing to set the color to clear the color buffer to. By default, the depth buffer is cleared
to a value of 1.0.

Parameters
• color (bool) – Buffers to clear.

• depth (bool) – Buffers to clear.

• stencil (bool) – Buffers to clear.

Examples

Clear the color buffer to a specified color:

win.color = (1, 0, 0)
win.clearBuffer(color=True)

Clear only the depth buffer, depthMask must be True or else this will have no effect. Depth mask is usually
True by default, but may change:

win.depthMask = True
win.clearBuffer(color=False, depth=True, stencil=False)

close()

Close the window (and reset the Bits++ if necess).

property color

Set the color of the window.

This command sets the color that the blank screen will have on the next clear operation. As a result it
effectively takes TWO flip() operations to become visible (the first uses the color to create the new
screen, the second presents that screen to the viewer). For this reason, if you want to changed background
color of the window “on the fly”, it might be a better idea to draw a Rect that fills the whole window with
the desired Rect.fillColor attribute. That’ll show up on first flip.

See other stimuli (e.g. GratingStim.color) for more info on the color attribute which essentially works
the same on all PsychoPy stimuli.

See Color spaces for further information about the ways to specify colors and their various implications.

property colorSpace

The name of the color space currently being used

Value should be: a string or None

For strings and hex values this is not needed. If None the default colorSpace for the stimulus is used (defined
during initialisation).

10.4. psychopy.visual - many visual stimuli 490

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Please note that changing colorSpace does not change stimulus parameters. Thus you usually want to
specify colorSpace before setting the color. Example:

A light green text
stim = visual.TextStim(win, 'Color me!',

color=(0, 1, 0), colorSpace='rgb')

An almost-black text
stim.colorSpace = 'rgb255'

Make it light green again
stim.color = (128, 255, 128)

property contentScaleFactor

Scaling factor (float) to use when drawing to the backbuffer to convert framebuffer to client coordinates.

See also:
getContentScaleFactor

property convergeOffset

Convergence offset from monitor in centimeters.

This is value corresponds to the offset from screen plane to set the convergence plane (or point for toe-in
projections). Positive offsets move the plane farther away from the viewer, while negative offsets nearer.
This value is used by setPerspectiveView and should be set before calling it to take effect.

Notes

• This value is only applicable for setToeIn and setOffAxisView.

coordToRay(screenXY)
Convert a screen coordinate to a direction vector.

Takes a screen/window coordinate and computes a vector which projects a ray from the viewpoint through
it (line-of-sight). Any 3D point touching the ray will appear at the screen coordinate.

Uses the current viewport and projectionMatrix to calculate the vector. The vector is in eye-space, where
the origin of the scene is centered at the viewpoint and the forward direction aligned with the -Z axis. A
ray of (0, 0, -1) results from a point at the very center of the screen assuming symmetric frustums.

Note that if you are using a flipped/mirrored view, you must invert your supplied screen coordinates
(screenXY) prior to passing them to this function.

Parameters
screenXY (array_like) – X, Y screen coordinate. Must be in units of the window.

Returns
Normalized direction vector [x, y, z].

Return type
ndarray

10.4. psychopy.visual - many visual stimuli 491

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Getting the direction vector between the mouse cursor and the eye:

mx, my = mouse.getPos()
dir = win.coordToRay((mx, my))

Set the position of a 3D stimulus object using the mouse, constrained to a plane. The object origin will
always be at the screen coordinate of the mouse cursor:

the eye position in the scene is defined by a rigid body pose
win.viewMatrix = camera.getViewMatrix()
win.applyEyeTransform()

get the mouse location and calculate the intercept
mx, my = mouse.getPos()
ray = win.coordToRay([mx, my])
result = intersectRayPlane(# from mathtools

orig=camera.pos,
dir=camera.transformNormal(ray),
planeOrig=(0, 0, -10),
planeNormal=(0, 1, 0))

if result is `None`, there is no intercept
if result is not None:

pos, dist = result
objModel.thePose.pos = pos

else:
objModel.thePose.pos = (0, 0, -10) # plane origin

If you don’t define the position of the viewer with a RigidBodyPose, you can obtain the appropriate eye
position and rotate the ray by doing the following:

pos = numpy.linalg.inv(win.viewMatrix)[:3, 3]
ray = win.coordToRay([mx, my]).dot(win.viewMatrix[:3, :3])
then ...
result = intersectRayPlane(

orig=pos,
dir=ray,
planeOrig=(0, 0, -10),
planeNormal=(0, 1, 0))

property cullFace

True if face culling is enabled.`

property cullFaceMode

Face culling mode, either back, front or both.

property currentEditable

The editable (Text?) object that currently has key focus

property depthFunc

Depth test comparison function for rendering.

10.4. psychopy.visual - many visual stimuli 492

PsychoPy - Psychology software for Python, Release 2023.2.3

property depthMask

True if depth masking is enabled. Writing to the depth buffer will be disabled.

property depthTest

True if depth testing is enabled.

property draw3d

True if 3D drawing is enabled on this window.

property eyeOffset

Eye offset in centimeters.

This value is used by setPerspectiveView to apply a lateral offset to the view, therefore it must be set prior
to calling it. Use a positive offset for the right eye, and a negative one for the left. Offsets should be the
distance to from the middle of the face to the center of the eye, or half the inter-ocular distance.

property farClip

Distance to the far clipping plane in meters.

flip(clearBuffer=True)
Flip the front and back buffers after drawing everything for your frame. (This replaces the update()
method, better reflecting what is happening underneath).

Parameters
clearBuffer (bool, optional) – Clear the draw buffer after flipping. Default is True.

Returns
Wall-clock time in seconds the flip completed. Returns None if waitBlanking is False.

Return type
float or None

Notes

• The time returned when waitBlanking is True corresponds to when the graphics driver releases the
draw buffer to accept draw commands again. This time is usually close to the vertical sync signal of
the display.

Examples

Results in a clear screen after flipping:

win.flip(clearBuffer=True)

The screen is not cleared (so represent the previous screen):

win.flip(clearBuffer=False)

fps()

Report the frames per second since the last call to this function (or since the window was created if this is
first call)

property frameBufferSize

Size of the framebuffer in pixels (w, h).

10.4. psychopy.visual - many visual stimuli 493

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

property frontFace

Face winding order to define front, either ccw or cw.

fullscr

Set whether fullscreen mode is True or False (not all backends can toggle an open window).

gamma

Set the monitor gamma for linearization.

Warning: Don’t use this if using a Bits++ or Bits#, as it overrides monitor settings.

gammaRamp

Sets the hardware CLUT using a specified 3xN array of floats ranging between 0.0 and 1.0.

Array must have a number of rows equal to 2 ^ max(bpc).

getActualFrameRate(nIdentical=10, nMaxFrames=100, nWarmUpFrames=10, threshold=1)
Measures the actual frames-per-second (FPS) for the screen.

This is done by waiting (for a max of nMaxFrames) until nIdentical frames in a row have identical frame
times (std dev below threshold ms).

Parameters
• nIdentical (int, optional) – The number of consecutive frames that will be evalu-

ated. Higher –> greater precision. Lower –> faster.

• nMaxFrames (int, optional) – The maximum number of frames to wait for a matching
set of nIdentical.

• nWarmUpFrames (int, optional) – The number of frames to display before starting the
test (this is in place to allow the system to settle after opening the Window for the first time.

• threshold (int or float, optional) – The threshold for the std deviation (in ms)
before the set are considered a match.

Returns
Frame rate (FPS) in seconds. If there is no such sequence of identical frames a warning is
logged and None will be returned.

Return type
float or None

getContentScaleFactor()

Get the scaling factor required for scaling correctly on high-DPI displays.

If the returned value is 1.0, no scaling needs to be applied to objects drawn on the backbuffer. A value >1.0
indicates that the backbuffer is larger than the reported client area, requiring points to be scaled to maintain
constant size across similarly sized displays. In other words, the scaling required to convert framebuffer to
client coordinates.

Returns
Scaling factor to be applied along both horizontal and vertical dimensions.

Return type
float

10.4. psychopy.visual - many visual stimuli 494

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Get the size of the client area:

clientSize = win.frameBufferSize / win.getContentScaleFactor()

Get the framebuffer size from the client size:

frameBufferSize = win.clientSize * win.getContentScaleFactor()

Convert client (window) to framebuffer pixel coordinates (eg., a mouse coordinate, vertices, etc.):

`mousePosXY` is an array ...
frameBufferXY = mousePosXY * win.getContentScaleFactor()
you can also use the attribute ...
frameBufferXY = mousePosXY * win.contentScaleFactor

Notes

• This value is only valid after the window has been fully realized.

getFutureFlipTime(targetTime=0, clock=None)
The expected time of the next screen refresh. This is currently calculated as win._lastFrameTime + refresh-
Interval

Parameters
• targetTime (float) – The delay from now for which you want the flip time. 0 will give

the because that the earliest we can achieve. 0.15 will give the schedule flip time that gets
as close to 150 ms as possible

• clock (None, 'ptb', 'now' or any Clock object) – If True then the time returned is
compatible with ptb.GetSecs()

• verbose (bool) – Set to True to view the calculations along the way

getMovieFrame(buffer='front')
Capture the current Window as an image.

Saves to stack for saveMovieFrames(). As of v1.81.00 this also returns the frame as a PIL image

This can be done at any time (usually after a flip() command).

Frames are stored in memory until a saveMovieFrames() command is issued. You can issue
getMovieFrame() as often as you like and then save them all in one go when finished.

The back buffer will return the frame that hasn’t yet been ‘flipped’ to be visible on screen but has the
advantage that the mouse and any other overlapping windows won’t get in the way.

The default front buffer is to be called immediately after a flip() and gives a complete copy of the screen
at the window’s coordinates.

Parameters
buffer (str, optional) – Buffer to capture.

Returns
Buffer pixel contents as a PIL/Pillow image object.

10.4. psychopy.visual - many visual stimuli 495

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Return type
Image

getMsPerFrame(nFrames=60, showVisual=False, msg='', msDelay=0.0)
Assesses the monitor refresh rate (average, median, SD) under current conditions, over at least 60 frames.

Records time for each refresh (frame) for n frames (at least 60), while displaying an optional visual. The
visual is just eye-candy to show that something is happening when assessing many frames. You can also
give it text to display instead of a visual, e.g., msg='(testing refresh rate...)'; setting msg implies
showVisual == False.

To simulate refresh rate under cpu load, you can specify a time to wait within the loop prior to doing the
flip(). If 0 < msDelay < 100, wait for that long in ms.

Returns timing stats (in ms) of:

• average time per frame, for all frames

• standard deviation of all frames

• median, as the average of 12 frame times around the median (~monitor refresh rate)

Author
• 2010 written by Jeremy Gray

hideMessage()

Remove any message that is currently being displayed.

property lights

Scene lights.

This is specified as an array of ~psychopy.visual.LightSource objects. If a single value is given, it will
be converted to a list before setting. Set useLights to True before rendering to enable lighting/shading on
subsequent objects. If lights is None or an empty list, no lights will be enabled if useLights=True, however,
the scene ambient light set with ambientLight will be still be used.

Examples

Create a directional light source and add it to scene lights:

dirLight = gltools.LightSource((0., 1., 0.), lightType='directional')
win.lights = dirLight # `win.lights` will be a list when accessed!

Multiple lights can be specified by passing values as a list:

myLights = [gltools.LightSource((0., 5., 0.)),
gltools.LightSource((-2., -2., 0.))

win.lights = myLights

logOnFlip(msg, level, obj=None)
Send a log message that should be time-stamped at the next flip() command.

Parameters
• msg (str) – The message to be logged.

• level (int) – The level of importance for the message.

10.4. psychopy.visual - many visual stimuli 496

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

• obj (object, optional) – The python object that might be associated with this message
if desired.

mouseVisible

Sets the visibility of the mouse cursor.

If Window was initialized with allowGUI=False then the mouse is initially set to invisible, otherwise it
will initially be visible.

Usage:

win.mouseVisible = False
win.mouseVisible = True

property nearClip

Distance to the near clipping plane in meters.

nextEditable()

Moves focus of the cursor to the next editable window

property projectionMatrix

Projection matrix defined as a 4x4 numpy array.

recordFrameIntervals

Record time elapsed per frame.

Provides accurate measures of frame intervals to determine whether frames are being dropped. The inter-
vals are the times between calls to flip(). Set to True only during the time-critical parts of the script. Set
this to False while the screen is not being updated, i.e., during any slow, non-frame-time-critical sections
of your code, including inter-trial-intervals, event.waitkeys(), core.wait(), or image.setImage().

Examples

Enable frame interval recording, successive frame intervals will be stored:

win.recordFrameIntervals = True

Frame intervals can be saved by calling the saveFrameIntervals method:

win.saveFrameIntervals()

removeEditable(editable)

resetEyeTransform(clearDepth=True)
Restore the default projection and view settings to PsychoPy defaults. Call this prior to drawing 2D stimuli
objects (i.e. GratingStim, ImageStim, Rect, etc.) if any eye transformations were applied for the stimuli to
be drawn correctly.

Parameters
clearDepth (bool) – Clear the depth buffer upon reset. This ensures successive draw com-
mands are not affected by previous data written to the depth buffer. Default is True.

10.4. psychopy.visual - many visual stimuli 497

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Notes

• Calling flip() automatically resets the view and projection to defaults. So you don’t need to call this
unless you are mixing 3D and 2D stimuli.

Examples

Going between 3D and 2D stimuli:

2D stimuli can be drawn before setting a perspective projection
win.setPerspectiveView()
draw 3D stimuli here ...
win.resetEyeTransform()
2D stimuli can be drawn here again ...
win.flip()

resetViewport()

Reset the viewport to cover the whole framebuffer.

Set the viewport to match the dimensions of the back buffer or framebuffer (if useFBO=True). The scissor
rectangle is also set to match the dimensions of the viewport.

retrieveAutoDraw()

Add all stimuli which are on ‘hold’ back into the autoDraw list, and clear the hold list.

property rgb

saveFrameIntervals(fileName=None, clear=True)
Save recorded screen frame intervals to disk, as comma-separated values.

Parameters
• fileName (None or str) – None or the filename (including path if necessary) in which to

store the data. If None then ‘lastFrameIntervals.log’ will be used.

• clear (bool) – Clear buffer frames intervals were stored after saving. Default is True.

saveMovieFrames(fileName, codec='libx264', fps=30, clearFrames=True)
Writes any captured frames to disk.

Will write any format that is understood by PIL (tif, jpg, png, . . .)

Parameters
• filename (str) – Name of file, including path. The extension at the end of the file deter-

mines the type of file(s) created. If an image type (e.g. .png) is given, then multiple static
frames are created. If it is .gif then an animated GIF image is created (although you will get
higher quality GIF by saving PNG files and then combining them in dedicated image ma-
nipulation software, such as GIMP). On Windows and Linux .mpeg files can be created if
pymedia is installed. On macOS .mov files can be created if the pyobjc-frameworks-QTKit
is installed. Unfortunately the libs used for movie generation can be flaky and poor quality.
As for animated GIFs, better results can be achieved by saving as individual .png frames
and then combining them into a movie using software like ffmpeg.

• codec (str, optional) – The codec to be used by moviepy for mp4/mpg/mov files.
If None then the default will depend on file extension. Can be one of libx264, mpeg4
for mp4/mov files. Can be rawvideo, png for avi files (not recommended). Can be
libvorbis for ogv files. Default is libx264.

10.4. psychopy.visual - many visual stimuli 498

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

• fps (int, optional) – The frame rate to be used throughout the movie. Only for quick-
time (.mov) movies.. Default is 30.

• clearFrames (bool, optional) – Set this to False if you want the frames to be kept for
additional calls to saveMovieFrames. Default is True.

Examples

Writes a series of static frames as frame001.tif, frame002.tif etc.:

myWin.saveMovieFrames('frame.tif')

As of PsychoPy 1.84.1 the following are written with moviepy:

myWin.saveMovieFrames('stimuli.mp4') # codec = 'libx264' or 'mpeg4'
myWin.saveMovieFrames('stimuli.mov')
myWin.saveMovieFrames('stimuli.gif')

property scissor

Scissor rectangle (x, y, w, h) for the current draw buffer.

Values x and y define the origin, and w and h the size of the rectangle in pixels. The scissor operation is
only active if scissorTest=True.

Usually, the scissor and viewport are set to the same rectangle to prevent drawing operations from spilling
into other regions of the screen. For instance, calling clearBuffer will only clear within the scissor rectangle.

Setting the scissor rectangle but not the viewport will restrict drawing within the defined region (like a
rectangular aperture), not changing the positions of stimuli.

property scissorTest

True if scissor testing is enabled.

property screenshot

setBuffer(buffer, clear=True)
Choose which buffer to draw to (‘left’ or ‘right’).

Requires the Window to be initialised with stereo=True and requires a graphics card that supports quad
buffering (e,g nVidia Quadro series)

PsychoPy always draws to the back buffers, so ‘left’ will use GL_BACK_LEFT This then needs to be flipped
once both eye’s buffers have been rendered.

Parameters
• buffer (str) – Buffer to draw to. Can either be ‘left’ or ‘right’.

• clear (bool, optional) – Clear the buffer before drawing. Default is True.

10.4. psychopy.visual - many visual stimuli 499

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Stereoscopic rendering example using quad-buffers:

win = visual.Window(...., stereo=True)
while True:

clear may not actually be needed
win.setBuffer('left', clear=True)
do drawing for left eye
win.setBuffer('right', clear=True)
do drawing for right eye
win.flip()

setMouseType(name='arrow')
Change the appearance of the cursor for this window. Cursor types provide contextual hints about how to
interact with on-screen objects.

The graphics used ‘standard cursors’ provided by the operating system. They may vary in appearance and
hot spot location across platforms. The following names are valid on most platforms:

• arrow : Default pointer.

• ibeam : Indicates text can be edited.

• crosshair : Crosshair with hot-spot at center.

• hand : A pointing hand.

• hresize : Double arrows pointing horizontally.

• vresize : Double arrows pointing vertically.

Parameters
name (str) – Type of standard cursor to use (see above). Default is arrow.

Notes

• On Windows the crosshair option is negated with the background color. It will not be visible when
placed over 50% grey fields.

setOffAxisView(applyTransform=True, clearDepth=True)
Set an off-axis projection.

Create an off-axis projection for subsequent rendering calls. Sets the viewMatrix and projectionMatrix ac-
cordingly so the scene origin is on the screen plane. If eyeOffset is correct and the view distance and screen
size is defined in the monitor configuration, the resulting view will approximate ortho-stereo viewing.

The convergence plane can be adjusted by setting convergeOffset. By default, the convergence plane is set
to the screen plane. Any points on the screen plane will have zero disparity.

Parameters
• applyTransform (bool) – Apply transformations after computing them in immediate

mode. Same as calling applyEyeTransform() afterwards.

• clearDepth (bool, optional) – Clear the depth buffer.

10.4. psychopy.visual - many visual stimuli 500

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

setPerspectiveView(applyTransform=True, clearDepth=True)
Set the projection and view matrix to render with perspective.

Matrices are computed using values specified in the monitor configuration with the scene origin on the
screen plane. Calculations assume units are in meters. If eyeOffset != 0, the view will be transformed
laterally, however the frustum shape will remain the same.

Note that the values of projectionMatrix and viewMatrix will be replaced when calling this function.

Parameters
• applyTransform (bool) – Apply transformations after computing them in immediate

mode. Same as calling applyEyeTransform() afterwards if False.

• clearDepth (bool, optional) – Clear the depth buffer.

setToeInView(applyTransform=True, clearDepth=True)
Set toe-in projection.

Create a toe-in projection for subsequent rendering calls. Sets the viewMatrix and projectionMatrix accord-
ingly so the scene origin is on the screen plane. The value of convergeOffset will define the convergence
point of the view, which is offset perpendicular to the center of the screen plane. Points falling on a vertical
line at the convergence point will have zero disparity.

Parameters
• applyTransform (bool) – Apply transformations after computing them in immediate

mode. Same as calling applyEyeTransform() afterwards.

• clearDepth (bool, optional) – Clear the depth buffer.

Notes

• This projection mode is only ‘correct’ if the viewer’s eyes are converged at the convergence point.
Due to perspective, this projection introduces vertical disparities which increase in magnitude with
eccentricity. Use setOffAxisView if you want to display something the viewer can look around the
screen comfortably.

showMessage(msg)
Show a message in the window. This can be used to show information to the participant.

This creates a TextBox2 object that is displayed in the window. The text can be updated by calling this
method again with a new message. The updated text will appear the next time draw() is called.

Parameters
msg (str or None) – Message text to display. If None, then any existing message is re-
moved.

property size

Size of the drawable area in pixels (w, h).

stashAutoDraw()

Put autoDraw components on ‘hold’, meaning they get autoDraw set to False but are added to an internal
list to be ‘released’ when .releaseAutoDraw is called.

property stencilTest

True if stencil testing is enabled.

10.4. psychopy.visual - many visual stimuli 501

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

timeOnFlip(obj, attrib)
Retrieves the time on the next flip and assigns it to the attrib for this obj.

Parameters
• obj (dict or object) – A mutable object (usually a dict of class instance).

• attrib (str) – Key or attribute of obj to assign the flip time to.

Examples

Assign time on flip to the tStartRefresh key of myTimingDict:

win.getTimeOnFlip(myTimingDict, 'tStartRefresh')

title

units

None, ‘height’ (of the window), ‘norm’, ‘deg’, ‘cm’, ‘pix’ Defines the default units of stimuli initialized in
the window. I.e. if you change units, already initialized stimuli won’t change their units.

Can be overridden by each stimulus, if units is specified on initialization.

See Units for the window and stimuli for explanation of options.

updateLights(index=None)
Explicitly update scene lights if they were modified.

This is required if modifications to objects referenced in lights have been changed since assignment. If you
removed or added items of lights you must refresh all of them.

Parameters
index (int, optional) – Index of light source in lights to update. If None, all lights will
be refreshed.

Examples

Call updateLights if you modified lights directly like this:

win.lights[1].diffuseColor = [1., 0., 0.]
win.updateLights(1)

property useLights

Enable scene lighting.

Lights will be enabled if using legacy OpenGL lighting. Stimuli using shaders for lighting should check
if useLights is True since this will have no effect on them, and disable or use a no lighting shader instead.
Lights will be transformed to the current view matrix upon setting to True.

Lights are transformed by the present GL_MODELVIEW matrix. Setting useLights will result in their
positions being transformed by it. If you want lights to appear at the specified positions in world space,
make sure the current matrix defines the view/eye transformation when setting useLights=True.

This flag is reset to False at the beginning of each frame. Should be False if rendering 2D stimuli or else
the colors will be incorrect.

10.4. psychopy.visual - many visual stimuli 502

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

property viewMatrix

View matrix defined as a 4x4 numpy array.

viewPos

The origin of the window onto which stimulus-objects are drawn.

The value should be given in the units defined for the window. NB: Never change a single component (x or
y) of the origin, instead replace the viewPos-attribute in one shot, e.g.:

win.viewPos = [new_xval, new_yval] # This is the way to do it
win.viewPos[0] = new_xval # DO NOT DO THIS! Errors will result.

property viewport

Viewport rectangle (x, y, w, h) for the current draw buffer.

Values x and y define the origin, and w and h the size of the rectangle in pixels.

This is typically set to cover the whole buffer, however it can be changed for applications like multi-view
rendering. Stimuli will draw according to the new shape of the viewport, for instance and stimulus with
position (0, 0) will be drawn at the center of the viewport, not the window.

Examples

Constrain drawing to the left and right halves of the screen, where stimuli will be drawn centered on the
new rectangle. Note that you need to set both the viewport and the scissor rectangle:

x, y, w, h = win.frameBufferSize # size of the framebuffer
win.viewport = win.scissor = [x, y, w / 2.0, h]
draw left stimuli ...

win.viewport = win.scissor = [x + (w / 2.0), y, w / 2.0, h]
draw right stimuli ...

restore drawing to the whole screen
win.viewport = win.scissor = [x, y, w, h]

waitBlanking

After a call to flip() should we wait for the blank before the script continues.

property windowedSize

Size of the window to use when not fullscreen (w, h).

10.4.41 psychopy.visual.windowframepack - Pack multiple monochrome images
into RGB frame

Copyright (C) 2014 Allen Institute for Brain Science

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Pub-
lic License Version 3 as published by the Free Software Foundation on 29 June 2007. This program is distributed
WITHOUT WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY
OTHER WARRANTY, EXPRESSED OR IMPLIED. See the GNU General Public License Version 3 for more de-
tails. You should have received a copy of the GNU General Public License along with this program. If not, see
http://www.gnu.org/licenses/

10.4. psychopy.visual - many visual stimuli 503

http://www.gnu.org/licenses/

PsychoPy - Psychology software for Python, Release 2023.2.3

ProjectorFramePacker

class psychopy.visual.windowframepack.ProjectorFramePacker(win)
Class which packs 3 monochrome images per RGB frame.

Allowing 180Hz stimuli with DLP projectors such as TI LightCrafter 4500.

The class overrides methods of the visual.Window class to pack a monochrome image into each RGB channel.
PsychoPy is running at 180Hz. The display device is running at 60Hz. The output projector is producing images
at 180Hz.

Frame packing can work with any projector which can operate in ‘structured light mode’ where each RGB channel
is presented sequentially as a monochrome image. Most home and office projectors cannot operate in this mode,
but projectors designed for machine vision applications typically will offer this feature.

Example usage to use ProjectorFramePacker:

from psychopy.visual.windowframepack import ProjectorFramePacker
win = Window(monitor='testMonitor', screen=1,

fullscr=True, useFBO = True)
framePacker = ProjectorFramePacker (win)

Parameters
win : Handle to the window.

endOfFlip(clearBuffer)
Mask RGB cyclically after each flip. We ignore clearBuffer and just auto-clear after each hardware flip.

startOfFlip()

Return True if all channels of the RGB frame have been filled with monochrome images, and the associated
window should perform a hardware flip

10.4.42 psychopy.visual.windowwarp - warping to spherical, cylindrical, or other
projections

Copyright (C) 2014 Allen Institute for Brain Science

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Pub-
lic License Version 3 as published by the Free Software Foundation on 29 June 2007. This program is distributed
WITHOUT WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY
OTHER WARRANTY, EXPRESSED OR IMPLIED. See the GNU General Public License Version 3 for more de-
tails. You should have received a copy of the GNU General Public License along with this program. If not, see
http://www.gnu.org/licenses/

Warper

class psychopy.visual.windowwarp.Warper(win, warp=None, warpfile=None, warpGridsize=300,
eyepoint=(0.5, 0.5), flipHorizontal=False, flipVertical=False)

Class to perform warps.

Supports spherical, cylindrical, warpfile, or None (disabled) warps

Warping is a final operation which can be optionally performed on each frame just before transmission to the
display. It is useful for perspective correction when the eye to monitor distance is small (say, under 50 cm), or
when projecting to domes or other non-planar surfaces.

10.4. psychopy.visual - many visual stimuli 504

http://www.gnu.org/licenses/

PsychoPy - Psychology software for Python, Release 2023.2.3

These attributes define the projection and can be altered dynamically using the changeProjection() method.

Parameters
win : Handle to the window.

warp
[‘spherical’, ‘cylindrical, ‘warpfile’ or None] This table gives the main properties of each
projection

Warp eyepoint modifies
warp

verticals par-
allel

horizontals
parallel

perspective
correct

spheri-
cal

y n n y

cylin-
drical

y y n n

warpfile n ? ? ?
None n y y n

warpfile
[None or filename containing Blender and Paul Bourke] compatible warp definition. (see
http://paulbourke.net/dome/warpingfisheye/)

warpGridsize
[300] Defines the resolution of the warp in both X and Y when not using a warpfile. Typical
values would be 64-300 trading off tolerance for jaggies for speed.

eyepoint
[[0.5, 0.5] center of the screen] Position of the eye in X and Y as a fraction of the normalized
screen width and height. [0,0] is the bottom left of the screen. [1,1] is the top right of the
screen.

flipHorizontal: True or False
Flip the entire output horizontally. Useful for back projection scenarious.

flipVertical: True or False
Flip the entire output vertically. useful if projector is flipped upside down.

Notes
1) The eye distance from the screen is initialized from the

monitor definition.

2) The eye distance can be altered dynamically by changing
‘warper.dist_cm’ and then calling changeProjection().

Example usage to create a spherical projection:

from psychopy.visual.windowwarp import Warper
win = Window(monitor='testMonitor', screen=1,

fullscr=True, useFBO = True)
warper = Warper(win,

warp='spherical',
warpfile = "",
warpGridsize = 128,
eyepoint = [0.5, 0.5],
flipHorizontal = False,
flipVertical = False)

10.4. psychopy.visual - many visual stimuli 505

http://paulbourke.net/dome/warpingfisheye/

PsychoPy - Psychology software for Python, Release 2023.2.3

changeProjection(warp, warpfile=None, eyepoint=(0.5, 0.5), flipHorizontal=False, flipVertical=False)
Allows changing the warp method on the fly. Uses the same parameter definitions as constructor.

Window to display all stimuli below.

Windows and and display devices:

• Window is the main class to display objects

• Warper for non-flat projection screens

• ProjectorFramePacker for handling displays with ‘structured light mode’ to achieve high framerates

• Rift for Oculus Rift support (Windows 64bit only)

• VisualSystemHD for NordicNeuralLab’s VisualSystemHD in-scanner display.

Commonly used:

• ImageStim to show images

• TextStim to show text

• TextBox2 rewrite of TextStim (faster, editable with more layout options and formatting)

Shapes (all special classes of ShapeStim):

• ShapeStim to draw shapes with arbitrary numbers of vertices

• Rect to show rectangles

• Circle to show circles

• Polygon to show polygons

• Line to show a line

• Pie to show wedges and semi-circles

Images and patterns:

• SimpleImageStim to show images without bells and whistles

• GratingStim to show gratings

• RadialStim to show annulus, a rotating wedge, a checkerboard etc

• NoiseStim to show filtered noise patterns of various forms

• EnvelopeGrating to generate second-order stimuli (gratings that can have a carrier and envelope)

Multiple stimuli:

• ElementArrayStim to show many stimuli of the same type

• DotStim to show and control movement of dots

3D shapes, materials, and lighting:

• LightSource to define a light source in a scene

• SceneSkybox to render a background skybox for VR and 3D scenes

• BlinnPhongMaterial to specify a material using the Blinn-Phong lighting model

• RigidBodyPose to define poses of objects in 3D space

• BoundingBox to define bounding boxes around 3D objects

• SphereStim to show a 3D sphere

10.4. psychopy.visual - many visual stimuli 506

PsychoPy - Psychology software for Python, Release 2023.2.3

• BoxStim to show 3D boxes and cubes

• PlaneStim to show 3D plane

• ObjMeshStim to show Wavefront OBJ meshes loaded from files

Other stimuli:

• MovieStim to show movies

• VlcMovieStim to show movies using VLC

• Slider a new improved class to collect ratings

• RatingScale to collect ratings

• CustomMouse to change the cursor in windows with GUI. OBS: will be deprecated soon

Meta stimuli (stimuli that operate on other stimuli):

• BufferImageStim to make a faster-to-show “screenshot” of other stimuli

• Aperture to restrict visibility area of other stimuli

Helper functions:

• filters for creating grating textures and Gaussian masks etc.

• visualhelperfunctions for tests about whether one stimulus contains another

• unittools to convert deg<->radians

• monitorunittools to convert cm<->pix<->deg etc.

• colorspacetools to convert between supported color spaces

• viewtools to work with view projections

• mathtools to work with vectors, quaternions, and matrices

• gltools to work with OpenGL directly (under development)

10.5 psychopy.sound - for playback and recording of sound

The psychopy.sound module provides an interface for audio playback and recording devices. It also provides tools for
working with audio samples and performing speech-to-text transcription.

10.5.1 Sound - for audio playback

Audio playback is handled by the Sound class. currently supports a choice of sound engines: PTB, pyo, sounddevice
or pygame. You can select which will be used via the audioLib preference. sound.Sound() will then refer to one of the
following backends:

• SoundPTB

• SoundDevice

• SoundPyo

• SoundPygame

This preference can be set on a per-experiment basis by importing preferences, and setting the audioLib option to use.
Audio playback backends vary in performance due to all sorts of factors. Based on testing done by the team and reports
from users, their performance can be summarized as follows:

10.5. psychopy.sound - for playback and recording of sound 507

PsychoPy - Psychology software for Python, Release 2023.2.3

• The PTB library has by far the lowest latencies and is strongly recommended (requires 64 bit Python 3.6+)

• The pyo library is, in theory, the highest performer, but in practice it has often had issues (at least on MacOS)
with crashes and freezing of experiments, or causing them not to finish properly. If those issues aren’t affecting
your studies then this could be the one for you.

• The sounddevice library has performance that appears to be good (although this might be less so in cases where
you have complex rendering being done as well because it operates from the same computer core as the main
experiment code). It’s newer than pyo and so more prone to bugs and we haven’t yet added microphone support
to record your participants.

• The pygame backend is the oldest and should work without errors, but has the least good performance. Use it if
latencies for your audio don’t matter.

Sounds are actually generated by a variety of classes, depending on which “backend” you use (like pyo or sounddevice)
and these different backends can have slightly different attributes, as below. The user should typically do:

from psychopy.sound import Sound

The class that gets imported will then be an alias of one of the Sound Classes described below.

PTB audio latency

PTB brings a number of advantages in terms of latency.

The first is that is has been designed specifically with low-latency playback in mind (rather than, say, on-the-fly mixing
and filtering capabilities). Mario Kleiner has worked very hard get the best out of the drivers available on each operating
system and, as a result, with the most aggressive low-latency settings you can get a sound to play in “immediate” mode
with typically in the region of 5ms lag and maybe 1ms precision. That’s pretty good compared to the other options that
have a lag of 20ms upwards and several ms variability.

BUT, on top of that, PTB allows you to preschedule your sound to occur at a particular point in time (e.g. when the
trigger is due to be sent or when the screen is due to flip) and the PTB engine will then prepare all the buffers ready to
go and will also account for the known latencies in the card. With this method the PTB engine is capable of sub-ms
precision and even sub-ms lag!

Of course, capable doesn’t mean it’s happening in your case. It can depend on many things about the local operating
system and hardware. You should test it yourself for your kit, but here is an example of a standard Win10 box using
built-in audio (not a fancy audio card):

Preschedule your sound

The most precise way to use the PTB audio backend is to preschedule the playing of a sound. By doing this PTB can
actually take into account both the time taken to load the sound (it will preload ready) and also the time taken by the
hardware to start playing it.

To do this you can call play() with an argument called when. The when argument needs to be in the PsychToolBox
clock timebase which can be accessed by using psychtoolbox.GetSecs() if you want to play sound at an arbitrary time
(not in sync with a window flip)

For instance:

import psychtoolbox as ptb
from psychopy import sound

mySound = sound.Sound('A')
(continues on next page)

10.5. psychopy.sound - for playback and recording of sound 508

PsychoPy - Psychology software for Python, Release 2023.2.3

Fig. 10.1: Sub-ms audio timing with standard audio on Win10. Yellow trace is a 440 Hz tone played at 48 kHz with
PTB engine. Cyan trace is the trigger (from a Labjack output). Gridlines are set to 1 ms.

(continued from previous page)

now = ptb.GetSecs()
mySound.play(when=now+0.5) # play in EXACTLY 0.5s

or using Window.getFutureFlipTime(clock=’ptb’) if you want a synchronized time:

import psychtoolbox as ptb
from psychopy import sound, visual

mySound = sound.Sound('A')

win = visual.Window()
win.flip()
nextFlip = win.getFutureFlipTime(clock='ptb')

mySound.play(when=nextFlip) # sync with screen refresh

The precision of that timing is still dependent on the PTB Audio Latency Modes and can obviously not work if the delay
before the requested time is not long enough for the requested mode (e.g. if you request that the sound starts on the
next refresh but set the latency mode to be 0 (which has a lag of around 300 ms) then the timing will be very poor.

10.5. psychopy.sound - for playback and recording of sound 509

PsychoPy - Psychology software for Python, Release 2023.2.3

PTB Audio Latency Modes

When using the PTB backend you get the option to choose the Latency Mode, referred to in PsychToolBox as the
reqlatencyclass, and can be set in PsychoPy using prefs.hardware[‘audioLatencyMode’].

uses Mode 3 in as a default, assuming that you want low latency and you don’t care if other applications can’t play
sound at the same time (don’t listen to iTunes while running your study!)

The modes are as follows:

0 : Latency not important
For when it really doesn’t matter. Latency can easily be in the region of 300ms! The advantage of this move is
that it will always work and always play a sound, whatever the format of the existing sounds that have been played
(with 2, 3, 4 you can obtain low latency but the sampling rate must be the same throughout the experiment).

1 : Share low-latency access
Tries to use a low-latency setup in combination with other applications. Latency usually isn’t very good and in
MS Windows the sound you play must be the same sample rate as any other application that is using the sound
system (which means you usually get restricted to exactly 48000 instead of 44100).

2 : Exclusive mode low-latency
Takes control of the audio device you’re using and dominates it. That can cause some problems for other apps if
they’re trying to play sounds at the same time.

3 : Aggressive exclusive mode
As Mode 2 but with more aggressive settings to prioritise our use of the card over all others. This is the recom-
mended mode for most studies

4 : Critical mode
As Mode 3 except that, if we fail to be totally dominant, then raise an error rather than just accepting our slightly
less dominant status.

PTB Devices

To set the output audio device to use, you can set the prefs.hardware[‘audioDevice’] setting. To determine the set of
available devices, you can do for example:

from pprint import pprint
import psychtoolbox.audio
pprint(psychtoolbox.audio.get_devices())

Sound Classes

PTB Sound

class psychopy.sound.backend_ptb.SoundPTB(value='C', secs=0.5, octave=4, stereo=-1, volume=1.0,
loops=0, sampleRate=None, blockSize=128, preBuffer=-1,
hamming=True, startTime=0, stopTime=-1, name='',
autoLog=True, syncToWin=None)

Play a variety of sounds using the new PsychPortAudio library

Parameters
• value – note name (“C”,”Bfl”), filename or frequency (Hz)

• secs – duration (for synthesised tones)

10.5. psychopy.sound - for playback and recording of sound 510

PsychoPy - Psychology software for Python, Release 2023.2.3

• octave – which octave to use for note names (4 is middle)

• stereo – -1 (auto), True or False to force sounds to stereo or mono

• volume – float 0-1

• loops – number of loops to play (-1=forever, 0=single repeat)

• sampleRate – sample rate for synthesized tones

• blockSize – the size of the buffer on the sound card (small for low latency, large for stability)

• preBuffer – integer to control streaming/buffering - -1 means store all - 0 (no buffer) means
stream from disk - potentially we could buffer a few secs(!?)

• hamming – boolean (default True) to indicate if the sound should be apodized (i.e., the onset
and offset smoothly ramped up from down to zero). The function apodize uses a Hanning
window, but arguments named ‘hamming’ are preserved so that existing code is not broken
by the change from Hamming to Hanning internally. Not applied to sounds from files.

• startTime – for sound files this controls the start of snippet

• stopTime – for sound files this controls the end of snippet

• name – string for logging purposes

• autoLog – whether to automatically log every change

• syncToWin – if you want start/stop to sync with win flips add this

_EOS(reset=True, log=True)
Function called on End Of Stream

_channelCheck(array)
Checks whether stream has fewer channels than data. If True, ValueError

_checkPlaybackFinished()

Checks whether playback has finished by looking up the status.

_getDefaultSampleRate()

Check what streams are open and use one of these

property isFinished

True if the audio playback has completed.

property isPlaying

True if the audio playback is ongoing.

pause(log=True)
Stops the sound without reset, so that play will continue from here if needed

play(loops=None, when=None, log=True)
Start the sound playing.

Calling this after the sound has finished playing will restart the sound.

setSound(value, secs=0.5, octave=4, hamming=None, log=True)
Set the sound to be played.

Often this is not needed by the user - it is called implicitly during initialisation.

Parameters
value: can be a number, string or an array:

10.5. psychopy.sound - for playback and recording of sound 511

PsychoPy - Psychology software for Python, Release 2023.2.3

• If it’s a number between 37 and 32767 then a tone will be generated at that frequency in
Hz.

• It could be a string for a note (‘A’, ‘Bfl’, ‘B’, ‘C’, ‘Csh’. . . .). Then you may want to
specify which octave.

• Or a string could represent a filename in the current location, or mediaLocation, or a full
path combo

• Or by giving an Nx2 numpy array of floats (-1:1) you can specify the sound yourself as
a waveform

secs: duration (only relevant if the value is a note name or
a frequency value)

octave: is only relevant if the value is a note name.
Middle octave of a piano is 4. Most computers won’t output sounds in the bottom octave
(1) and the top octave (8) is generally painful

property status

status gives a simple value from psychopy.constants to indicate NOT_STARTED, STARTED, FINISHED,
PAUSED

Psychtoolbox sounds also have a statusDetailed property with further info

stop(reset=True, log=True)
Stop the sound and return to beginning

property stream

Read-only property returns the the stream on which the sound will be played

property track

The track on the master stream to which we belong

SoundDevice Sound

class psychopy.sound.backend_sounddevice.SoundDeviceSound(value='C', secs=0.5, octave=4,
stereo=-1, volume=1.0, loops=0,
sampleRate=None, blockSize=128,
preBuffer=-1, hamming=True,
startTime=0, stopTime=-1, name='',
autoLog=True)

Play a variety of sounds using the new SoundDevice library

Parameters
• value – note name (“C”,”Bfl”), filename or frequency (Hz)

• secs – duration (for synthesised tones)

• octave – which octave to use for note names (4 is middle)

• stereo – -1 (auto), True or False to force sounds to stereo or mono

• volume – float 0-1

• loops – number of loops to play (-1=forever, 0=single repeat)

• sampleRate – sample rate (for synthesized tones)

• blockSize – the size of the buffer on the sound card (small for low latency, large for stability)

10.5. psychopy.sound - for playback and recording of sound 512

PsychoPy - Psychology software for Python, Release 2023.2.3

• preBuffer – integer to control streaming/buffering - -1 means store all - 0 (no buffer) means
stream from disk - potentially we could buffer a few secs(!?)

• hamming – boolean (default True) to indicate if the sound should be apodized (i.e., the onset
and offset smoothly ramped up from down to zero). The function apodize uses a Hanning
window, but arguments named ‘hamming’ are preserved so that existing code is not broken
by the change from Hamming to Hanning internally. Not applied to sounds from files.

• startTime – for sound files this controls the start of snippet

• stopTime – for sound files this controls the end of snippet

• name – string for logging purposes

• autoLog – whether to automatically log every change

_EOS(reset=True)
Function called on End Of Stream

_channelCheck(array)
Checks whether stream has fewer channels than data. If True, ValueError

property isPlaying

True if the audio playback is ongoing.

pause()

Stop the sound but play will continue from here if needed

play(loops=None, when=None)
Start the sound playing

Parameters
when (not used) – Included for compatibility purposes

setSound(value, secs=0.5, octave=4, hamming=None, log=True)
Set the sound to be played.

Often this is not needed by the user - it is called implicitly during initialisation.

Parameters
value: can be a number, string or an array:

• If it’s a number between 37 and 32767 then a tone will be generated at that frequency in
Hz.

• It could be a string for a note (‘A’, ‘Bfl’, ‘B’, ‘C’, ‘Csh’. . . .). Then you may want to
specify which octave.

• Or a string could represent a filename in the current location, or mediaLocation, or a full
path combo

• Or by giving an Nx2 numpy array of floats (-1:1) you can specify the sound yourself as
a waveform

secs: duration (only relevant if the value is a note name or
a frequency value)

octave: is only relevant if the value is a note name.
Middle octave of a piano is 4. Most computers won’t output sounds in the bottom octave
(1) and the top octave (8) is generally painful

10.5. psychopy.sound - for playback and recording of sound 513

PsychoPy - Psychology software for Python, Release 2023.2.3

stop(reset=True)
Stop the sound and return to beginning

property stream

Read-only property returns the the stream on which the sound will be played

Pyo Sound

class psychopy.sound.backend_pyo.SoundPyo(value='C', secs=0.5, octave=4, stereo=True, volume=1.0,
loops=0, sampleRate=44100, bits=16, hamming=True,
start=0, stop=-1, name='', autoLog=True)

Create a sound object, from one of MANY ways.

value: can be a number, string or an array:
• If it’s a number between 37 and 32767 then a tone will be generated at that frequency in Hz.

• It could be a string for a note (‘A’, ‘Bfl’, ‘B’, ‘C’, ‘Csh’, . . .). Then you may want to specify which
octave as well

• Or a string could represent a filename in the current location, or mediaLocation, or a full path combo

• Or by giving an Nx2 numpy array of floats (-1:1) you can specify the sound yourself as a waveform

By default, a Hanning window (5ms duration) will be applied to a generated tone, so that onset and offset
are smoother (to avoid clicking). To disable the Hanning window, set hamming=False.

secs:
Duration of a tone. Not used for sounds from a file.

start
[float] Where to start playing a sound file; default = 0s (start of the file).

stop
[float] Where to stop playing a sound file; default = end of file.

octave: is only relevant if the value is a note name.
Middle octave of a piano is 4. Most computers won’t output sounds in the bottom octave (1) and the top
octave (8) is generally painful

stereo: True (= default, two channels left and right),
False (one channel)

volume: loudness to play the sound, from 0.0 (silent) to 1.0 (max).
Adjustments are not possible during playback, only before.

loops
[int] How many times to repeat the sound after it plays once. If loops == -1, the sound will repeat indefinitely
until stopped.

sampleRate (= 44100): if the psychopy.sound.init() function has been
called or if another sound has already been created then this argument will be ignored and the previous
setting will be used

bits: has no effect for the pyo backend

hamming: boolean (default True) to indicate if the sound should
be apodized (i.e., the onset and offset smoothly ramped up from down to zero). The function apodize uses
a Hanning window, but arguments named ‘hamming’ are preserved so that existing code is not broken by
the change from Hamming to Hanning internally. Not applied to sounds from files.

10.5. psychopy.sound - for playback and recording of sound 514

PsychoPy - Psychology software for Python, Release 2023.2.3

property isPlaying

True if the audio playback is ongoing.

play(loops=None, autoStop=True, log=True, when=None)
Starts playing the sound on an available channel.

loops
[int] How many times to repeat the sound after it plays once. If loops == -1, the sound will repeat
indefinitely until stopped.

when: not used but included for compatibility purposes

For playing a sound file, you cannot specify the start and stop times when playing the sound, only when
creating the sound initially.

Playing a sound runs in a separate thread i.e. your code won’t wait for the sound to finish before continuing.
To pause while playing, you need to use a psychopy.core.wait(mySound.getDuration()). If you call play()
while something is already playing the sounds will be played over each other.

stop(log=True)
Stops the sound immediately

pygame Sound

class psychopy.sound.backend_pygame.SoundPygame(value='C', secs=0.5, octave=4, sampleRate=44100,
bits=16, name='', autoLog=True, loops=0,
stereo=True, hamming=False)

Create a sound object, from one of many ways.

Parameters
• value (int, float, str or ndarray) –

– If it’s a number between 37 and 32767 then a tone will be generated at that frequency in
Hz.

– It could be a string for a note (‘A’, ‘Bfl’, ‘B’, ‘C’, ‘Csh’, . . .). Then you may want to specify
which octave as well.

– Or a string could represent a filename in the current location, or mediaLocation, or a full
path combo.

– Or by giving an Nx2 numpy array of floats (-1:1) you can specify the sound yourself as a
waveform.

• secs (float) – Duration in seconds (only relevant if the value is a note name or a frequency
value.)

• octave – Middle octave of a piano is 4. Most computers won’t output sounds in the bottom
octave (1) and the top octave (8) is generally painful. Is only relevant if the value is a note
name.

• sampleRate (int) – Audio sample rate, default is 44100 Hz.

• bits (int) – Bit depth. Pygame uses the same bit depth for all sounds once initialised.
Default is 16.

fadeOut(mSecs)
fades out the sound (when playing) over mSecs. Don’t know why you would do this in psychophysics but
it’s easy and fun to include as a possibility :)

10.5. psychopy.sound - for playback and recording of sound 515

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

getDuration()

Gets the duration of the current sound in secs

getVolume()

Returns the current volume of the sound (0.0:1.0)

property isPlaying

True if the audio playback is ongoing.

play(fromStart=True, log=True, loops=None, when=None)
Starts playing the sound on an available channel.

Parameters
• fromStart (bool) – Not yet implemented.

• log (bool) – Whether to log the playback event.

• loops (int) – How many times to repeat the sound after it plays once. If loops == -1, the
sound will repeat indefinitely until stopped.

• when (not used but included for compatibility purposes) –

Notes

If no sound channels are available, it will not play and return None. This runs off a separate thread i.e. your
code won’t wait for the sound to finish before continuing. You need to use a psychopy.core.wait() command
if you want things to pause. If you call play() whiles something is already playing the sounds will be played
over each other.

setVolume(newVol, log=True)
Sets the current volume of the sound (0.0:1.0)

stop(log=True)
Stops the sound immediately

10.5.2 Microphone - for recording sound

The Microphone class provides an interface to audio recording devices connected to the computer. As of now, Psych-
toolbox is required to use this feature and must be installed.

Overview

Microphone([device, sampleRateHz, channels, ...]) Class for recording audio from a microphone or input
stream.

10.5. psychopy.sound - for playback and recording of sound 516

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Details

class psychopy.sound.Microphone(device=None, sampleRateHz=None, channels=None,
streamBufferSecs=2.0, maxRecordingSize=24000, policyWhenFull='warn',
audioLatencyMode=None, audioRunMode=0)

Class for recording audio from a microphone or input stream.

Creating an instance of this class will open a stream using the specified device. Streams should remain open
for the duration of your session. When a stream is opened, a buffer is allocated to store samples coming off it.
Samples from the input stream will writen to the buffer once start() is called.

Parameters
• device (int or ~psychopy.sound.AudioDevice) – Audio capture device to use. You may

specify the device either by index (int) or descriptor (AudioDevice).

• sampleRateHz (int) – Sampling rate for audio recording in Hertz (Hz). By default, 48kHz
(sampleRateHz=48000) is used which is adequate for most consumer grade microphones
(headsets and built-in).

• channels (int) – Number of channels to record samples to 1=Mono and 2=Stereo.

• streamBufferSecs (float) – Stream buffer size to pre-allocate for the specified number
of seconds. The default is 2.0 seconds which is usually sufficient.

• maxRecordingSize (int) – Maximum recording size in kilobytes (Kb). Since audio
recordings tend to consume a large amount of system memory, one might want to limit the
size of the recording buffer to ensure that the application does not run out of memory. By
default, the recording buffer is set to 24000 KB (or 24 MB). At a sample rate of 48kHz, this
will result in 62.5 seconds of continuous audio being recorded before the buffer is full.

• audioLatencyMode (int or None) – Audio latency mode to use, values range be-
tween 0-4. If None, the setting from preferences will be used. Using 3 (exclu-
sive mode) is adequate for most applications and required if using WASAPI on Win-
dows for other settings (such audio quality) to take effect. Symbolic constants psy-
chopy.sound.audiodevice.AUDIO_PTB_LATENCY_CLASS_ can also be used.

• audioRunMode (int) – Run mode for the recording device. Default is standby-mode (0)
which allows the system to put the device to sleep. However, when the device is needed,
waking the device results in some latency. Using a run mode of 1 will keep the microphone
running (or ‘hot’) with reduces latency when th recording is started. Cannot be set when
after initialization at this time.

Examples

Capture 10 seconds of audio from the primary microphone:

import psychopy.core as core
import psychopy.sound.Microphone as Microphone

mic = Microphone(bufferSecs=10.0) # open the microphone
mic.start() # start recording
core.wait(10.0) # wait 10 seconds
mic.stop() # stop recording

audioClip = mic.getRecording()

(continues on next page)

10.5. psychopy.sound - for playback and recording of sound 517

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

print(audioClip.duration) # should be ~10 seconds
audioClip.save('test.wav') # save the recorded audio as a 'wav' file

The prescribed method for making long recordings is to poll the stream once per frame (or every n-th frame):

mic = Microphone(bufferSecs=2.0)
mic.start() # start recording

main trial drawing loop
mic.poll()
win.flip() # calling the window flip function

mic.stop() # stop recording
audioClip = mic.getRecording()

property audioLatencyMode

Audio latency mode in use (int). Cannot be set after initialization.

bank(tag=None, transcribe=False, **kwargs)
Store current buffer as a clip within the microphone object.

This method is used internally by the Microphone component in Builder, don’t use it for other applications.
Either stop() or pause() must be called before calling this method.

Parameters
• tag (str or None) – Label for the clip.

• transcribe (bool or str) – Set to the name of a transcription engine (e.g.
“GOOGLE”) to transcribe using that engine, or set as False to not transcribe.

• kwargs (dict) – Additional keyword arguments to pass to transcribe().

clear()

Wipe all clips. Deletes previously banked audio clips.

close()

Close the stream.

Should not be called until you are certain you’re done with it. Ideally, you should never close and reopen
the same stream within a single session.

enforceWASAPI = True

flush()

Get a copy of all banked clips, then clear the clips from storage.

static getDevices()

Get a list of audio capture device (i.e. microphones) descriptors. On Windows, only WASAPI devices are
used.

Returns
List of AudioDevice descriptors for suitable capture devices. If empty, no capture devices
have been found.

Return type
list

10.5. psychopy.sound - for playback and recording of sound 518

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

PsychoPy - Psychology software for Python, Release 2023.2.3

getRecording()

Get audio data from the last microphone recording.

Call this after stop to get the recording as an AudioClip object. Raises an error if a recording is in progress.

Returns
Recorded data between the last calls to start (or record) and stop.

Return type
AudioClip

property isRecBufferFull

True if there is an overflow condition with the recording buffer.

If this is True, then poll() is still collecting stream samples but is no longer writing them to anything, causing
stream samples to be lost.

property isRecording

True if stream recording has been started (bool). Alias of isStarted.

property isStarted

True if stream recording has been started (bool).

property latencyBias

Latency bias to add when starting the microphone (float).

property maxRecordingSize

Maximum recording size in kilobytes (int).

Since audio recordings tend to consume a large amount of system memory, one might want to limit the
size of the recording buffer to ensure that the application does not run out. By default, the recording buffer
is set to 64000 KB (or 64 MB). At a sample rate of 48kHz, this will result in about. Using stereo audio
(nChannels == 2) requires twice the buffer over mono (nChannels == 2) for the same length clip.

Setting this value will allocate another recording buffer of appropriate size. Avoid doing this in any time
sensitive parts of your application.

pause(blockUntilStopped=True, stopTime=None)
Pause a recording (alias of .stop).

Call this method to end an audio recording if in progress. This will simply halt recording and not close the
stream. Any remaining samples will be polled automatically and added to the recording buffer.

Parameters
• blockUntilStopped (bool) – Halt script execution until the stream has fully stopped.

• stopTime (float or None) – Scheduled stop time for the stream in system time. If None,
the stream will stop as soon as possible.

Returns
Tuple containing startTime, endPositionSecs, xruns and estStopTime. Returns None if stop()
or pause() was called previously before start().

Return type
tuple or None

poll()

Poll audio samples.

Calling this method adds audio samples collected from the stream buffer to the recording buffer that have
been captured since the last poll call. Time between calls of this function should be less than bufferSecs.

10.5. psychopy.sound - for playback and recording of sound 519

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

You do not need to call this if you call stop before the time specified by bufferSecs elapses since the start
call.

Can only be called between called of start (or record) and stop (or pause).

Returns
Number of overruns in sampling.

Return type
int

property recBufferSecs

Capacity of the recording buffer in seconds (float).

record(when=None, waitForStart=0, stopTime=None)
Start an audio recording (alias of .start()).

Calling this method will begin capturing samples from the microphone and writing them to the buffer.

Parameters
• when (float, int or None) – When to start the stream. If the time specified is a floating

point (absolute) system time, the device will attempt to begin recording at that time. If None
or zero, the system will try to start recording as soon as possible.

• waitForStart (bool) – Wait for sound onset if True.

• stopTime (float, int or None) – Number of seconds to record. If None or -1, record-
ing will continue forever until stop is called.

Returns
Absolute time the stream was started.

Return type
float

property recording

Reference to the current recording buffer (RecordingBuffer).

start(when=None, waitForStart=0, stopTime=None)
Start an audio recording.

Calling this method will begin capturing samples from the microphone and writing them to the buffer.

Parameters
• when (float, int or None) – When to start the stream. If the time specified is a floating

point (absolute) system time, the device will attempt to begin recording at that time. If None
or zero, the system will try to start recording as soon as possible.

• waitForStart (bool) – Wait for sound onset if True.

• stopTime (float, int or None) – Number of seconds to record. If None or -1, record-
ing will continue forever until stop is called.

Returns
Absolute time the stream was started.

Return type
float

10.5. psychopy.sound - for playback and recording of sound 520

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

property status

Status flag for the microphone. Value can be one of psychopy.constants.STARTED or psychopy.
constants.NOT_STARTED.

This is attribute is used by Builder and does not correspond to the actual state of the microphone. Use
streamStatus and isStarted instead.

For detailed stream status information, use the streamStatus property.

stop(blockUntilStopped=True, stopTime=None)
Stop recording audio.

Call this method to end an audio recording if in progress. This will simply halt recording and not close the
stream. Any remaining samples will be polled automatically and added to the recording buffer.

Parameters
• blockUntilStopped (bool) – Halt script execution until the stream has fully stopped.

• stopTime (float or None) – Scheduled stop time for the stream in system time. If None,
the stream will stop as soon as possible.

Returns
Tuple containing startTime, endPositionSecs, xruns and estStopTime. Returns None if stop or
pause was called previously before start.

Return type
tuple or None

property streamBufferSecs

Size of the internal audio storage buffer in seconds (float).

To ensure all data is captured, there must be less time elapsed between subsequent getAudioClip calls than
bufferSecs.

property streamStatus

Status of the audio stream (AudioDeviceStatus or None).

See AudioDeviceStatus for a complete overview of available status fields. This property has a value of
None if the stream is presently closed.

Examples

Get the capture start time of the stream:

assumes mic.start() was called
captureStartTime = mic.status.captureStartTime

Check if microphone recording is active:

isActive = mic.status.active

Get the number of seconds recorded up to this point:

recordedSecs = mic.status.recordedSecs

10.5. psychopy.sound - for playback and recording of sound 521

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

10.5.3 AudioClip - for working with audio data

Overview

AudioClip(samples[, sampleRateHz, userData]) Class for storing audio clip data.

Details

class psychopy.sound.AudioClip(samples, sampleRateHz=48000, userData=None)
Class for storing audio clip data.

This class is used to store and handle raw audio data, such as those obtained from microphone recordings or
loaded from files. PsychoPy stores audio samples in contiguous arrays of 32-bit floating-point values ranging
between -1 and 1.

The AudioClip class provides basic audio editing capabilities too. You can use operators on AudioClip instances
to combine audio clips together. For instance, the + operator will return a new AudioClip instance whose samples
are the concatenation of the two operands:

sndCombined = sndClip1 + sndClip2

Note that audio clips must have the same sample rates in order to be joined using the addition operator. For
online compatibility, use the append() method instead.

There are also numerous static methods available to generate various tones (e.g., sine-, saw-, and square-waves).
Audio samples can also be loaded and saved to files in various formats (e.g., WAV, FLAC, OGG, etc.)

You can play AudioClip by directly passing instances of this object to the Sound class:

import psychopy.core as core
import psyhcopy.sound as sound

myTone = AudioClip.sine(duration=5.0) # generate a tone

mySound = sound.Sound(myTone)
mySound.play()
core.wait(5.0) # wait for sound to finish playing
core.quit()

Parameters
• samples (ArrayLike) – Nx1 or Nx2 array of audio samples for mono and stereo, respec-

tively. Values in the array representing the amplitude of the sound waveform should vary
between -1 and 1. If not, they will be clipped.

• sampleRateHz (int) – Sampling rate used to obtain samples in Hertz (Hz). The sample rate
or frequency is related to the quality of the audio, where higher sample rates usually result
in better sounding audio (albeit a larger memory footprint and file size). The value specified
should match the frequency the clip was recorded at. If not, the audio may sound distorted
when played back. Usually, a sample rate of 48kHz is acceptable for most applications (DVD
audio quality). For convenience, module level constants with form SAMPLE_RATE_* are
provided to specify many common samples rates.

• userData (dict or None) – Optional user data to associated with the audio clip.

10.5. psychopy.sound - for playback and recording of sound 522

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

static _checkCodecSupported(codec, raiseError=False)
Check if the audio format string corresponds to a supported codec. Used internally to check if the user
specified a valid codec identifier.

Parameters
• codec (str) – Codec identifier (e.g., ‘wav’, ‘mp3’, etc.)

• raiseError (bool) – Raise an error (``) instead of returning a value. Default is False.

Returns
True if the format is supported.

Return type
bool

append(clip)
Append samples from another sound clip to the end of this one.

The AudioClip object must have the same sample rate and channels as this object.

Parameters
clip (AudioClip) – Audio clip to append.

Returns
This object with samples from clip appended.

Return type
AudioClip

Examples

Join two sound clips together:

snd1.append(snd2)

asMono(copy=True)
Convert the audio clip to mono (single channel audio).

Parameters
copy (bool) – If True an AudioClip containing a copy of the samples will be returned. If
False, channels will be mixed inplace resulting a the same object being returned. User data
is not copied.

Returns
Mono version of this object.

Return type
AudioClip

property channels

Number of audio channels in the clip (int).

If channels > 1, the audio clip is in stereo.

convertToWAV()

Get a copy of stored audio samples in WAV PCM format.

Returns
Array with the same shapes as .samples but in 16-bit WAV PCM format.

10.5. psychopy.sound - for playback and recording of sound 523

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Return type
ndarray

copy()

Create an independent copy of this AudioClip.

Return type
AudioClip

property duration

The duration of the audio in seconds (float).

This value is computed using the specified sampling frequency and number of samples.

gain(factor, channel=None)
Apply gain the audio samples.

This will modify the internal store of samples inplace. Clipping is automatically applied to samples after
applying gain.

Parameters
• factor (float or int) – Gain factor to multiply audio samples.

• channel (int or None) – Channel to apply gain to. If None, gain will be applied to all
channels.

property isMono

True if there is only one channel of audio data.

property isStereo

True if there are two channels of audio samples.

Usually one for each ear. The first channel is usually the left ear, and the second the right.

static load(filename, codec=None)
Load audio samples from a file. Note that this is a static method!

Parameters
• filename (str) – File name to load.

• codec (str or None) – Codec to use. If None, the format will be implied from the file
name.

Returns
Audio clip containing samples loaded from the file.

Return type
AudioClip

resample(targetSampleRateHz, resampleType='soxr_hq', equalEnergy=False)
Resample audio to another sample rate.

Parameters
• targetSampleRateHz (int) – New sample rate.

• resampleType (str or None) – Method to use for resampling.

• equalEnergy (bool) – Make the output have similar energy to the input.

10.5. psychopy.sound - for playback and recording of sound 524

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Notes

• Resampling audio clip may result in distortion which is exaserbated by successive resamplings.

rms(channel=None)
Compute the root mean square (RMS) of the samples to determine the average signal level.

Parameters
channel (int or None) – Channel to compute RMS (zero-indexed). If None, the RMS of
all channels will be computed.

Returns
An array of RMS values for each channel if channel=None (even if there is one channel an
array is returned). If channel was specified, a float will be returned indicating the RMS of
that single channel.

Return type
ndarray or float

property sampleRateHz

Sample rate of the audio clip in Hz (int). Should be the same value as the rate samples was captured at.

property samples

Nx1 or Nx2 array of audio samples (~numpy.ndarray).

Values must range from -1 to 1. Values outside that range will be clipped, possibly resulting in distortion.

save(filename, codec=None)
Save an audio clip to file.

Parameters
• filename (str) – File name to write audio clip to.

• codec (str or None) – Format to save audio clip data as. If None, the format will be
implied from the extension at the end of filename.

static sawtooth(duration=1.0, freqHz=440, peak=1.0, gain=0.8, sampleRateHz=48000, channels=2)
Generate audio samples for a tone with a sawtooth waveform.

Parameters
• duration (float or int) – Length of the sound in seconds.

• freqHz (float or int) – Frequency of the tone in Hertz (Hz). Note that this differs
from the sampleRateHz.

• peak (float) – Location of the peak between 0.0 and 1.0. If the peak is at 0.5, the resulting
wave will be triangular. A value of 1.0 will cause the peak to be located at the very end of
a cycle.

• gain (float) – Gain factor ranging between 0.0 and 1.0. Default is 0.8.

• sampleRateHz (int) – Samples rate of the audio for playback.

• channels (int) – Number of channels for the output.

Return type
AudioClip

10.5. psychopy.sound - for playback and recording of sound 525

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

static silence(duration=1.0, sampleRateHz=48000, channels=2)
Generate audio samples for a silent period.

This is used to create silent periods of a very specific duration between other audio clips.

Parameters
• duration (float or int) – Length of the sound in seconds.

• sampleRateHz (int) – Samples rate of the audio for playback.

• channels (int) – Number of channels for the output.

Return type
AudioClip

Examples

Generate 10 seconds of silence to enjoy:

import psychopy.sound as sound
silence = sound.AudioClip.silence(10.)

Use the silence as a break between two audio clips when concatenating them:

fullClip = clip1 + sound.AudioClip.silence(10.) + clip2

static sine(duration=1.0, freqHz=440, gain=0.8, sampleRateHz=48000, channels=2)
Generate audio samples for a tone with a sine waveform.

Parameters
• duration (float or int) – Length of the sound in seconds.

• freqHz (float or int) – Frequency of the tone in Hertz (Hz). Note that this differs
from the sampleRateHz.

• gain (float) – Gain factor ranging between 0.0 and 1.0. Default is 0.8.

• sampleRateHz (int) – Samples rate of the audio for playback.

• channels (int) – Number of channels for the output.

Return type
AudioClip

Examples

Generate an audio clip of a tone 10 seconds long with a frequency of 400Hz:

import psychopy.sound as sound
tone400Hz = sound.AudioClip.sine(10., 400.)

Create a marker/cue tone and append it to pre-recorded instructions:

import psychopy.sound as sound
voiceInstr = sound.AudioClip.load('/path/to/instructions.wav')
markerTone = sound.AudioClip.sine(

(continues on next page)

10.5. psychopy.sound - for playback and recording of sound 526

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

1.0, 440., # duration and freq
sampleRateHz=voiceInstr.sampleRateHz) # must be the same!

fullInstr = voiceInstr + markerTone # create instructions with cue
fullInstr.save('/path/to/instructions_with_tone.wav') # save it

static square(duration=1.0, freqHz=440, dutyCycle=0.5, gain=0.8, sampleRateHz=48000, channels=2)
Generate audio samples for a tone with a square waveform.

Parameters
• duration (float or int) – Length of the sound in seconds.

• freqHz (float or int) – Frequency of the tone in Hertz (Hz). Note that this differs
from the sampleRateHz.

• dutyCycle (float) – Duty cycle between 0.0 and 1.0.

• gain (float) – Gain factor ranging between 0.0 and 1.0. Default is 0.8.

• sampleRateHz (int) – Samples rate of the audio for playback.

• channels (int) – Number of channels for the output.

Return type
AudioClip

transcribe(engine='whisper', language='en-US', expectedWords=None, config=None)
Convert speech in audio to text.

This function accepts an audio clip and returns a transcription of the speech in the clip. The efficacy of the
transcription depends on the engine selected, audio quality, and language support.

Speech-to-text conversion blocks the main application thread when used on Python. Don’t transcribe audio
during time-sensitive parts of your experiment! Instead, initialize the transcriber before the experiment
begins by calling this function with audioClip=None.

Parameters
• engine (str) – Speech-to-text engine to use.

• language (str) – BCP-47 language code (eg., ‘en-US’). Note that supported languages
vary between transcription engines.

• expectedWords (list or tuple) – List of strings representing expected words or
phrases. This will constrain the possible output words to the ones specified which con-
strains the model for better accuracy. Note not all engines support this feature (only Sphinx
and Google Cloud do at this time). A warning will be logged if the engine selected does
not support this feature. CMU PocketSphinx has an additional feature where the sensitivity
can be specified for each expected word. You can indicate the sensitivity level to use by
putting a : after each word in the list (see the Example below). Sensitivity levels range be-
tween 0 and 100. A higher number results in the engine being more conservative, resulting
in a higher likelihood of false rejections. The default sensitivity is 80% for words/phrases
without one specified.

• config (dict or None) – Additional configuration options for the specified engine.
These are specified using a dictionary (ex. config={‘pfilter’: 1} will enable the profan-
ity filter when using the ‘google’ engine).

Returns
Transcription result.

10.5. psychopy.sound - for playback and recording of sound 527

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

Return type
TranscriptionResult

Notes

• The recommended transcriber is OpenAI Whisper which can be used locally without an internet con-
nection once a model is downloaded to cache. It can be selected by passing engine=’whisper’ to this
function.

• Online transcription services (eg., Google) provide robust and accurate speech recognition capabilities
with broader language support than offline solutions. However, these services may require a paid
subscription to use, reliable broadband internet connections, and may not respect the privacy of your
participants as their responses are being sent to a third-party. Also consider that a track of audio data
being sent over the network can be large, users on metered connections may incur additional costs to
run your experiment. Offline transcription services (eg., CMU PocketSphinx and OpenAI Whisper)
do not require an internet connection after the model has been downloaded and installed.

• If the audio clip has multiple channels, they will be combined prior to being passed to the transcription
service if needed.

property userData

User data associated with this clip (dict). Can be used for storing additional data related to the clip. Note
that userData is not saved with audio files!

Example

Adding fields to userData. For instance, we want to associated the start time the clip was recorded at with
it:

myClip.userData['date_recorded'] = t_start

We can access that field later by:

thisRecordingStartTime = myClip.userData['date_recorded']

static whiteNoise(duration=1.0, sampleRateHz=48000, channels=2)
Generate gaussian white noise.

New feature, use with caution.
Parameters

• duration (float or int) – Length of the sound in seconds.

• sampleRateHz (int) – Samples rate of the audio for playback.

• channels (int) – Number of channels for the output.

Return type
AudioClip

10.5. psychopy.sound - for playback and recording of sound 528

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

10.5.4 AudioDeviceInfo and AudioDeviceStatus - descriptors for audio devices

These classes are used to store information about audio devices and their status. Only a subset of PsychoPy’s sound
API currently use these classes, such as the psychopy.sound.Microphone class.

Overview

AudioDeviceInfo([deviceIndex, deviceName, ...]) Descriptor for an audio device (playback or recording)
on this system.

AudioDeviceStatus([active, state, ...]) Descriptor for audio device status information.

Details

class psychopy.sound.AudioDeviceInfo(deviceIndex=-1, deviceName='Null Device', hostAPIName='Null
Audio Driver', outputChannels=0, outputLatency=(0.0, 0.0),
inputChannels=0, inputLatency=(0.0, 0.0),
defaultSampleRate=48000, audioLib='')

Descriptor for an audio device (playback or recording) on this system.

Properties associated with this class provide information about a specific audio playback or recording device.
An object can be then passed to Microphone to open a stream using the device described by the object.

This class is usually instanced only by calling getDevices(). Users should avoid creating instances of this class
themselves unless they have good reason to.

Parameters
• deviceIndex (int) – Enumerated index of the audio device. This number is specific to the

engine used for audio.

• deviceName (str) – Human-readable name of the device.

• hostAPIName (str) – Human-readable name of the host API used for audio.

• outputChannels (int) – Number of output channels.

• outputLatency (tuple) – Low (float) and high (float) output latency in milliseconds.

• inputChannels (int) – Number of input channels.

• inputLatency (tuple) – Low (float) and high (float) input latency in milliseconds.

• defaultSampleRate (int) – Default sample rate for the device in Hertz (Hz).

• audioLib (str) – Audio library that queried device information used to populate the prop-
erties of this descriptor (e.g., 'ptb' for Psychtoolbox).

10.5. psychopy.sound - for playback and recording of sound 529

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Get a list of available devices:

import psychopy.sound as sound
recordingDevicesList = sound.Microphone.getDevices()

Get the low and high input latency of the first recording device:

recordingDevice = recordingDevicesList[0] # assume not empty
inputLatencyLow, inputLatencyHigh = recordingDevice.inputLatency

Get the device name as it may appear in the system control panel or sound settings:

deviceName = recordingDevice.deviceName

Specifying the device to use for capturing audio from a microphone:

get the first suitable capture device found by the sound engine
recordingDevicesList = sound.Microphone.getDevices()
recordingDevice = recordingDevicesList[0]

pass the descriptor to microphone to configure it
mic = sound.Microphone(device=recordingDevice)
mic.start() # start recording sound

property audioLib

Audio library used to query device information (str).

static createFromPTBDesc(desc)
Create an AudioDevice instance with values populated using a descriptor (dict) returned from the PTB
audio.get_devices API call.

Parameters
desc (dict) – Audio device descriptor returned from Psychtoolbox’s get_devices function.

Returns
Audio device descriptor with properties set using desc.

Return type
AudioDeviceInfo

property defaultSampleRate

Default sample rate in Hertz (Hz) for this device (int).

property deviceIndex

Enumerated index (int) of the audio device.

property deviceName

Human-readable name (str) for the audio device reported by the driver.

property hostAPIName

Human-readable name (str) for the host API.

property inputChannels

Number of input channels (int). If >0, this is likely a audio capture device.

10.5. psychopy.sound - for playback and recording of sound 530

https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

property inputLatency

Low and high input latency in milliseconds (low, high).

property isCapture

True if this device is suitable for capture (bool).

property isDuplex

True if this device is suitable for capture and playback (bool).

property isPlayback

True if this device is suitable for playback (bool).

property outputChannels

Number of output channels (int). If >0, this is likely a audio playback device.

property outputLatency

Low and high output latency in milliseconds (low, high).

class psychopy.sound.AudioDeviceStatus(active=0, state=0, requestedStartTime=0.0, startTime=0.0,
captureStartTime=0.0, requestedStopTime=0.0,
estimatedStopTime=0.0, currentStreamTime=0.0,
elapsedOutSamples=0, positionSecs=0.0, recordedSecs=0.0,
readSecs=0.0, schedulePosition=0.0, xRuns=0, totalCalls=0,
timeFailed=0, bufferSize=0, cpuLoad=0.0, predictedLatency=0.0,
latencyBias=0.0, sampleRate=44100, outDeviceIndex=0,
inDeviceIndex=0, audioLib='Null Audio Library')

Descriptor for audio device status information.

Properties of this class are standardized on the status information returned by Psychtoolbox. Other audio back-
ends should try to populate these fields as best they can with their equivalent status values.

Users should never instance this class themselves unless they have good reason to.

Parameters
• active (bool) – True if playback or recording has started, else False.

• state (int) – State of the device, either 1 for playback, 2 for recording or 3 for duplex
(recording and playback).

• requestedStartTime (float) – Requested start time of the audio stream after the start of
playback or recording.

• startTime (float) – The actual (real) start time of audio playback or recording.

• captureStartTime (float) – Estimate of the start time of audio capture. Only valid if
audio capture is active. Usually, this time corresponds to the time when the first sound was
captured.

• requestedStopTime (float) – Stop time requested when starting the stream.

• estimatedStopTime (float) – Estimated stop time given requestedStopTime.

• currentStreamTime (float) – Estimate of the time it will take for the most recently sub-
mitted sample to reach the speaker. Value is in absolute system time and reported for playback
only.

• elapsedOutSamples (int) – Total number of samples submitted since the start of playback.

• positionSecs (float) – Current stream playback position in seconds this loop. Does not
account for hardware of driver latency.

10.5. psychopy.sound - for playback and recording of sound 531

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

• recordedSecs (float) – Total amount of recorded sound data (in seconds) since start of
capture.

• readSecs (float) – Total amount of sound data in seconds that has been fetched from the
internal buffer.

• schedulePosition (float) – Current position in a running schedule in seconds.

• xRuns (int) – Number of dropouts due to buffer over- and under-runs. Such conditions can
result is glitches during playback/recording. Even if the number remains zero, that does not
mean that glitches did not occur.

• totalCalls (int) – Debug - Used for debugging the audio engine.

• timeFailed (float) – Debug - Used for debugging the audio engine.

• bufferSize (int) – Debug - Size of the buffer allocated to contain stream samples. Used
for debugging the audio engine.

• cpuLoad (float) – Amount of load on the CPU imparted by the sound engine. Ranges
between 0.0 and 1.0 where 1.0 indicates maximum load on the core running the sound engine
process.

• predictedLatency (float) – Latency for the given hardware and driver. This indicates
how far ahead you need to start the device to ensure is starts at a scheduled time.

• latencyBias (float) – Additional latency bias added by the user.

• sampleRate (int) – Sample rate in Hertz (Hz) the playback recording is using.

• outDeviceIndex (int) – Enumerated index of the output device.

• inDeviceIndex (int) – Enumerated index of the input device.

• audioLib (str) – Identifier for the audio library which created this status.

property active

True if playback or recording has started (bool).

property audioLib

Identifier for the audio library which created this status (str).

property bufferSize

Debug - Size of the buffer allocated to contain stream samples. Used for debugging the audio engine.

property captureStartTime

Estimate of the start time of audio capture (float). Only valid if audio capture is active. Usually, this time
corresponds to the time when the first sound was captured.

property cpuLoad

Amount of load on the CPU imparted by the sound engine (float). Ranges between 0.0 and 1.0 where 1.0
indicates maximum load on the core running the sound engine process.

static createFromPTBDesc(desc)
Create an AudioDeviceStatus instance using a status descriptor returned by Psychtoolbox.

Parameters
desc (dict) – Audio device status descriptor.

Returns
Audio device descriptor with properties set using desc.

Return type
AudioDeviceStatus

10.5. psychopy.sound - for playback and recording of sound 532

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

property currentStreamTime

Estimate of the time it will take for the most recently submitted sample to reach the speaker (float). Value
is in absolute system time and reported for playback mode only.

property elapsedOutSamples

Total number of samples submitted since the start of playback (int).

property estimatedStopTime

Estimated stop time given requestedStopTime (float).

property inDeviceIndex

Enumerated index of the input device (int).

property isCapture

True if this device is operating in capture mode (bool).

property isDuplex

True if this device is operating capture and recording mode (bool).

property isPlayback

True if this device is operating in playback mode (bool).

property latencyBias

Additional latency bias added by the user (float).

property outDeviceIndex

Enumerated index of the output device (int).

property positionSecs

Current stream playback position in seconds this loop (float). Does not account for hardware of driver
latency.

property predictedLatency

Latency for the given hardware and driver (float). This indicates how far ahead you need to start the device
to ensure is starts at a scheduled time.

property readSecs

Total amount of sound data in seconds that has been fetched from the internal buffer (float).

property recordedSecs

Total amount of recorded sound data (in seconds) since start of capture (float).

property requestedStartTime

Requested start time of the audio stream after the start of playback or recording (float).

property requestedStopTime

Stop time requested when starting the stream (float).

property sampleRate

Sample rate in Hertz (Hz) the playback recording is using (int).

property schedulePosition

Current position in a running schedule in seconds (float).

property startTime

The actual (real) start time of audio playback or recording (float).

10.5. psychopy.sound - for playback and recording of sound 533

PsychoPy - Psychology software for Python, Release 2023.2.3

property state

State of the device (int). Either 1 for playback, 2 for recording or 3 for duplex (recording and playback).

property timeFailed

Debug - Used for debugging the audio engine (float).

property totalCalls

Debug - Used for debugging the audio engine (int).

property xRuns

Number of dropouts due to buffer over- and under-runs (int). Such conditions can result is glitches during
playback/recording. Even if the number remains zero, that does not mean that glitches did not occur.

10.6 psychopy.hardware - hardware interfaces

can access a wide range of external hardware. For some devices the interface has already been created in the following
sub-packages of . For others you may need to write the code to access the serial port etc. manually.

Contents:

10.6.1 Keyboard

To handle input from keyboard (supersedes event.getKeys)

The Keyboard class was new in PsychoPy 3.1 and replaces the older event.getKeys() calls.

Psychtoolbox versus event.getKeys

On 64 bits Python3 installations it provides access to the Psychtoolbox kbQueue series of functions using the same
compiled C code (available in python-psychtoolbox lib).

On 32 bit installations and Python2 it reverts to the older psychopy.event.getKeys() calls.

The new calls have several advantages:

• the polling is performed and timestamped asynchronously with the main thread so that times relate to when the
key was pressed, not when the call was made

• the polling is direct to the USB HID library in C, which is faster than waiting for the operating system to poll
and interpret those same packets

• we also detect the KeyUp events and therefore provide the option of returning keypress duration

• on Linux and Mac you can also distinguish between different keyboard devices (see getKeyboards())

This library makes use, where possible of the same low-level asynchronous hardware polling as in Psychtoolbox

Example usage

from psychopy.hardware import keyboard
from psychopy import core

kb = keyboard.Keyboard()

(continues on next page)

10.6. psychopy.hardware - hardware interfaces 534

http://psychtoolbox.org/docs/KbQueueCreate
http://psychtoolbox.org/

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

during your trial
kb.clock.reset() # when you want to start the timer from
keys = kb.getKeys(['right', 'left', 'quit'], waitRelease=True)
if 'quit' in keys:

core.quit()
for key in keys:

print(key.name, key.rt, key.duration)

Classes and functions

class psychopy.hardware.keyboard.Keyboard(device=-1, bufferSize=10000, waitForStart=False,
clock=None, backend=None)

The Keyboard class provides access to the Psychtoolbox KbQueue-based calls on Python3 64-bit with fall-back
to event.getKeys on legacy systems.

Create the device (default keyboard or select one)

Parameters
• device (int or dict) – On Linux/Mac this can be a device index or a dict containing the

device info (as from getKeyboards()) or -1 for all devices acting as a unified Keyboard

• bufferSize (int) – How many keys to store in the buffer (before dropping older ones)

• waitForStart (bool (default False)) – Normally we’ll start polling the Keyboard at
all times but you could choose not to do that and start/stop manually instead by setting this
to True

clearEvents(eventType=None)
Clear the events from the Keyboard such as previous key presses

classmethod getBackend()

Return backend being used.

getKeys(keyList=None, ignoreKeys=None, waitRelease=True, clear=True)

Parameters
• keyList (list (or other iterable)) – The keys that you want to listen out for. e.g.

[‘left’, ‘right’, ‘q’]

• waitRelease (bool (default True)) – If True then we won’t report any “incomplete”
keypress but all presses will then be given a duration. If False then all keys will be presses
will be returned, but only those with a corresponding release will contain a duration value
(others will have duration=None

• clear (bool (default True)) – If False then keep the keypresses for further calls (leave
the buffer untouched)

Return type
A list of Keypress objects

classmethod setBackend(backend)
Set backend event handler. Returns currently active handler.

Parameters
backend – ‘iohub’, ‘ptb’, ‘event’, or ‘’

10.6. psychopy.hardware - hardware interfaces 535

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Returns
str

start()

Start recording from this keyboard

stop()

Start recording from this keyboard

waitKeys(maxWait=inf, keyList=None, waitRelease=True, clear=True)
Same as ~psychopy.hardware.keyboard.Keyboard.getKeys, but halts everything (including drawing) while
awaiting keyboard input.

Parameters
maxWait

[any numeric value.] Maximum number of seconds period and which keys to wait for.
Default is float(‘inf’) which simply waits forever.

keyList
[None or []] Allows the user to specify a set of keys to check for. Only keypresses from
this set of keys will be removed from the keyboard buffer. If the keyList is None, all keys
will be checked and the key buffer will be cleared completely. NB, pygame doesn’t return
timestamps (they are always 0)

waitRelease: True or False
If True then we won’t report any “incomplete” keypress but all presses will then be given
a duration. If False then all keys will be presses will be returned, but only those with a
corresponding release will contain a duration value (others will have duration=None

clear
[True or False] Whether to clear the keyboard event buffer (and discard preceding key-
presses) before starting to monitor for new keypresses.

Returns None if times out.

class psychopy.hardware.keyboard.KeyPress(code, tDown, name=None)
Class to store key presses, as returned by Keyboard.getKeys()

Unlike keypresses from the old event.getKeys() which returned a list of strings (the names of the keys) we now
return several attributes for each key:

.name: the name as a string (matching the previous pyglet name) .rt: the reaction time (relative to
last clock reset) .tDown: the time the key went down in absolute time .duration: the duration of the
keypress (or None if not released)

Although the keypresses are a class they will test ==, != and in based on their name. So you can still do:

kb = KeyBoard()
wait for keypresses here
keys = kb.getKeys()
for thisKey in keys:

if thisKey=='q': # it is equivalent to the string 'q'
core.quit()

else:
print(thisKey.name, thisKey.tDown, thisKey.rt)

psychopy.hardware.keyboard.getKeyboards()

Get info about the available keyboards.

10.6. psychopy.hardware - hardware interfaces 536

PsychoPy - Psychology software for Python, Release 2023.2.3

Only really useful on Mac/Linux because on these the info can be used to select a particular physical device when
calling Keyboard . On Win this function does return information correctly but the :class:Keyboard can’t make
use of it.

Returns
USB Info including with name, manufacturer, id, etc for each device

Return type
A list of dicts

10.6.2 BrainProducts

Interfaces for Brain Products GMBH hardware.

Here we have implemented support for the Remote Control Server application, which allows you to control recordings,
send annotations etc. all from Python.

class psychopy.hardware.brainproducts.RemoteControlServer(host='127.0.0.1', port=6700,
timeout=1.0, testMode=False)

Provides a remote-control interface to BrainProducts Recorder.

Example usage:

import time
from psychopy import logging
from psychopy.hardware import brainproducts

logging.console.setLevel(logging.DEBUG)
rcs = brainproducts.RemoteControlServer()
rcs.open('testExp',

workspace='C:/Vision/Workfiles/Standard Workspace.rwksp',
participant='S0021')

rcs.openRecorder()
time.sleep(2)
rcs.mode = 'monitor' # or 'impedance', or 'default'
rcs.startRecording()
time.sleep(2)
rcs.sendAnnotation('124', 'STIM')
time.sleep(1)
rcs.pauseRecording()
time.sleep(1)
rcs.resumeRecording()
time.sleep(1)
rcs.stopRecording()
time.sleep(1)
rcs.mode = 'default' # stops monitoring mode

To initialize the remote control recorder.

Parameters
• host (string, optional) – The IP address or hostname of the computer running RCS.

Defaults to 127.0.0.1.

• port (int, optional) – The port on which RCS is listening for a connection on the EEG
computer. This should usually not need to be changed. Defaults to 6700.

10.6. psychopy.hardware - hardware interfaces 537

https://www.brainproducts.com
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

• timeout (float, optional) – The timeout (in seconds) to wait for sending/receivign
commands

• testMode (bool, optional) – If True, the network connection to the RCS computer will
not actually be initialized. Defaults to False.

property amplifier

Get/set the amplifier to use. Could be one of “ [‘actiCHamp’, ‘BrainAmp Family’,” “ ‘LiveAmp’, ‘Quick-
Amp USB’, ‘Simulated Amplifier’,” “ ‘V-Amp / FirstAmp’]

For Liveamp you should also provide the serial number, comma separated from the amplifier type.

Examples

rcs = RemoteControlServer() rcs.amplifier = ‘LiveAmp’, ‘LA-05490-0200’ # OR rcs.amplifier = ‘ac-
tiCHamp’

close()

Closes the recording and deletes all associated workspace variables (e.g. when a participant has been
completed)

dcReset()

Use this to reset any DC offset that might have accumulated if you aren’t using a high-pass filter

property expName

Get/set the name of the experiment or study (string)

The name will make up the first part of the EEG filename.

Example Usage:

rcs.expName = 'MyTestStudy'

property mode

Get/set the current mode.

Mode is a string that can be one of:

• ‘default’ or ‘def’ or None will exit special modes

• ‘impedance’ or ‘imp’ for impedance checking

• ‘monitoring’ or ‘mon’

• ‘test’ or ‘tes’ to go into test view

open(expName, participant, workspace)
Opens a study/workspace on the RCS server

Parameters
• expName (str) – Name of the experiment. Will make up the first part of the EEG filename.

• participant (str) – Participant identifier. Will make up the second part of the EEG
filename.

• workspace (str) – The full path to the workspace file (.rwksp), with forward slashes as
path separators. e.g. “c:/myFolder/mySetup.rwksp”

10.6. psychopy.hardware - hardware interfaces 538

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

openRecorder()

Opens the Recorder application from the Remote Control.

Neat, huh?!

property overwriteProtection

An attribute to get/set whether the overwrite protection is turned on.

When checking the attribute the state of rcs.overwriteProtection a call will be made to the RCS and the
report is based on the response. There is also a variable rcs._overwriteProtection that is simply the stored
state from the most recent call and does not make any further communication with the RCS itself.

Usage example:

rcs.overwriteProtection = True # set it to be on
print(rcs.overwriteProtection) # print current state

property participant

Get/set the participant identifier (a string or numeric).

This identifier will make up the center part of the EEG filename.

pauseRecording()

Pause recording EEG without ending the session.

resumeRecording()

Resume a paused recording

sendAnnotation(annotation, annType)
Sends a message to be logged on the Recorder.

The timing of annotations may be imprecise and this should not be trusted as a method of sending sync
triggers.

Annotations can contain any ASCII characters except for “;”

Parameters
• annotation (string) – The description text to be sent in the annotation.

• annType (string) – The category of the annotation which are user-defined strings (e.g.
stimulus, response)

• usage:: (Example) – rcs.sendAnnotation(“face003”, “stimulus”)

sendRaw(message, checkOutput='OK')
A helper function to send raw messages (strings) to the RCS.

This is normally only used for debugging purposes and is not needed by most users.

Parameters
• message (string) – The string that will be sent

• checkOutput (string (default='OK')) – If a value is provided then this will be checked
for by this function. If no check is needed then set checkOutput=None

startRecording()

Start recording EEG.

stopRecording()

Stop recording EEG.

10.6. psychopy.hardware - hardware interfaces 539

PsychoPy - Psychology software for Python, Release 2023.2.3

property timeout

What is a reasonable timeout in seconds (initially set to 0.5)

For some systems (e.g. when the RCS is the same machine) you might want to set this to a lower value. For
an unpredictable or slow network connection you might want to set this to a higher value.

property version

Reports the version of the RCS application

Example usage:

print(rcs.version)

waitForMessage(containing='', endswith='')
Wait for a message, optionally one that meets certain criteria

Parameters
• containing (str) – A string the message must contain

• endswith (str) – A string the message must end with (ignoring newline characters)

Return type
The (complete) message string if one was received or None if not

waitForState(stateName, permitted, timeout=10)

Helper function to wait for a particular state (or any attribute, for that matter)
to have a particular value. Beware this will wait indefinitely, so only call if you are confident that the
state will eventually arrive!

Parameters
• stateName (str) – Name of the state (e.g. “applicationState”)

• permitted (list) – List of values that are permitted before returning

property workspace

Get/set the path to the workspace file. An absolute path is required.

Example Usage:

rcs.workspace = 'C:/Vision/Worksfiles/testing.rwksp'

10.6.3 Camera

Classes and functions for reading and writing camera streams.

A camera may be used to document participant responses on video or used by the experimenter to create movie stimuli
or instructions.

10.6. psychopy.hardware - hardware interfaces 540

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PsychoPy - Psychology software for Python, Release 2023.2.3

10.6.4 Overview

Camera([device, mic, cameraLib, frameRate, ...]) Class for displaying and recording video from a
USB/PCI connected camera.

Camera.authorize() Get permission to access the camera.
Camera.isReady Is the camera ready (bool)?
Camera.frameSize Size of the video frame obtained from recent metadata

(float or None).
Camera.status Status flag for the camera (int).
Camera.isRecording True if the video is presently recording (bool).
Camera.isNotStarted True if the stream may not have started yet (bool).
Camera.isStopped True if the recording has stopped (bool).
Camera.metadata Video metadata retrieved during the last frame update

(MovieMetadata).
Camera.getMetadata() Get stream metadata.
Camera.getCameras([cameraLib]) Get information about installed cameras on this system.
Camera.getCameraDescriptions([collapse]) Get a mapping or list of camera descriptions.
Camera.device Camera to use (str or None).
Camera.mic Microphone to record audio samples from during

recording (Microphone or None).
Camera.streamTime Current stream time in seconds (float).
Camera.recordingTime Current recording timestamp (float).
Camera.recordingBytes Current size of the recording in bytes (int).
Camera.open() Open the camera stream and begin decoding frames (if

available).
Camera.record() Start recording frames.
Camera.stop() Stop recording frames and audio (if available).
Camera.close() Close the camera.
Camera.save(filename[, useThreads, ...]) Save the last recording to file.
Camera.lastClip File path to the last recording (str or None).
Camera.lastFrame Most recent frame pulled from the camera (VideoFrame)

since the last call of getVideoFrame.
Camera.update() Acquire the newest data from the camera stream.
Camera.getVideoFrame() Pull the most recent frame from the stream (if available).

CameraInfo([index, name, frameSize, ...]) Information about a specific operating mode for a camera
attached to the system.

CameraInfo.index Camera index (int).
CameraInfo.name Camera name (str).
CameraInfo.frameSize Resolution (w, h) in pixels (ArrayLike or None).
CameraInfo.frameRate Frame rate (float) or range (ArrayLike).
CameraInfo.pixelFormat Video pixel format (str).
CameraInfo.codecFormat Codec format, may be used instead of pixelFormat for

some configurations.
CameraInfo.cameraLib Camera library these settings are targeted towards (str).
CameraInfo.cameraAPI Camera API in use to obtain this information (str).
CameraInfo.frameSizeAsFormattedString() Get image size as as formatted string.
CameraInfo.description() Get a description as a string.

10.6. psychopy.hardware - hardware interfaces 541

PsychoPy - Psychology software for Python, Release 2023.2.3

10.6.5 Details

class psychopy.hardware.camera.Camera(device=0, mic=None, cameraLib='ffpyplayer', frameRate=None,
frameSize=None, bufferSecs=4, win=None, name='cam')

Class for displaying and recording video from a USB/PCI connected camera.

This class is capable of opening, recording, and saving camera video streams to disk. Camera stream read-
ing/writing is done in a separate thread, allowing capture to occur in the background while the main thread is
free to perform other tasks. This allows for capture to occur at higher frame rates than the display refresh rate.
Audio recording is also supported if a microphone interface is provided, where recording will be synchronized
with the video stream (as best as possible). Video and audio can be saved to disk either as a single file or as
separate files.

GNU/Linux is supported only by the OpenCV backend (cameraLib=’opencv’).

Parameters
• device (str or int) – Camera to open a stream with. If the ID is not valid, an error will

be raised when open() is called. Value can be a string or number. String values are platform-
dependent: a DirectShow URI or camera name on Windows, or a camera name/index on
MacOS. Specifying a number (>=0) is a platform-independent means of selecting a camera.
PsychoPy enumerates possible camera devices and makes them selectable without explicitly
having the name of the cameras attached to the system. Use caution when specifying an
integer, as the same index may not reference the same camera every time.

• mic (Microphone or None) – Microphone to record audio samples from during recording.
The microphone input device must not be in use when record() is called. The audio track will
be merged with the video upon calling save(). Make sure that Microphone.maxRecordingSize
is specified to a reasonable value to prevent the audio track from being truncated. Specifying
a microphone adds some latency to starting and stopping camera recording due to the added
overhead involved with synchronizing the audio and video streams.

• frameRate (int or None) – Frame rate to record the camera stream at. If None, the cam-
era’s default frame rate will be used.

• frameSize (tuple or None) – Size (width, height) of the camera stream frames to record.
If None, the camera’s default frame size will be used.

• cameraLib (str) – Interface library (backend) to use for accessing the camera. May either
be ffpyplayer or opencv. If None, the default library for the recommended by the PsychoPy
developers will be used. Switching camera libraries could help resolve issues with camera
compatibility. More camera libraries may be installed via extension packages.

• bufferSecs (float) – Size of the real-time camera stream buffer specified in seconds (only
valid on Windows and MacOS). This is not the same as the recording buffer size. This option
might not be available for all camera libraries.

• win (Window or None) – Optional window associated with this camera. Some functionality
may require an OpenGL context for presenting frames to the screen. If you are not planning
to display the camera stream, this parameter can be safely ignored.

• name (str) – Label for the camera for logging purposes.

10.6. psychopy.hardware - hardware interfaces 542

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Opening a camera stream and closing it:

camera = Camera(device=0)
camera.open() # exception here on invalid camera
camera.close()

Recording 5 seconds of video and saving it to disk:

cam = Camera(0)
cam.open()
cam.record() # starts recording

while cam.recordingTime < 5.0: # record for 5 seconds
if event.getKeys('q'):

break
cam.update()

cam.stop() # stops recording
cam.save('myVideo.mp4')
cam.close()

Providing a microphone as follows enables audio recording:

mic = Microphone(0)
cam = Camera(0, mic=mic)

Overriding the default frame rate and size (if cameraLib supports it):

cam = Camera(0, frameRate=30, frameSize=(640, 480), cameraLib=u'opencv')

_assertCameraReady()

Assert that the camera is ready. Raises a CameraNotReadyError if the camera is not ready.

_assertMediaPlayer()

Assert that we have a media player instance open.

This will raise a RuntimeError if there is no player open. Use this function to ensure that a player is present
before running subsequent code.

_download()

Download video file to an online repository. Not implemented locally, needed for auto translate to JS.

_enqueueFrame()

Pull waiting frames from the capture thread.

This function will pull frames from the capture thread and add them to the buffer. The last frame in the
buffer will be set as the most recent frame (lastFrame).

Returns
True if a frame has been enqueued. Returns False if the camera is not ready or if the stream
was closed.

Return type
bool

10.6. psychopy.hardware - hardware interfaces 543

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

_upload()

Upload video file to an online repository. Not implemented locally, needed for auto translate to JS.

authorize()

Get permission to access the camera. Not implemented locally yet.

close()

Close the camera.

This will close the camera stream and free up any resources used by the device. If the camera is currently
recording, this will stop the recording, but will not discard any frames. You may still call save() to save the
frames to disk.

property device

Camera to use (str or None).

String specifying the name of the camera to open a stream with. This must be set prior to calling start(). If
the name is not valid, an error will be raised when start() is called.

property frameCount

Number of frames captured in the present recording (int).

property frameRate

Frame rate of the video stream (float or None).

Only valid after an open() and successive _enqueueFrame() call as metadata needs to be obtained from the
stream. Returns None if not valid.

property frameSize

Size of the video frame obtained from recent metadata (float or None).

Only valid after an open() and successive _enqueueFrame() call as metadata needs to be obtained from the
stream. Returns None if not valid.

static getCameraDescriptions(collapse=False)
Get a mapping or list of camera descriptions.

Camera descriptions are a compact way of representing camera settings and formats. Description strings
can be used to specify which camera device and format to use with it to the Camera class.

Descriptions have the following format (example):

'[Live! Cam Sync 1080p] 160x120@30fps, mjpeg'

This shows a specific camera format for the ‘Live! Cam Sync 1080p’ webcam which supports 160x120
frame size at 30 frames per second. The last value is the codec or pixel format used to decode the stream.
Different pixel formats and codecs vary in performance.

Parameters
collapse (bool) – Return camera information as string descriptions instead of CameraInfo
objects. This provides a more compact way of representing camera formats in a (reasonably)
human-readable format.

Returns
Mapping (dict) of camera descriptions, where keys are camera names (str) and values are a list
of format description strings associated with the camera. If collapse=True, all descriptions
will be returned in a single flat list. This might be more useful for specifying camera formats
from a single GUI list control.

10.6. psychopy.hardware - hardware interfaces 544

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Return type
dict or list

static getCameras(cameraLib=None)
Get information about installed cameras on this system.

Returns
Mapping of camera information objects.

Return type
dict

getLastClip()

File path to the last saved recording.

This value is only valid if a previous recording has been saved to disk (save() was called).

Returns
Path to the file the most recent call to save() created. Returns None if no file is ready.

Return type
str or None

getMetadata()

Get stream metadata.

Returns
Metadata about the video stream, retrieved during the last frame update (_enqueueFrame
call).

Return type
MovieMetadata

getVideoFrame()

Pull the most recent frame from the stream (if available).

Returns
Most recent video frame. Returns NULL_MOVIE_FRAME_INFO if no frame was available,
or we timed out.

Return type
MovieFrame

property isNotStarted

True if the stream may not have started yet (bool). This status is given before open() or after close() has
been called on this object.

property isReady

Is the camera ready (bool)?

The camera is ready when the following conditions are met. First, we’ve created a player interface and
opened it. Second, we have received metadata about the stream. At this point we can assume that the
camera is ‘hot’ and the stream is being read.

This is a legacy property used to support older versions of PsychoPy. The isOpened property should be
used instead.

property isRecording

True if the video is presently recording (bool).

10.6. psychopy.hardware - hardware interfaces 545

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

property isStarted

True if the stream has started (bool). This status is given after open() has been called on this object.

property isStopped

True if the recording has stopped (bool). This does not mean that the stream has stopped, getVideoFrame()
will still yield frames until close() is called.

property lastClip

File path to the last recording (str or None).

This value is only valid if a previous recording has been saved successfully (save() was called), otherwise
it will be set to None.

property lastFrame

Most recent frame pulled from the camera (VideoFrame) since the last call of getVideoFrame.

property metadata

Video metadata retrieved during the last frame update (MovieMetadata).

property mic

Microphone to record audio samples from during recording (Microphone or None).

If None, no audio will be recorded. Cannot be set after opening a camera stream.

open()

Open the camera stream and begin decoding frames (if available).

This function returns when the camera is ready to start getting frames.

Call record() to start recording frames to memory. Captured frames came be saved to disk using save().

record()

Start recording frames.

This function will start recording frames and audio (if available). The value of lastFrame will be updated as
new frames arrive and the frameCount will increase. You can access image data for the most recent frame
to be captured using lastFrame.

If this is called before open() the camera stream will be opened automatically. This is not recommended as
it may incur a longer than expected delay in the recording start time.

Warning: If a recording has been previously made without calling save() it will be discarded if record()
is called again.

property recordingBytes

Current size of the recording in bytes (int).

property recordingTime

Current recording timestamp (float).

This returns the timestamp of the last frame captured in the recording.

This value increases monotonically from the last record() call. It will reset once stop() is called. This value
is invalid outside record() and stop() calls.

10.6. psychopy.hardware - hardware interfaces 546

PsychoPy - Psychology software for Python, Release 2023.2.3

save(filename, useThreads=True, mergeAudio=True, encoderLib=None, encoderOpts=None)
Save the last recording to file.

This will write frames to filename acquired since the last call of record() and subsequent stop(). If record()
is called again before save(), the previous recording will be deleted and lost.

This is a slow operation and will block for some time depending on the length of the video. This can be
sped up by setting useThreads=True.

Parameters
• filename (str) – File to save the resulting video to, should include the extension.

• useThreads (bool) – Use threading where possible to speed up the saving process. If
True, the video will be saved and composited in a separate thread and this function will
return quickly. If False, the video will be saved and composited in the main thread and this
function will block until the video is saved. Default is True.

• mergeAudio (bool) – Merge the audio track from the microphone with the video. If True,
the audio track will be merged with the video. If False, the audio track will be saved to a
separate file. Default is True.

• encoderLib (str or None) – Encoder library to use for saving the video. This can be
either ‘ffpyplayer’ or ‘opencv’. If None, the same library that was used to open the camera
stream. Default is None.

• encoderOpts (dict) – Options to pass to the encoder. This is a dictionary of op-
tions specific to the encoder library being used. See the documentation for ~psy-
chopy.tools.movietools.MovieFileWriter for more details.

property status

Status flag for the camera (int).

Can be either RECORDING, STOPPED, STOPPING, or NOT_STARTED. This property used in Builder
output scripts and does not update on its own.

stop()

Stop recording frames and audio (if available).

property streamTime

Current stream time in seconds (float). This time increases monotonically from startup.

This is -1.0 if there is no active stream running or if the backend does not support this feature.

update()

Acquire the newest data from the camera stream. If the Camera object is not being monitored by a ImageS-
tim, this must be explicitly called.

property win

Window which frames are being presented (psychopy.visual.Window or None).

class psychopy.hardware.camera.CameraInfo(index=-1, name='Null', frameSize=(-1, -1), frameRate=-1.0,
pixelFormat='Unknown', codecFormat='Unknown',
cameraLib='Null', cameraAPI='Null')

Information about a specific operating mode for a camera attached to the system.

Parameters
• index (int) – Index of the camera. This is the enumeration for the camera which is used

to identify and select it by the cameraLib. This value may differ between operating systems
and the cameraLib being used.

10.6. psychopy.hardware - hardware interfaces 547

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

• name (str) – Camera name retrieved by the OS. This may be a human-readable name (i.e.
DirectShow on Windows), an index on MacOS or a path (e.g., /dev/video0 on Linux). If the
cameraLib does not support this feature, then this value will be generated.

• frameSize (ArrayLike) – Resolution of the frame (w, h) in pixels.

• frameRate (ArrayLike) – Allowable framerate for this camera mode.

• pixelFormat (str) – Pixel format for the stream. If u’Null’, then codecFormat is being
used to configure the camera.

• codecFormat (str) – Codec format for the stream. If u’Null’, then pixelFormat is being
used to configure the camera. Usually this value is used for high-def stream formats.

• cameraLib (str) – Library used to access the camera. This can be either, ‘ffpyplayer’,
‘opencv’.

• cameraAPI (str) – API used to access the camera. This relates to the external interface
being used by cameraLib to access the camera. This value can be: ‘AVFoundation’, ‘Direct-
Show’ or ‘Video4Linux2’.

property cameraAPI

Camera API in use to obtain this information (str).

property cameraLib

Camera library these settings are targeted towards (str).

property codecFormat

Codec format, may be used instead of pixelFormat for some configurations. Default is ‘’.

description()

Get a description as a string.

For all backends, this value is guaranteed to be valid after the camera has been opened. Some backends
may be able to provide this information before the camera is opened.

Returns
Description of the camera format as a human readable string.

Return type
str

property frameRate

Frame rate (float) or range (ArrayLike).

Depends on the backend being used. If a range is provided, then the first value is the maximum and the
second value is the minimum frame rate.

property frameSize

Resolution (w, h) in pixels (ArrayLike or None).

frameSizeAsFormattedString()

Get image size as as formatted string.

Returns
Size formatted as ‘WxH’ (e.g. ‘480x320’).

Return type
str

property index

Camera index (int). This is the enumerated index of this camera.

10.6. psychopy.hardware - hardware interfaces 548

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

property name

Camera name (str). This is the camera name retrieved by the OS.

property pixelFormat

Video pixel format (str). An empty string indicates this field is not initialized.

10.6.6 Cedrus (response boxes)

The pyxid package, written by Cedrus, is included in the Standalone distributions.

See https://github.com/cedrus-opensource/pyxid for further info.

Example usage:

import pyxid2 as pyxid

get a list of all attached XID devices
devices = pyxid.get_xid_devices()

dev = devices[0] # get the first device to use
if dev.is_response_device():

dev.reset_base_timer()
dev.reset_rt_timer()

while True:
dev.poll_for_response()
if dev.response_queue_size() > 0:

response = dev.get_next_response()
do something with the response

Useful functions

Device classes

10.6.7 Cambridge Research Systems Ltd.

Interfaces for Cambridge Research Systems hardware.

These are optional components that can be obtained by installing the psychopy-crs extension into the current environ-
ment.

For stimulus display

BitsPlusPlus

Control a CRS Bits# device. See typical usage in the class summary (and in the menu demos>hardware>BitsBox of
PsychoPy’s Coder view).

Important: See note on BitsPlusPlusIdentityLUT

10.6. psychopy.hardware - hardware interfaces 549

https://github.com/cedrus-opensource/pyxid

PsychoPy - Psychology software for Python, Release 2023.2.3

Attributes

BitsPlusPlus(win[, contrast, gamma, ...]) The main class to control a Bits++ box. This is usually
a class added within the window object and is typically
accessed from there. e.g.::.

BitsPlusPlus.setContrast(contrast[, ...]) Set the contrast of the LUT for 'bits++' mode only :Pa-
rameters:

BitsPlusPlus.setGamma(newGamma) Set the LUT to have the requested gamma value Cur-
rently also resets the LUT to be a linear contrast ramp
spanning its full range.

BitsPlusPlus.setLUT([newLUT, gammaCorrect,
...])

Sets the LUT to a specific range of values in 'bits++'
mode only Note that, if you leave gammaCorrect=True
then any LUT values you supply will automatically be
gamma corrected.

Details

class psychopy.hardware.crs.bits.BitsPlusPlus(win, contrast=1.0, gamma=None, nEntries=256,
mode='bits++', rampType='configFile',
frameRate=None)

The main class to control a Bits++ box. This is usually a class added within the window object and is typically
accessed from there. e.g.:

from psychopy import visual
from psychopy.hardware import crs
win = visual.Window([800,600])
bits = crs.BitsPlusPlus(win, mode='bits++')
use bits++ to reduce the whole screen contrast by 50%:
bits.setContrast(0.5)

Parameters
• contrast – The contrast to be applied to the LUT. See BitsPlusPlus.setLUT() and
BitsPlusPlus.setContrast() for flexibility on setting just a section of the LUT to a
different value

• gamma – The value used to correct the gamma in the LUT

• nEntries (256) – [DEPRECATED feature]

• mode ('bits++' (or 'mono++' or 'color++')) – Note that, unlike the Bits#, this only af-
fects the way the window is rendered, it does not switch the state of the Bits++ device itself
(because unlike the Bits# have no way to communicate with it). The mono++ and color++
are only supported in PsychoPy 1.82.00 onwards. Even then they suffer from not having
gamma correction applied on Bits++ (unlike Bits# which can apply a gamma table in the
device hardware).

• rampType ('configFile', None or an integer) – if ‘configFile’ then we’ll look
for a valid config in the userPrefs folder if an integer then this will be used during
win.setGamma(rampType=rampType):

• frameRate (an estimate the frameRate of the monitor. If None frame
rate) – will be calculated.

10.6. psychopy.hardware - hardware interfaces 550

PsychoPy - Psychology software for Python, Release 2023.2.3

_Goggles()

(private) Used to set control the goggles. Should not be needed by user if attached to a Window

_ResetClock()

(private) Used to reset Bits hardware clock. Should not be needed by user if attached to a Window since
this will automatically draw the reset code as part of the screen refresh.

_drawLUTtoScreen()

(private) Used to set the LUT in ‘bits++’ mode. Should not be needed by user if attached to a Window since
this will automatically draw the LUT as part of the screen refresh.

_drawTrigtoScreen(sendStr=None)
(private) Used to send a trigger pulse. Should not be needed by user if attached to a Window since this will
automatically draw the trigger code as part of the screen refresh.

_protectTrigger()

If Goggles (or analog) outputs are used when the digital triggers are off we need to make a set of blank
triggers first. But the user might have set up triggers in waiting for a later time. So this will protect them.

_restoreTrigger()

Restores the triggers to previous settings

_setHeaders(frameRate)
Sets up the TLock header codes and some flags that are common to operating all CRS devices

_setupShaders()

creates and stores the shader programs needed for mono++ and color++ modes

getPackets()

Returns the number of packets available for trigger pulses.

primeClock()

Primes the clock to reset at the next screen flip - note only 1 clock reset signal will be issued but if the
frame(s) after the reset frame is dropped the reset will be re-issued thus keeping timing good.

Resets continute to be issued on each video frame until the next win.flip so you need to have regular win.flips
for this function to work properly.

Example:

bits.primeClock()
drawImage
while not response

#do some processing
bits.win.flip()

Will get a clock reset signal ready but won’t issue it until the first win.flip in the loop.

reset()

Deprecated: This was used on the old Bits++ to power-cycle the box. It required the compiled dll, which
only worked on windows and doesn’t work with Bits# or Display++.

resetClock()

Issues a clock reset code using 1 screen flip if the next frame(s) is dropped the reset will be re-issued thus
keeping timing good.

Resets continue to be issued on each video frame until the next win.flip so you need to have regular win.flips
for this function to work properly.

10.6. psychopy.hardware - hardware interfaces 551

PsychoPy - Psychology software for Python, Release 2023.2.3

Example

bits.resetClock() drawImage() bits.win.flip()

Will issue clock resets while the image is being drawn then display the image and allow the clock to continue
from the same frame.

Example

bits.resetClock() bits.RTBoxWait() bits.win.flip()

Will issue clock resets until a button is pressed.

sendTrigger(triggers=0, onTime=0, duration=0, mask=65535)
Sends a single trigger using up 1 win.flip. The trigger will be sent on the following frame.

The triggers will continue until after the next win.flip.

Actions are always 1 frame after the request.

May do odd things if Goggles and Analog are also in use.

Example:

bits.sendTrigger(0b0000000010, 2.0, 4.0)
bits.win.flip()

Will send a 4ms puilse on DOUT1 2ms after the start of the frame. Due to the following win.flip() the pulse
should last for 1 frame only.

Triggers will continue until stopTrigger is called.

setContrast(contrast, LUTrange=1.0, gammaCorrect=None)
Set the contrast of the LUT for ‘bits++’ mode only :Parameters:

contrast
[float in the range 0:1] The contrast for the range being set

LUTrange
[float or array] If a float is given then this is the fraction of the LUT to be used. If an array of
floats is given, these will specify the start / stop points as fractions of the LUT. If an array of
ints (0-255) is given these determine the start stop indices of the LUT

Examples

• setContrast(1.0,0.5) to set the central 50% of the LUT so that a stimulus with
contr=0.5 will actually be drawn with contrast 1.0

• setContrast(1.0,[0.25,0.5])

• or setContrast(1.0,[63,127]) to set the lower-middle quarter of the LUT
(which might be useful in LUT animation paradigms)

setGamma(newGamma)
Set the LUT to have the requested gamma value Currently also resets the LUT to be a linear contrast ramp
spanning its full range. May change this to read the current LUT, undo previous gamma and then apply
new one?

10.6. psychopy.hardware - hardware interfaces 552

PsychoPy - Psychology software for Python, Release 2023.2.3

setLUT(newLUT=None, gammaCorrect=True, LUTrange=1.0)
Sets the LUT to a specific range of values in ‘bits++’ mode only Note that, if you leave gammaCorrect=True
then any LUT values you supply will automatically be gamma corrected. The LUT will take effect on the
next Window.flip()

Examples:
• bitsBox.setLUT() to build a LUT using bitsBox.contrast and bitsBox.gamma

• bitsBox.setLUT(newLUT=some256x1array) (NB array should be float 0.0:1.0) Builds a luminance
LUT using newLUT for each gun (actually array can be 256x1 or 1x256)

• bitsBox.setLUT(newLUT=some256x3array) (NB array should be float 0.0:1.0) Allows you to use a
different LUT on each gun

(NB by using BitsBox.setContr() and BitsBox.setGamma() users may not need this function)

setTrigger(triggers=0, onTime=0, duration=0, mask=65535)
Quick way to set up triggers.

Triggers is a binary word that determines which triggers will be turned on.

onTime specifies the start time of the trigger within the frame (in S with 100uS resolution)

Duration specifies how long the trigger will last. (in S with 100uS resolution).

Note that mask only protects the digital output lines set by other activities in the Bits. Not other triggers.

Example::
bits.setTrigger(0b0000000010, 2.0, 4.0, 0b0111111111) bits.startTrigger()

Will issue a 4ms long high-going pulse, 2ms after the start of each frame on DOUT1 while protecting the
value of DOUT 9.

setTriggerList(triggerList=None, mask=65535)
Sets up Trigger pulses in Bits++ using the fine grained method that can control every trigger line at 100uS
intervals.

TriggerList should contain 1 entry for every 100uS packet (see getPackets) the binary word in each entry
specifies which trigger line will be active during that time slot.

Note that mask only protects the digital output lines set by other activities in the Bits. Not other triggers.

Example:

packet = [0]*self._NumberPackets
packet[0] = 0b0000000010
bits.setTriggerList(packet)

Will sens a 100us pulse on DOUT1 at the start of the frame.

Example 2:

packet = [0]*self._NumberPackets
packet[10] = 0b0000000010
packet[20] = 0b0000000001
bits.setTriggerList(packet)
bits.startTrigger()

Will sens a 100us pulse on DOUT1 1000us after the start of the frame and a second 100us pusle on DOUT0
2000us after the start of the frame.

Triggers will continue until stopTrigger is called.

10.6. psychopy.hardware - hardware interfaces 553

PsychoPy - Psychology software for Python, Release 2023.2.3

startGoggles(left=0, right=1)
Starts CRS stereo goggles. Note if you are using FE-1 goggles you should start this before connecting the
goggles.

Left is the state of the left shutter on the first frame to be presented 0, False or ‘closed’=closed; 1, True or
‘open’ = open,

right is the state of the right shutter on the first frame to be presented 0, False or ‘closed’=closed; 1, True
or ‘open’ = open

Note you can set the goggles to be both open or both closed on the same frame.

The system will always toggle the state of each lens so as to not damage FE-1 goggles.

Example:

bits.startGoggles(0,1)
bits.win.flip()
while not response

bits.win.flip()
#do some processing

bits.stopGoggles()
bits.win.flip()

Starts toggling the goggles with the right eye open in sync with the first win.flip() within the loop. The
open eye will alternate.

Example:

bits.startGoggles(1,1)
bits.win.flip()
while not response:

bits.win.flip()
#do some processing

bits.stopGoggles()
bits.win.flip()

Starts toggling the goggle with both eyes open in sync with the first win.flip() within the loop. Eyes will
alternate between both open and both closed.

Note it is safe to leave the goggles toggling forever, ie to never call stopGoggles().

startTrigger()

Start sending triggers on the next win flip and continue until stopped by stopTrigger Triggers start 1 frame
after the frame on which the first trigger is sent.

Example:

bits.setTrigger(0b0000000010, 2.0, 4.0, 0b0111111111)
bits.startTrigger()
while imageOn:

#do some processing
continue

bits.stopTrigger()
bits.win.flip()

stopGoggles()

Stop the stereo goggles from toggling

10.6. psychopy.hardware - hardware interfaces 554

PsychoPy - Psychology software for Python, Release 2023.2.3

Example:

bits.startGoggles(0,1)
bits.win.flip()
while not response:

bits.win.flip()
#do some processing

bits.stopGoggles()
bits.win.flip()

Starts toggling the goggles with the right eye open in sync with the first win.flip(0) within the loop. The
open eye will alternate.

Note it is safer to leave the goggles toggling forever, ie to never call stopGoggles().

stopTrigger()

Stop sending triggers at the next win flip

Example:

bits.setTrigger(0b0000000010, 2.0, 4.0, 0b0111111111)
bits.startTrigger()
while imageOn:

#do some processing
continue

bits.stopTrigger()
bits.win.flip()

syncClocks(t)
Synchronise the Bits/RTBox Clock with the host clock Given by t.

Finding the identity LUT

For the Bits++ (and related) devices to work correctly it is essential that the graphics card is not altering
in any way the values being passed to the monitor (e.g. by gamma correcting). It turns out that finding
the ‘identity’ LUT, where exactly the same values come out as were put in, is not trivial. The obvious
LUT would have something like 0/255, 1/255, 2/255. . . in entry locations 0,1,2. . . but unfortunately most
graphics cards on most operating systems are ‘broken’ in one way or another, with rounding errors and
incorrect start points etc.

provides a few of the common variants of LUT and that can be chosen when you initialise the device using
the parameter rampType. If no rampType is specified then will choose one for you:

from psychopy import visual
from psychopy.hardware import crs

win = visual.Window([1024,768], useFBO=True) #we need to be rendering to␣
→˓framebuffer
bits = crs.BitsPlusPlus(win, mode = 'bits++', rampType = 1)

The Bits# is capable of reporting back the pixels in a line and this can be used to test that a particular
LUT is indeed providing identity values. If you have previously connected a BitsSharp device and used
it with then a file will have been stored with a LUT that has been tested with that device. In this case set
rampType = “configFile” for PsychoPy to use it if such a file is found.

10.6. psychopy.hardware - hardware interfaces 555

PsychoPy - Psychology software for Python, Release 2023.2.3

BitsSharp

Control a CRS Bits# device. See typical usage in the class summary (and in the menu demos>hardware>BitsBox of
PsychoPy’s Coder view).

Attributes

BitsSharp([win, portName, mode, ...]) A class to support functions of the Bits# (and most Dis-
play++ functions This device uses the CDC (serial port)
connection to the Bits box.

BitsSharp.mode Get/set the mode of the BitsSharp to one of: "bits++"
"mono++" "color++" "status" "storage" "auto"

BitsSharp.isAwake() Test whether we have an active connection on the virtual
serial port

BitsSharp.getInfo() Returns a python dictionary of info about the Bits Sharp
box

BitsSharp.checkConfig([level, demoMode, log-
File])

Checks whether there is a configuration for this device
and whether it's correct

BitsSharp.gammaCorrectFile Get / set the gamma correction file to be used (as stored
on the device)

BitsSharp.temporalDithering Temporal dithering can be set to True or False
BitsSharp.monitorEDID Get / set the EDID file for the monitor.
BitsSharp.beep([freq, dur]) Make a beep of a given frequency and duration
BitsSharp.getVideoLine(lineN, nPixels[, ...]) Return the r,g,b values for a number of pixels on a par-

ticular video line
BitsSharp.start() [Not currently implemented] Used to begin event collec-

tion by the device.
BitsSharp.stop() [Not currently implemented] Used to stop event collec-

tion by the device.

Direct communications with the serial port:

BitsSharp.sendMessage(message[, autoLog]) Send a command to the device (does not wait for a reply
or sleep())

BitsSharp.getResponse([length, timeout]) Read the latest response from the serial port

Control the CLUT (Bits++ mode only):

BitsSharp.setContrast(contrast[, LUTrange, ...]) Set the contrast of the LUT for 'bits++' mode only :Pa-
rameters:

BitsSharp.setGamma(newGamma) Set the LUT to have the requested gamma value Cur-
rently also resets the LUT to be a linear contrast ramp
spanning its full range.

BitsSharp.setLUT([newLUT, gammaCorrect, ...]) SetLUT is only really needed for bits++ mode of bits# to
set the look-up table (256 values with 14bits each).

10.6. psychopy.hardware - hardware interfaces 556

PsychoPy - Psychology software for Python, Release 2023.2.3

Details

class psychopy.hardware.crs.bits.BitsSharp(win=None, portName=None, mode='', checkConfigLevel=1,
gammaCorrect='hardware', gamma=None,
noComms=False)

A class to support functions of the Bits# (and most Display++ functions This device uses the CDC (serial port)
connection to the Bits box. To use it you must have followed the instructions from CRS Ltd. to get your box into
the CDC communication mode. Typical usage (also see demo in Coder view demos>hardware>BitsBox):

from psychopy import visual
from psychopy.hardware import crs
we need to be rendering to framebuffer
win = visual.Window([1024,768], useFBO=True)
bits = crs.BitsSharp(win, mode = 'mono++')
You can continue using your window as normal and OpenGL shaders
will convert the output as needed
print(bits.info)
if not bits.OK:

print('failed to connect to Bits box')
core.quit()

core.wait(0.1)
now, you can change modes using
bits.mode = 'mono++' # 'color++', 'mono++', 'bits++', 'status'

Note that the firmware in Bits# boxes varies over time and some features of this class may not work for all
firmware versions. Also Bits# boxes can be configured in various ways via their config.xml file so this class
makes certain assumptions about the configuration. In particular it is assumed that all digital inputs, triggers and
analog inputs are reported as part of status updates. If some of these report are disabled in your config.xml file
then ‘status’ and ‘event’ commands in this class may not work.

RTBox commands that reset the key mapping have been found not to work one some firmware

Parameters
• win (a PsychoPy Window object, required) –

• portName (str or int) – the (virtual) serial port to which the device is connected. If
None then PsychoPy will search available serial ports and test communication (on OSX, the
first match of /dev/tty.usbmodemfa* will be used and on linux /dev/ttyS0 will be used

• mode ('bits++', 'color++', 'mono++', 'status') –

• checkConfigLevel (int) – Allows you to specify how much checking of the device is done
to ensure a valid identity look-up table. If you specify one level and it fails then the check
will be escalated to the next level (e.g. if we check level 1 and find that it fails we try to find
a new LUT):

– 0 don’t check at all

– 1 check that the graphics driver and OS version haven’t
changed since last LUT calibration

– 2 check that the current LUT calibration still provides
identity (requires switch to status mode)

– 3 search for a new identity look-up table (requires
switch to status mode)

10.6. psychopy.hardware - hardware interfaces 557

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

• gammaCorrect (string) – G overning how gamma correction is performed: - ‘hardware’:
use the gamma correction file stored on the

hardware

– ’FBO’: gamma correct using shaders when rendering the FBO to back buffer

– ’bitsMode’: in bits++ mode there is a user-controlled LUT that we can use for gamma
correction

• noComms (bool) – If True then don’t try to communicate with the device at all (passive
mode). This can be useful if you want to debug the system without actually having a Bits#
connected.

RTBoxAddKeys(map)
Add key mappings to an existing map. RTBox events can be mapped to a number of physical events on
Bits# They can be mapped to digital input lines, triggers and CB6 IR input channels. The format for map
is a list of tuples with each tuple containing the name of the RTBox button to be mapped and its source
eg (‘btn1’,’Din1’) maps physical input Din1 to logical button btn1. RTBox has four logical buttons (btn1-
4) and three auxiliary events (light, pulse and trigger) Buttons/events can be mapped to multiple physical
inputs and stay mapped until reset.

Example:

bits.RTBoxSetKeys([('btn1','Din0),('btn2','Din1')])
bits.RTBoxAddKeys([('btn1','IRButtonA'),(('btn2','IRButtonB')])

Will link Din0 to button 1 and Din1 to button 2. Then adds IRButtonA and IRButtonB alongside the
original mappings.

Now both hard wired and IR inputs will - emulating the same logical button press.

Note that the firmware in Bits# units varies over time and some features of this class may not work for all
firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this class
makes certain assumptions about the configuration. Such variations may affect key mappings for RTBox
commands.

RTBoxCalibrate(N=1)
Used to assess error between host clock and Bits# button press time stamps.

Prints each sample provided and returns the mean error.

The clock willnever be completely in sync but the aim is that there should be that the difference between
them should not grow over a serise of button presses.

Note that the firmware in Bits# units varies over time and some features of this class may not work for all
firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this class
makes certain assumptions about the configuration. Such variations may affect key mappings for RTBox
commands.

RTBoxClear()

Flushes the serial input buffer. Its good to do this before and after data collection. This just calls flush() so
is a wrapper for RTBox.

RTBoxDisable()

Disables the detection of RTBox events. This is useful to stop the Bits# from reporting key presses When
you no longer need them. Nad must be done before using any other data logging methods.

It undoes any button - input mappings.

10.6. psychopy.hardware - hardware interfaces 558

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Note that the firmware in Bits# units varies over time and some features of this class may not work for all
firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this class
makes certain assumptions about the configuration. Such variations may affect key mappings for RTBox
commands.

The ability to reset keys mappings has been found not to work on some Bits# firmware.

RTBoxEnable(mode=None, map=None)
Sets up the RTBox with preset or bespoke mappings and enables event detection.

RTBox events can be mapped to a number of physical events on Bits# They can be mapped to digital input
lines, tigers and CB6 IR input channels.

Mode is a list of strings. Preset mappings provided via mode:

• CB6 for the CRS CB6 IR response box.

• IO for a three button box connected to Din0-2

• IO6 for a six button box connected to Din0-5

If mode = None or is not set then the value of self.RTBoxMode is used.

Bespoke Mappings over write preset ones.

The format for map is a list of tuples with each tuple containing the name of the RT Box button to be mapped
and its source eg (‘btn1’,’Din0’) maps physical input Din0 to logical button btn1.

Note the lowest number button event is Btn1

RTBox has four logical buttons (btn1-4) and three auxiliary events (light, pulse and trigger) Buttons/events
can be mapped to multiple physical inputs and stay mapped until reset.

Mode is a list of string or list of strings that contains keywords to determine present mappings and modes
for RTBox.

• If mode includes ‘Down’ button events will be detected when pressed.

• If mode includes ‘Up’ button events will be detected when released.

You can detect both types of event but note that pulse, light and trigger events don’t have an ‘Up’ mode.

If Trigger is included in mode the trigger event will be mapped to the trigIn connector.

Example: .. code-block:: python

bits.RTBoxEnable(mode = [‘Down’]), map = [(‘btn1’,’Din0’), (‘btn2’,’Din1’)]

enables the RTBox emulation to detect Down events on buttons 1 and 2 where they are mapped to DIN0
and DIN1.

Example: .. code-block:: python

bits.RTBoxEnable(mode = [‘Down’,’CB6’])

enables the RTBox emulation to detect Down events on the standard CB6 IR response box keys.

If no key direction has been set (mode does not contain ‘Up’ or ‘Down’) the default is ‘Down’.

Note that the firmware in Bits# units varies over time and some features of this class may not work for all
firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this class
makes certain assumptions about the configuration. Such variations may affect key mappings for RTBox
commands.

The ability to reset keys mappings has been found not to work on some Bits# firmware.

10.6. psychopy.hardware - hardware interfaces 559

PsychoPy - Psychology software for Python, Release 2023.2.3

RTBoxKeysPressed(N=1)
Check to see if (at least) the appropriate number of RTBox style key presses have been made.

Example

bits.RTBoxKeysPressed(5)

will return false until 5 button presses have been recorded.

Note that the firmware in Bits# units varies over time and some features of this class may not work for all
firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this class
makes certain assumptions about the configuration. Such variations may affect key mappings for RTBox
commands.

RTBoxResetKeys()

Resets the key mappings to no mapping. Has the effect of disabling RTBox input.

Note that the firmware in Bits# units varies over time and some features of this class may not work for all
firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this class
makes certain assumptions about the configuration. Such variations may affect key mappings for RTBox
commands.

The ability to reset keys mappings has been found not to work on some Bits# firmware.

RTBoxSetKeys(map)
Set key mappings: first resets existing then adds new ones. Does not reset any event that is not in the new
list. RTBox events can be mapped to a number of physical events on Bits# They can be mapped to digital
input lines, triggers and CB6 IR input channels. The format for map is a list of tuples with each tuple
containing the name of the RTBox button to be mapped and its source eg (‘btn1’,’Din1’) maps physical
input Din1 to logical button btn1.

RTBox has four logical buttons (btn1-4) and three auxiliary events (light, pulse and trigger) Buttons/events
can be mapped to multiple physical inputs and stay mapped until reset.

Example

bits.RTBoxSetKeys([(‘btn1’,’Din0),(‘light’,’Din9’)])

Will link Din0 to button 1 and Din9 to the the light input emulation.

Note that the firmware in Bits# units varies over time and some features of this class may not work for all
firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this class
makes certain assumptions about the configuration. Such variations may affect key mappings for RTBox
commands.

RTBoxWait()

Waits until (at least) one of RTBox style key presses have been made Pauses program execution in mean
time.

10.6. psychopy.hardware - hardware interfaces 560

PsychoPy - Psychology software for Python, Release 2023.2.3

Example

res = bits.RTBoxWait()

will suspend all other activity until 1 button press has been recorded and will then return a dict / structure
containing results.

Results can be accessed as follows:

structure
res.dir, res.button, res.time

or dictionary
res[‘dir’], res[‘button’], res[‘time’]

Note that the firmware in Bits# units varies over time and some features of this class may not work for all
firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this class
makes certain assumptions about the configuration. Such variations may affect key mappings for RTBox
commands.

RTBoxWaitN(N=1)
Waits until (at least) the appropriate number of RTBox style key presses have been made Pauses program
execution in mean time.

Example

res = bits.RTBoxWaitN(5)

will suspend all other activity until 5 button presses have been recorded and will then return a list of Dicts
containing the 5 results.

Results can be accessed as follows:

structure
res[0].dir, res[0].button, res[0].time

or dictionary
res[0][‘dir’], res[0][‘button’], res[0][‘time’]

Note that the firmware in Bits# units varies over time and some features of this class may not work for all
firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this class
makes certain assumptions about the configuration. Such variations may affect key mappings for RTBox
commands.

_Goggles()

(private) Used to set control the goggles. Should not be needed by user if attached to a Window

_RTBoxDecodeResponse(msg, N=1)
Helper function for decoding key presses in the RT response box format.

Not normally needed by user

_ResetClock()

(private) Used to reset Bits hardware clock. Should not be needed by user if attached to a Window since
this will automatically draw the reset code as part of the screen refresh.

_drawLUTtoScreen()

(private) Used to set the LUT in ‘bits++’ mode. Should not be needed by user if attached to a Window since
this will automatically draw the LUT as part of the screen refresh.

10.6. psychopy.hardware - hardware interfaces 561

PsychoPy - Psychology software for Python, Release 2023.2.3

_drawTrigtoScreen(sendStr=None)
(private) Used to send a trigger pulse. Should not be needed by user if attached to a Window since this will
automatically draw the trigger code as part of the screen refresh.

_extractStatusEvents()

Interprets values from status log to pullout any events.

Should not be needed by user if start/stopStatusLog or pollStatus are used

Fills statusEvents with a list of dictionary like objects with the following entries source, input, direction,
time.

source = the general source of the event - e.g. DIN for Digital input, IR for IT response box

input = the individual input in the source. direction = ‘up’ or ‘down’ time = time stamp.

Events are recorded relative to the four event flags
statusDINBase, initial values for ditgial ins. statusIRBase, initial values for CB6 IR box. statusTrig-
InBase, initial values for TrigIn. statusMode, direction(s) of events to be reported.

The data can be accessed as statusEvents[i][‘time’] or statusEvents[i].time

Also set status._nEvents to the number of events recorded

_getStatusLog()

Read the log Queue

Should not be needed by user if start/stopStatusLog or pollStatus are used.

fills statusValues with a list of dictionary like objects with the following entries: sample, time, trigIn,
DIN[10], DWORD, IR[6], ADC[6]

They can be accessed as statusValues[i][‘sample’] or statusValues[i].sample, statusValues[i].ADC[j]

Also sets status_nValues to the number of values recorded.

_inWaiting()

Helper function to determine how many bytes are waiting on the serial port.

_protectTrigger()

If Goggles (or analog) outputs are used when the digital triggers are off we need to make a set of blank
triggers first. But the user might have set up triggers in waiting for a later time. So this will protect them.

_restoreTrigger()

Restores the triggers to previous settings

_setHeaders(frameRate)
Sets up the TLock header codes and some flags that are common to operating all CRS devices

_setupShaders()

creates and stores the shader programs needed for mono++ and color++ modes

_statusBox()

Should not normally be called by user Called in its own thread via self.statusBoxEnable() Reads the status
reports from the Bits# for default 60 seconds or until self.statusBoxDisable() is called.

Note any non status reports are found on the buffer will cause an error.

args specifies the time over which to record status events. The minimum time is 10ms, less than this results
in recording stopping after about 1 status report has been read.

Puts its results into a Queue.

This function is normally run in its own thread so actions can be asynchronous.

10.6. psychopy.hardware - hardware interfaces 562

PsychoPy - Psychology software for Python, Release 2023.2.3

_statusDisable()

Stop Bits# from recording data - and clears the buffer

Not normally needed by user

_statusEnable()

Sets the Bits# to continuously send back its status until stopped. You get a lot a data by leaving this going.

Not normally needed by user

_statusLog(args=60)
Should not normally be called by user Called in its own thread via self.startStatusLog() Reads the status
reports from the Bits# for default 60 seconds or until self.stopStatusLog() is called. Ignores the last line as
this is can be bogus. Note any non status reports are found on the buffer will cause an error.

args specifies the time over which to record status events. The minimum time is 10ms, less than this results
in recording stopping after about 1 status report has been read.

Puts its results into a Queue.

This function is normally run in its own thread so actions can be asynchronous.

beep(freq=800, dur=1)
Make a beep of a given frequency and duration

checkConfig(level=1, demoMode=False, logFile='')
Checks whether there is a configuration for this device and whether it’s correct

Parameters
level (integer) –

• 0: do nothing

• 1: check that we have a config file and that the graphics
card and operating system match that specified in the file. Then assume identity LUT is
correct

• 2: switch the box to status mode and check that the
identity LUT is currently working

• 3: force a fresh search for the identity LUT

clock()

Reads the internal clock of the Bits box via the RTBox fortmat but note there will be a delay in reading the
value back. The fortmat for the return values is the same as for button box presses. The return value for
button will be 9 and the return value for event will be time. The return value for time will be the time of
the clock at the moment of the request.

Example

res = bits.clock() print(res.time) print(res[‘time’])

driverFor = []

flush()

Flushes the serial input buffer Its good to do this before and after data collection, And generally quite often.

property gammaCorrectFile

Get / set the gamma correction file to be used (as stored on the device)

10.6. psychopy.hardware - hardware interfaces 563

PsychoPy - Psychology software for Python, Release 2023.2.3

getAllRTBoxResponses()

Read all of the RTBox style key presses on the input buffer. Returns a list of dict like objects with three
members ‘button’, ‘dir’ and ‘time’

‘button’ is a number from 1 to 9 to indicate the event that was detected. 1-4 are the ‘btn1-btn4’ events, 5 and
6 are the ‘light’ and ‘pulse’ events, 7 is the ‘trigger’ event, 9 is a requested timestamp event (see Clock()).

‘dir’ is the direction of the event eg ‘up’ or ‘down’, trigger is described as ‘on’ when low.

‘dir’ is set to ‘time’ if a requested timestamp event has been detected.

‘time’ is the timestamp associated with the event.

Values can be read as a structure eg:

res = getAllRTBoxResponses()
res[0].dir, res[0].button, res[0].time

or dictionary:

res[0]['dir'], res[0]['button'], res[0]['time']

Note even if only 1 key press was found a list of dict / objects is returned

Note that the firmware in Bits# units varies over time and some features of this class may not work for all
firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this class
makes certain assumptions about the configuration. Such variations may affect key mappings for RTBox
commands.

getAllStatusBoxResponses()

Read all of the statusBox style key presses on the input buffer. Returns a list of dict like objects with three
members ‘button’, ‘dir’ and ‘time’

‘button’ is a number from 1 to 9 to indicate the event that was detected. 1-17 are the ‘btn1-btn17’ events.

‘dir’ is the direction of the event eg ‘up’ or ‘down’, trigger is described as ‘on’ when low.

‘dir’ is set to ‘time’ if a requested timestamp event has been detected.

‘time’ is the timestamp associated with the event.

Values can be read as a structure eg:

res= getAllStatusBoxResponses()
res[0].dir, res[0].button, res[0].time

or dictionary:

res[0]['dir'], res[0]['button'], res[0]['time']

Note even if only 1 key press was found a list of dict / objects is returned.

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

10.6. psychopy.hardware - hardware interfaces 564

PsychoPy - Psychology software for Python, Release 2023.2.3

getAllStatusEvents()

Returns the whole status event list

Returns a list of dictionary like objects with the following entries source, input, direction, time.

source = the general source of the event - e.g. DIN for Digital input, IR for CB6 IR response box events

input = the individual input in the source. direction = ‘up’ or ‘down’ time = time stamp.

All sourses are numbered from zero. Din 0 . . . 9 IR 0 . . . 5 ADC 0 . . . 5

mode specifies which directions of events are captured. e.g ‘up’ will only report up events.

The data can be accessed as value[i][‘time’] or value[i].time

Example:

bits.startStatusLog()
while not event

#do some processing
continue

bits.stopStatusLog()
res=getAllStatusEvents()
print(bits.res[0].time)

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

getAllStatusValues()

Returns the whole status values list.

Returns a list of dict like objects with the following entries sample, time, trigIn, DIN[10], DWORD, IR[6],
ADC[6] sample is the sample ID number. time is the time stamp. trigIn is the value of the trigger input.
DIN is a list of 10 digital input values. DWORD represents the digital inputs as a single decimal value. IR
is a list of 10 infra-red (IR) input values. ADC is a list of 6 analog input values. These can be accessed as
value[i][‘sample’] or value[i].sample, values[i].ADC[j].

All sourses are numbered from zero. Din 0 . . . 9 IR 0 . . . 5 ADC 0 . . . 5

Example:

bits.startStatusLog()
while not event

#do some processing
continue

bits.stopStatusLog()
res=getAllStatusValues()
print(bits.res[0].time)

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

10.6. psychopy.hardware - hardware interfaces 565

PsychoPy - Psychology software for Python, Release 2023.2.3

getAnalog(N=0)
Pulls out the values of the analog inputs for the Nth status entry.

Returns a dictionary with a list of 6 floats (ADC) and a time stamp (time).

All sourses are numbered from zero. ADC 0 . . . 5

Example

bits.pollStatus() res=bits.getAnalog() print(res[‘ADC’])

will poll the status display the values of the ADC inputs in the first status entry returned.

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

getDigital(N=0)
Pulls out the values of the digital inputs for the Nth status entry.

Returns a dictionary with a list of 10 ints that are 1 or 0 (DIN) and a time stamp (time)

ll sourses are numbered from zero. Din 0 . . . 9

Example

bits.pollStatus() res=bits.getAnalog() print(res[‘DIN’])

will poll the status display the value of the digital inputs in the first status entry returned.

Note that the firmware in Bits# units varies over time and some features of this class may not work for all
firmware versions. Also DBits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

getDigitalWord(N=0)
Pulls out the values of the digital inputs for the Nth status entry.

Returns a dictionary with a 10 bit word representing the binary values of those inputs (DWORD) and a time
stamp (time).

Example

bits.pollStatus() res=bits.getAnalog() print(res[‘DWORD’])

will poll the status display the value of the digital inputs as a decimal number.

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

10.6. psychopy.hardware - hardware interfaces 566

PsychoPy - Psychology software for Python, Release 2023.2.3

getIRBox(N=0)
Pulls out the values of the CB6 IR response box inputs for the Nth status entry.

Returns a dictionary with a list of 6 ints that are 1 or 0 (IRBox) and a time stamp (time).

ll sourses are numbered from zero. IR 0 . . . 5

Example

bits.pollStatus() res=bits.getAnalog() print(res.[‘IRBox’])

will poll the status display the values of the IR box buttons in the first status entry returned.

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

getInfo()

Returns a python dictionary of info about the Bits Sharp box

Example::
info=bits.getInfo print(info[‘ProductType’])

getPackets()

Returns the number of packets available for trigger pulses.

getRTBoxResponse()

checks for one RTBox style key presses on the input buffer then reads it. Returns a dict like object with
three members ‘button’, ‘dir’ and ‘time’

‘button’ is a number from 1 to 9 to indicate the event that was detected. 1-4 are the ‘btn1-btn4’ events, 5 and
6 are the ‘light’ and ‘pulse’ events, 7 is the ‘trigger’ event, 9 is a requested timestamp event (see Clock()).

‘dir’ is the direction of the event eg ‘up’ or ‘down’, trigger is described as ‘on’ when low.

‘dir’ is set to ‘time’ if a requested timestamp event has been detected.

‘time’ is the timestamp associated with the event.

Value can be read as a structure, eg:
res= getRTBoxResponse() res.dir, res.button, res.time

or dictionary
res[‘dir’], res[‘button’], res[‘time’]

Note that the firmware in Bits# units varies over time and some features of this class may not work for all
firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this class
makes certain assumptions about the configuration. Such variations may affect key mappings for RTBox
commands.

getRTBoxResponses(N=1)
checks for (at least) an appropriate number of RTBox style key presses on the input buffer then reads them.
Returns a list of dict like objects with three members ‘button’, ‘dir’ and ‘time’

‘button’ is a number from 1 to 9 to indicate the event that was detected. 1-4 are the ‘btn1-btn4’ events, 5 and
6 are the ‘light’ and ‘pulse’ events, 7 is the ‘trigger’ event, 9 is a requested timestamp event (see Clock()).

‘dir’ is the direction of the event eg ‘up’ or ‘down’, trigger is described as ‘on’ when low.

‘dir’ is set to ‘time’ if a requested timestamp event has been detected.

10.6. psychopy.hardware - hardware interfaces 567

PsychoPy - Psychology software for Python, Release 2023.2.3

‘time’ is the timestamp associated with the event.

Values can be read as a list of structures eg:

res = getRTBoxResponses(3)
res[0].dir, res[0].button, res[0].time

or dictionaries:

res[0]['dir'], res[0]['button'], res[0]['time']

Note even if only 1 key press was requested a list of dict / objects is returned.

Note that the firmware in Bits# units varies over time and some features of this class may not work for all
firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this class
makes certain assumptions about the configuration. Such variations may affect key mappings for RTBox
commands.

getResponse(length=1, timeout=0.1)
Read the latest response from the serial port

Parameters:

length determines whether we expect:
• 1: a single-line reply (use readline())

• 2: a multiline reply (use readlines() which requires timeout)

• -1: may not be any EOL character; just read whatever chars are
there

getStatus(N=0)
Pulls out the Nth entry in the statusValues list.

Returns a dict like object with the following entries sample, time, trigIn, DIN[10], DWORD, IR[6], ADC[6]

sample is the sample ID number. time is the time stamp. trigIn is the value of the trigger input. DIN is
a list of 10 digital input values. DWORD represents the digital inputs as a single decimal value. IR is a
list of 10 infra-red (IR) input values. ADC is a list of 6 analog input values. These can be accessed as
value[‘sample’] or value.sample, values.ADC[j].

All sourses are numbered from zero. Din 0 . . . 9 IR 0 . . . 5 ADC 0 . . . 5

Example:

bits.startStatusLog()
while not event

#do some processing
continue

bits.stopStatusLog()
res=getStatus(20)
print(bits.res.time)

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

10.6. psychopy.hardware - hardware interfaces 568

PsychoPy - Psychology software for Python, Release 2023.2.3

getStatusBoxResponse()

checks for one statusBox style key presses on the input buffer then reads it. Returns a dict like object with
three members ‘button’, ‘dir’ and ‘time’

‘button’ is a number from 1 to 9 to indicate the event that was detected. 1-17 are the ‘btn1-btn17’ events.

‘dir’ is the direction of the event eg ‘up’ or ‘down’, trigger is described as ‘on’ when low.

‘dir’ is set to ‘time’ if a requested timestamp event has been detected.

‘time’ is the timestamp associated with the event.

Value can be read as a structure, eg:
res= getRTBoxResponse() res.dir, res.button, res.time

or dictionary
res[‘dir’], res[‘button’], res[‘time’]

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

getStatusBoxResponses(N=1)
checks for (at least) an appropriate number of RTBox style key presses on the input buffer then reads them.
Returns a list of dict like objects with three members ‘button’, ‘dir’ and ‘time’

‘button’ is a number from 1 to 9 to indicate the event that was detected. 1-4 are the ‘btn1-btn4’ events, 5 and
6 are the ‘light’ and ‘pulse’ events, 7 is the ‘trigger’ event, 9 is a requested timestamp event (see Clock()).

‘dir’ is the direction of the event eg ‘up’ or ‘down’, trigger is described as ‘on’ when low.

‘dir’ is set to ‘time’ if a requested timestamp event has been detected.

‘time’ is the timestamp associated with the event.

Values can be read as a list of structures eg:

res = getRTBoxResponses(3)
print(res[0].dir, res[0].button, res[0].time)

or dictionaries:

print(res[0]['dir'], res[0]['button'], res[0]['time'])

Note even if only 1 key press was requested a list of dict / objects is returned.

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

getStatusEvent(N=0)
pulls out the Nth event from the status event list

Returns a dictionary like object with the following entries source, input, direction, time.

source = the general source of the event - e.g. DIN for Digital input, IR for IT response box.

input = the individual input in the source. direction = ‘up’ or ‘down’ time = time stamp.

10.6. psychopy.hardware - hardware interfaces 569

PsychoPy - Psychology software for Python, Release 2023.2.3

All sourses are numbered from zero. Din 0 . . . 9 IR 0 . . . 5 ADC 0 . . . 5

mode specifies which directions of events are captured, e.g ‘up’ will only report up events.

The data can be accessed as value[‘time’] or value.time

Example:

bits.startStatusLog()
while not event

#do some processing
continue

bits.stopStatusLog()
res=getAllStatusEvents(20)
print(bits.res.time)

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

getTrigIn(N=0)
Pulls out the values of the trigger input for the Nth status entry.

Returns dictionary with a 0 or 1 (trigIn) and a time stamp (time)

Example

bits.pollStatus() res=bits.getAnalog() print(res[‘trigIn’])

will poll the status display the value of the trigger input.

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

getVideoLine(lineN, nPixels, timeout=10.0, nAttempts=10)
Return the r,g,b values for a number of pixels on a particular video line

Parameters
• lineN – the line number you want to read

• nPixels – the number of pixels you want to read

• nAttempts – the first time you call this function it has to get to status mode. In this case
it sometimes takes a few attempts to make the call work

Returns
an Nx3 numpy array of uint8 values

isAwake()

Test whether we have an active connection on the virtual serial port

property isOpen

10.6. psychopy.hardware - hardware interfaces 570

PsychoPy - Psychology software for Python, Release 2023.2.3

longName = ''

property mode

Get/set the mode of the BitsSharp to one of: “bits++” “mono++” “color++” “status” “storage” “auto”

property monitorEDID

Get / set the EDID file for the monitor. The edid files will be located in the EDID subdirectory of the flash
disk. The file automatic.edid will be the file read from the connected monitor.

name = b'CRS Bits#'

pause()

Pause for a default period for this device

pollStatus(t=0.0001)
Reads the status reports from the Bits# for the specified usually short time period t. The script will wait for
this time to lapse so not ideal for time critical applications.

If t is less than 0.01 polling will continue until at least 1 data entry has been recorded.

If you don’t want to wait while this does its job use startStatusLog and stopStatusLog instead.

Fills the statusValues list with all the status values read during the time period.

Fills the statusEvents list with just those status values that are likely to be meaningful events.

the members statusValues and statusEvents will end up containing dict like objects of the following style:
sample, time, trigIn, DIN[10], DWORD, IR[6], ADC[6]

They can be accessed as statusValues[i][‘sample’] or stautsValues[i].sample, statusValues[x].ADC[j].

Example:

bits.pollStatus()
print(bits.statusValues[0].IR[0])

will display the value of the IR InputA in the first sample recorded.

Note: Starts and stops logging for itself.

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

primeClock()

Primes the clock to reset at the next screen flip - note only 1 clock reset signal will be issued but if the
frame(s) after the reset frame is dropped the reset will be re-issued thus keeping timing good.

Resets continute to be issued on each video frame until the next win.flip so you need to have regular win.flips
for this function to work properly.

Example:

bits.primeClock()
drawImage
while not response

#do some processing
bits.win.flip()

10.6. psychopy.hardware - hardware interfaces 571

PsychoPy - Psychology software for Python, Release 2023.2.3

Will get a clock reset signal ready but won’t issue it until the first win.flip in the loop.

read(timeout=0.1)
Get the current waiting characters from the serial port if there are any.

Mostly used internally but may be needed by user. Note the return message depends on what state the
device is in and will need to be decoded. See the Bits# manual but also the other functions herein that do
the decoding for you.

Example

message = bits.read()

reset()

Deprecated: This was used on the old Bits++ to power-cycle the box. It required the compiled dll, which
only worked on windows and doesn’t work with Bits# or Display++.

resetClock()

Issues a clock reset code using 1 screen flip if the next frame(s) is dropped the reset will be re-issued thus
keeping timing good.

Resets continue to be issued on each video frame until the next win.flip so you need to have regular win.flips
for this function to work properly.

Example

bits.resetClock() drawImage() bits.win.flip()

Will issue clock resets while the image is being drawn then display the image and allow the clock to continue
from the same frame.

Example

bits.resetClock() bits.RTBoxWait() bits.win.flip()

Will issue clock resets until a button is pressed.

sendAnalog(AOUT1=0, AOUT2=0)
sends a single analog output pulse uses up 1 win flip. pulse will continue until next win flip called. Actions
are always 1 frame behind the request.

May conflict with trigger and goggle settings.

Example

bits.sendAnalog(4.5,-2.0) bits.win.flip()

sendMessage(message, autoLog=True)
Send a command to the device (does not wait for a reply or sleep())

sendTrigger(triggers=0, onTime=0, duration=0, mask=65535)
Sends a single trigger using up 1 win.flip. The trigger will be sent on the following frame.

The triggers will continue until after the next win.flip.

Actions are always 1 frame after the request.

10.6. psychopy.hardware - hardware interfaces 572

PsychoPy - Psychology software for Python, Release 2023.2.3

May do odd things if Goggles and Analog are also in use.

Example:

bits.sendTrigger(0b0000000010, 2.0, 4.0)
bits.win.flip()

Will send a 4ms puilse on DOUT1 2ms after the start of the frame. Due to the following win.flip() the pulse
should last for 1 frame only.

Triggers will continue until stopTrigger is called.

setAnalog(AOUT1=0, AOUT2=0)
Sets up Analog outputs in Bits# AOUT1 and AOUT2 are the two analog values required in volts. Analog
commands are issued at the next win.flip() and actioned 1 video frame later.

Example

bits.set Analog(4.5,-2.2) bits.startAnalog() bits.win.flip()

setContrast(contrast, LUTrange=1.0, gammaCorrect=None)
Set the contrast of the LUT for ‘bits++’ mode only :Parameters:

contrast
[float in the range 0:1] The contrast for the range being set

LUTrange
[float or array] If a float is given then this is the fraction of the LUT to be used. If an array of
floats is given, these will specify the start / stop points as fractions of the LUT. If an array of
ints (0-255) is given these determine the start stop indices of the LUT

Examples

• setContrast(1.0,0.5) to set the central 50% of the LUT so that a stimulus with
contr=0.5 will actually be drawn with contrast 1.0

• setContrast(1.0,[0.25,0.5])

• or setContrast(1.0,[63,127]) to set the lower-middle quarter of the LUT
(which might be useful in LUT animation paradigms)

setGamma(newGamma)
Set the LUT to have the requested gamma value Currently also resets the LUT to be a linear contrast ramp
spanning its full range. May change this to read the current LUT, undo previous gamma and then apply
new one?

setLUT(newLUT=None, gammaCorrect=False, LUTrange=1.0, contrast=None)
SetLUT is only really needed for bits++ mode of bits# to set the look-up table (256 values with 14bits each).
For the BitsPlusPlus device the default is to perform gamma correction here but on the BitsSharp it seems
better to have the device perform that itself as the last step so gamma correction is off here by default. If
no contrast has yet been set (it isn’t needed for other modes) then it will be set to 1 here.

setRTBoxMode(mode=['CB6', 'Down', 'Trigger'])
Sets the RTBox mode data member - does not actually set the RTBox into this mode.

10.6. psychopy.hardware - hardware interfaces 573

PsychoPy - Psychology software for Python, Release 2023.2.3

Example

bits.setRTBoxMode([‘CB6’,’Down’]) # set the mode bits.RTBoxEnable() # Enable RTBox emulation with
the preset mode.

sets the RTBox mode settings for a CRS CB6 button box. and for detection of ‘Down’ events only.

setStatusBoxMode(mode=['CB6', 'Down', 'Trigger', 'Analog'])
Sets the statusBox mode data member - does not actually set the statusBox into this mode.

Example

bits.setStatusBoxMode([‘CB6’,’Down’]) # set the mode bits.statusBoxEnable() # Enable status Box emu-
lation with # the preset mode.

sets the statusBox mode settings for a CRS CB6 button box. and for detection of ‘Down’ events only.

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

setStatusBoxThreshold(threshold=None)
Sets the threshold by which analog inputs must change to trigger a button press event. If None the threshold
will be set very high so that no such events are triggered.

Can be used to change the threshold for analog events without having to re enable the status box system as
a whole.

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

setStatusEventParams(DINBase=1023, IRBase=63, TrigInBase=0, ADCBase=0, threshold=9999.99,
mode=['up', 'down'])

Sets the parameters used to determine if a status value represents a reportable event.

DIN_base = a 10 bit binary word specifying the expected starting values of the 10 digital input lines

IR_base = a 6 bit binary word specifying the expected starting values of the 6 CB6 IR buttons

Trig_base = the starting value of the Trigger input

mode = a list of event types to monitor can be ‘up’ or ‘down’ typically ‘down’ corresponds to a button press
or when the input is being pulled down to zero volts.

Example:

bits.setStatusEventParams(DINBase=0b1111111111,
IRBase=0b111111,
TrigInBase=0,
ADCBase=0,
threshold = 3.4,
mode = ['down'])

bits.startStatusLog()
(continues on next page)

10.6. psychopy.hardware - hardware interfaces 574

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

while not event
#do some processing
continue

bits.stopStatusLog()
res=getAllStatusEvents(0)
print(bits.res.time)

This ill start the event extraction process as if DINs and IRs are all ‘1’, Trigger is ‘0’ ADCs = 0 with an
ADC threshold for change of 3.4 volts, and will only register ‘down’ events. Here we display the time stamp
of the first event.

Note that the firmware in Display++ units varies over time and some features of this class may not work
for all firmware versions. Also Display++ units can be configured in various ways via their config.xml file
so this class makes certain assumptions about the configuration. In particular it is assumed that all digital
inputs, triggers and analog inputs are reported as part of status updates. If some of these report are disabled
in your config.xml file then ‘status’ and ‘event’ commands in this class may not work.

setTrigger(triggers=0, onTime=0, duration=0, mask=65535)
Quick way to set up triggers.

Triggers is a binary word that determines which triggers will be turned on.

onTime specifies the start time of the trigger within the frame (in S with 100uS resolution)

Duration specifies how long the trigger will last. (in S with 100uS resolution).

Note that mask only protects the digital output lines set by other activities in the Bits. Not other triggers.

Example:

` bits.setTrigger(0b0000000010, 2.0, 4.0, 0b0111111111) bits.startTrigger() `

Will issue a 4ms long high-going pulse, 2ms after the start of each frame on DOUT1 while protecting the
value of DOUT 9.

setTriggerList(triggerList=None, mask=65535)
Overaload of Bits# and Display++ Sets up Trigger pulses via the list method while preserving the analog
output settings.

Sets up Trigger pulses in Bist++ using the fine grained method that can control every trigger line at 100uS
intervals.

TriggerList should contain 1 entry for every 100uS packet (see getPackets) the binary word in each entry
specifies which trigger line will be active during that time slot.

Note that mask only protects the digital output lines set by other activities in the Bits. Not other triggers.

Example

packet = [0]*self._NumberPackets packet[0] = 0b0000000010 bits.setTriggerList(packet)

Will sens a 100us pulse on DOUT1 at the start of the frame.

Example 2:
packet = [0]*self._NumberPackets packet[10] = 0b0000000010 packet[20] = 0b0000000001
bits.setTriggerList(packet) bits.statrtTrigger()

Will sens a 100us pulse on DOUT1 1000us after the start of the frame and a second 100us pusle on DOUT0
2000us after the start of the frame.

10.6. psychopy.hardware - hardware interfaces 575

PsychoPy - Psychology software for Python, Release 2023.2.3

Triggers will continue until stopTrigger is called.

start()

[Not currently implemented] Used to begin event collection by the device.

Not really needed as other members now do this.

startAnalog()

will start sending analog signals on the next win flip and continue until stopped.

Example

bits.set Analog(4.5,-2.2) bits.startAnalog() bits.win.flip()

startGoggles(left=0, right=1)
Starts CRS stereo goggles. Note if you are using FE-1 goggles you should start this before connecting the
goggles.

Left is the state of the left shutter on the first frame to be presented 0, False or ‘closed’=closed; 1, True or
‘open’ = open,

right is the state of the right shutter on the first frame to be presented 0, False or ‘closed’=closed; 1, True
or ‘open’ = open

Note you can set the goggles to be both open or both closed on the same frame.

The system will always toggle the state of each lens so as to not damage FE-1 goggles.

Example:

bits.startGoggles(0,1)
bits.win.flip()
while not response

bits.win.flip()
#do some processing

bits.stopGoggles()
bits.win.flip()

Starts toggling the goggles with the right eye open in sync with the first win.flip() within the loop. The
open eye will alternate.

Example:

bits.startGoggles(1,1)
bits.win.flip()
while not response:

bits.win.flip()
#do some processing

bits.stopGoggles()
bits.win.flip()

Starts toggling the goggle with both eyes open in sync with the first win.flip() within the loop. Eyes will
alternate between both open and both closed.

Note it is safe to leave the goggles toggling forever, ie to never call stopGoggles().

startStatusLog(t=60)
Start logging data from the Bits#

10.6. psychopy.hardware - hardware interfaces 576

PsychoPy - Psychology software for Python, Release 2023.2.3

Starts data logging in its own thread.

Will run for t seconds, defrault 60 or until stopStatusLog() is called.

Example:

bits.startStatusLog()
while not event

#do some processing
continue

bits.stopStatusLog()

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

startTrigger()

Start sending triggers on the next win flip and continue until stopped by stopTrigger Triggers start 1 frame
after the frame on which the first trigger is sent.

Example:

bits.setTrigger(0b0000000010, 2.0, 4.0, 0b0111111111)
bits.startTrigger()
while imageOn:

#do some processing
continue

bits.stopTrigger()
bits.win.flip()

statusBoxAddKeys(map)
Add key mappings to an existing map. statusBox events can be mapped to a number of physical events on
Bits# They can be mapped to digital input lines, triggers and CB6 IR input channels. The format for map
is a list of tuples with each tuple containing the name of the RTBox button to be mapped and its source eg
(‘btn1’,’Din1’) maps physical input Din1 to logical button btn1. statusBox has 23 logical buttons (btn1-23).
Unlike RTBox buttons/events can only be partially mapped to multiple physical inputs. That is a logical
button can be mapped to more than 1 physical input but a physical input can onloy be mapped to 1 logical
button. So, this function over write any existing mappings if the physical input is the same.

Example:

bits.RTBoxSetKeys([('btn1','Din0),('btn2','Din1')])
bits.RTBoxAddKeys([('btn1','IRButtonA'),(('btn2','IRButtonB')])

Will link Din0 to button 1 and Din1 to button 2. Then adds IRButtonA and IRButtonB alongside the
original mappings.

Now both hard wired and IR inputs will emulate the same logical button press.

To match with the CRS hardware description inputs are labelled as follows.

TrigIn, Din0 . . . Din9, IRButtonA . . . IRButtonF, AnalogIn1 . . . AnalogIn6

Logical buttons are numbered from 1 to 23.

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this

10.6. psychopy.hardware - hardware interfaces 577

PsychoPy - Psychology software for Python, Release 2023.2.3

class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

statusBoxDisable()

Disables the detection of statusBox events. This is useful to stop the Bits# from reporting key presses When
you no longer need them. And must be done before using any other data logging methods.

It undoes any button - input mappings

statusBoxEnable(mode=None, map=None, threshold=None)
Sets up the stautsBox with preset or bespoke mappings and enables event detection.

stautsBox events can be mapped to a number of physical events on Bits# They can be mapped to digital
input lines, tigers and CB6 IR input channels.

mode is a list of strings. Preset mappings provided via mode:

• CB6 for the CRS CB6 IR response box connected mapped to btn1-6

• IO for a three button box connected to Din0-2 mapped to btn1-3

• IO6 for a six button box connected to Din0-5 mapped to btn1-6

• IO10 for a ten button box connected to Din0-9 mapped to btn1-10

• Trigger maps the trigIn to btn17

• Analog maps the 6 analog inputs on a Bits# to btn18-23

If CB6 and IOx are used together the Dins are mapped from btn7 onwards.

If mode = None or is not set then the value of self.statusBoxMode is used.

Bespoke Mappings overwrite preset ones.

The format for map is a list of tuples with each tuple containing the name of the button to be mapped and
its source eg (‘btn1’,’Din0’) maps physical input Din0 to logical button btn1.

Note the lowest number button event is Btn1

statusBox has 23 logical buttons (btn1-123). Buttons/events can be mapped to multiple physical inputs and
stay mapped until reset.

mode is a string or list of strings that contains keywords to determine present mappings and modes for
statusBox.

If mode includes ‘Down’ button events will be detected when pressed. If mode includes ‘Up’ button events
will be detected when released. You can detect both types of event noting that the event detector will look
for transitions and ignorewhat it sees as the starting state.

To match with the CRS hardware description inputs are labelled as follows.

TrigIn, Din0 . . . Din9, IRButtonA . . . IRButtonF, AnalogIn1 . . . AnalogIn6

Logical buttons are numbered from 1 to 23.

threshold sets the threshold by which analog inputs must change to trigger a button press event. If None the
threshold will be set very high so that no such events are triggered. Analog inputs must cycle up and down
by threshold to be detected as separate events. So if only ‘Up’ events are detected the input must go up by
threshold, then come down again and then go back up to register 2 up events.

Example:

bits.statusBoxEnable(mode = 'Down'), map = [('btn1','Din0'), ('btn2','Din1')]

10.6. psychopy.hardware - hardware interfaces 578

PsychoPy - Psychology software for Python, Release 2023.2.3

enables the stautsBox to detect Down events on buttons 1 and 2 where they are mapped to DIN0 and DIN1.

Example:

bits.statusBoxEnable(mode = ['Down','CB6'])

enables the status Box emulation to detect Down events on the standard CB6 IR response box keys.

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

statusBoxKeysPressed(N=1)
Check to see if (at least) the appropriate number of RTBox style key presses have been made.

Example

bits.statusBoxKeysPressed(5)

will return false until 5 button presses have been recorded.

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

statusBoxResetKeys()

statusBoxSetKeys(map)
Set key mappings: first resets existing then adds new ones. Does not reset any event that is not in the new
list. statusBox events can be mapped to a number of physical events on Bits# They can be mapped to digital
input lines, triggers and CB6 IR input channels. The format for map is a list of tuples with each tuple
containing the name of the RTBox button to be mapped and its source eg (‘btn1’,’Din1’) maps physical
input Din1 to logical button btn1.

statusBox has 17 logical buttons (btn1-17) Buttons/events can be mapped to multiple physical inputs and
stay mapped until reset.

Example

bits.RTBoxSetKeys([(‘btn1’,’Din0),(‘btn2’,’IRButtonA’)])

Will link physical Din0 to logical button 1 and IRButtonA to button 2.

To match with the CRS hardware description inputs are labelled as follows.

TrigIn, Din0 . . . Din9, IRButtonA . . . IRButtonF, AnalogIn1 . . . AnalogIn6

Logical buttons are numbered from 1 to 23.

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

10.6. psychopy.hardware - hardware interfaces 579

PsychoPy - Psychology software for Python, Release 2023.2.3

statusBoxWait()

Waits until (at least) one of RTBox style key presses have been made Pauses program execution in mean
time.

Example

res = bits.statusBoxWait()

will suspend all other activity until 1 button press has been recorded and will then return a dict / structure
containing results.

Results can be accessed as follows:

structure
res.dir, res.button, res.time

or dictionary
res[‘dir’], res[‘button’], res[‘time’]

Note that the firmware in Bits# units varies over time and some features of this class may not work for all
firmware versions. Also DBits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

statusBoxWaitN(N=1)
Waits until (at least) the appropriate number of RTBox style key presses have been made Pauses program
execution in mean time.

Example

res = bits.statusBoxWaitN(5)

will suspend all other activity until 5 button presses have been recorded and will then return a list of Dicts
containing the 5 results.

Results can be accessed as follows:

structure:

res[0].dir, res[0].button, res[0].time

or dictionary:

res[0]['dir'], res[0]['button'], res[0]['time']

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

stop()

[Not currently implemented] Used to stop event collection by the device.

Not really needed as other members now do this.

10.6. psychopy.hardware - hardware interfaces 580

PsychoPy - Psychology software for Python, Release 2023.2.3

stopAnalog()

will stop sending analogs signals at the next win flip.

Example:

bits.set Analog(4.5,-2.2)
bits.startAnalog()
bits.win.flip()
while not response:

#do some processing.
bits.win.flip()

bits.stopAnalog()
bits.win.flip()

stopGoggles()

Stop the stereo goggles from toggling

Example:

bits.startGoggles(0,1)
bits.win.flip()
while not response

bits.win.flip()
#do some processing

bits.stopGoggles()
bits.win.flip()

Starts toggling the goggles with the right eye open in sync with the first win.flip(0) within the loop. The
open eye will alternate.

Note it is safer to leave the goggles toggling forever, ie to never call stopGoggles().

stopStatusLog()

Stop logging data from the Bits#
and extracts the raw status values and significant events and puts them in statusValues and statusEvents.

statusValues will end up containing dict like objects of the following style: sample, time, trigIn,
DIN[10], DWORD, IR[6], ADC[6]

They can be accessed as statusValues[i][‘sample’] or statusValues[i].sample, statusValues[x].ADC[j].

StatusEvents will end up containing dict like objects of the following style: source, input, direction,
time

The data can be accessed as statusEvents[i][‘time’] or statusEvents[i].time

Waits for _statusLog to finish properly so can introduce a timing delay.

Example:

bits.startStatusLog()
while not event

#do some processing
continue

bits.stopStatusLog()
print(bits.statusValues[0].time)
print(bits.statusEvents[0].time)

10.6. psychopy.hardware - hardware interfaces 581

PsychoPy - Psychology software for Python, Release 2023.2.3

Will display the time stamps of the first starus value recorded and the first meaningful event.

Note that the firmware in Bits# units varies over time and some features of this class may not work for
all firmware versions. Also Bits# units can be configured in various ways via their config.xml file so this
class makes certain assumptions about the configuration. In particular it is assumed that all digital inputs,
triggers and analog inputs are reported as part of status updates. If some of these report are disabled in your
config.xml file then ‘status’ and ‘event’ commands in this class may not work.

stopTrigger()

Stop sending triggers at the next win flip.

Example:

bits.setTrigger(0b0000000010, 2.0, 4.0, 0b0111111111)
bits.startTrigger()
while imageOn:

#do some processing
continue

bits.stopTrigger()
bits.win.flip()

syncClocks(t)
Synchronise the Bits/RTBox Clock with the host clock Given by t.

property temporalDithering

Temporal dithering can be set to True or False

property win

The window that this box is attached to

For display calibration

ColorCAL

Attributes

ColorCAL([port, maxAttempts]) A class to handle the CRS Ltd ColorCAL device

Details

class psychopy.hardware.crs.colorcal.ColorCAL(port=None, maxAttempts=2)
A class to handle the CRS Ltd ColorCAL device

Open serial port connection with Colorcal II device

Usage
cc = ColorCAL(port, maxAttempts)

If no port is provided then the following defaults will be tried:
• /dev/cu.usbmodem0001 (OSX)

• /dev/ttyACM0

10.6. psychopy.hardware - hardware interfaces 582

PsychoPy - Psychology software for Python, Release 2023.2.3

• COM3 (windows)

calibrateZero()

Perform a calibration to zero light.

For early versions of the ColorCAL this had to be called after connecting to the device. For later versions
the dark calibration was performed at the factory and stored in non-volatile memory.

You can check if you need to run a calibration with:

ColorCAL.getNeedsCalibrateZero()

driverFor = ['colorcal']

getCalibMatrix()

Get the calibration matrix from the device, needed for transforming measurements into real-world values.

This is normally retrieved during __init__ and stored as ColorCal.calibMatrix so most users don’t need to
call this function.

getInfo()

Queries the device for information

usage::
(ok, serialNumber,

firmwareVersion, firmwareBuild) = colorCal.getInfo()

ok will be True/False Other values will be a string or None.

getLum()

Conducts a measurement and returns the measured luminance

Note: The luminance is always also stored as .lastLum

getNeedsCalibrateZero()

Check whether the device needs a dark calibration

In initial versions of CRS ColorCAL mkII the device stored its zero calibration in volatile memory and
needed to be calibrated in darkness each time you connected it to the USB

This function will check whether your device requires that (based on firmware build number and whether
you’ve already done it since python connected to the device).

Returns
True or False

longName = 'CRS ColorCAL'

measure()

Conduct a measurement and return the X,Y,Z values

Usage:

ok, X, Y, Z = colorCal.measure()

Where:
ok is True/False X, Y, Z are the CIE coordinates (Y is luminance in cd/m**2)

10.6. psychopy.hardware - hardware interfaces 583

PsychoPy - Psychology software for Python, Release 2023.2.3

Following a call to measure, the values ColorCAL.lastLum will also be populated with, for compatibility
with other devices used by PsychoPy (notably the PR650/PR655)

readline(size=None, eol='\n\r')
This should be used in place of the standard serial.Serial.readline() because that doesn’t allow us to set the
eol character

sendMessage(message, timeout=0.1)
Send a command to the photometer and wait an allotted timeout for a response.

10.6.8 egi (pynetstation)

Support for egi is now provided via the egi-pynetstation third-party library. This is included within Standalone Psy-
choPy from 2022.2.0

See the `egi-pynetstation documentation<https://egi-pynetstation.readthedocs.io/en/latest/>`_ for further details.

10.6.9 Launch an fMRI experiment: Test or Scan

Software fMRI machine emulator.

Idea: Run or debug an experiment script using exactly the same code, i.e., for both testing and online data acquisition.
To debug timing, you can emulate sync pulses and user responses.

Limitations: pyglet only; keyboard events only.

These are optional components that can be obtained by installing the psychopy-mri-emulator extension into the current
environment.

class psychopy.hardware.emulator.ResponseEmulator(simResponses=None)
Class to allow simulation of a user’s keyboard responses during a scan.

Given a list of response tuples (time, key), the thread will simulate a user pressing a key at a specific time (relative
to the start of the run).

Author: Jeremy Gray; Idea: Mike MacAskill

run()

Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from
the args and kwargs arguments, respectively.

class psychopy.hardware.emulator.SyncGenerator(TR=1.0, TA=1.0, volumes=10, sync='5', skip=0,
sound=False, **kwargs)

Class for a character-emitting metronome thread (emulate MR sync pulse).

Aim: Allow testing of temporal robustness of fMRI scripts by emulating a hardware sync pulse. Adds an arbitrary
‘sync’ character to the key buffer, with sub-millisecond precision (less precise if CPU is maxed). Recommend:
TR=1.000 or higher and less than 100% CPU. Shorter TR –> higher CPU load.

Parameters
• TR – seconds between volume acquisitions

• TA – seconds to acquire one volume

• volumes – number of 3D volumes to obtain in a given scanning run

10.6. psychopy.hardware - hardware interfaces 584

https://github.com/nimh-sfim/egi-pynetstation

PsychoPy - Psychology software for Python, Release 2023.2.3

• sync – character used as flag for sync timing, default=’5’

• skip – how many frames to silently omit initially during T1 stabilization, no sync pulse. Not
needed to test script timing, but will give more accurate feel to start of run. aka “discdacqs”.

• sound – simulate scanner noise

run()

Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from
the args and kwargs arguments, respectively.

10.6.10 fORP response box

Interfaces for Current Designs Inc. devices such as button boxes.

This class is only useful when the fORP is connected via the serial port. If you’re connecting via USB, just treat it like
a standard keyboard. E.g., use a Keyboard component, and typically listen for Allowed keys '1', '2', '3', '4',
'5'. Or use event.getKeys().

These are optional components that can be obtained by installing the psychopy-curdes extension into the current envi-
ronment.

10.6.11 iolab

The ioLab button box has not been made for many years now (and the company no longer exists) so we have withdrawn
support for this device in . We recommend you get a more modern device, such as the LabHackers Millikey

10.6.12 joystick (pyglet and pygame)

AT THE MOMENT JOYSTICK DOES NOT APPEAR TO WORK UNDER PYGLET. We need someone motivated
and capable to go and get this right (problem is with event polling under pyglet)

Control joysticks and gamepads from within PsychoPy.

You do need a window (and you need to be flipping it) for the joystick to be updated.

Known issues:
• currently under pyglet the joystick axes initialise to a value of zero and stay like this until the first time that

axis moves

• currently pygame (1.9.1) spits out lots of debug messages about the joystick and these can’t be turned off
:-/

Typical usage:

from psychopy.hardware import joystick
from psychopy import visual

joystick.backend='pyglet' # must match the Window
win = visual.Window([400,400], winType='pyglet')

nJoys = joystick.getNumJoysticks() # to check if we have any
(continues on next page)

10.6. psychopy.hardware - hardware interfaces 585

https://www.labhackers.com/millikey.html

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

id = 0
joy = joystick.Joystick(id) # id must be <= nJoys - 1

nAxes = joy.getNumAxes() # for interest
while True: # while presenting stimuli

joy.getX()
...
win.flip() # flipping implicitly updates the joystick info

class psychopy.hardware.joystick.XboxController(id, *args, **kwargs)
Joystick template class for the XBox 360 controller.

Usage:

xbctrl = XboxController(0) # joystick ID y_btn_state = xbctrl.y # get the state of the ‘Y’ button

An object to control a multi-axis joystick or gamepad.

Known issues
Currently under pyglet backends the axis values initialise to zero rather than reading the current
true value. This gets fixed on the first change to each axis.

_clip_range(val)
Clip the range of a value between -1.0 and +1.0. Needed for joystick axes.

Parameters
val –

Returns
get_a()

Get the ‘A’ button state.

Returns
bool, True if pressed down

get_b()

Get the ‘B’ button state.

Returns
bool, True if pressed down

get_back()

Get ‘back’ button state (button to the right of the left joystick).

Returns
bool, True if pressed down

get_hat_axis()

Get the states of the hat (sometimes called the ‘directional pad’). The hat can only indicate direction but
not displacement.

This function reports hat values in the same way as a joystick so it may be used interchangeably with existing
analog joystick code.

Returns a tuple (X,Y) indicating which direction the hat is pressed between -1.0 and +1.0. Positive values
indicate presses in the right or up direction.

Returns
tuple, zero centered X, Y values.

10.6. psychopy.hardware - hardware interfaces 586

PsychoPy - Psychology software for Python, Release 2023.2.3

get_left_shoulder()

Get left ‘shoulder’ trigger state.

Returns
bool, True if pressed down

get_left_thumbstick()

Get the state of the left joystick button; activated by pressing down on the stick.

Returns
bool, True if pressed down

get_left_thumbstick_axis()

Get the axis displacement values of the left thumbstick.

Returns a tuple (X,Y) indicating thumbstick displacement between -1.0 and +1.0. Positive values indicate
the stick is displaced right or up.

Returns
tuple, zero centered X, Y values.

get_named_buttons(button_names)
Get the states of multiple buttons using names. A list of button states is returned for each string in list
‘names’.

Parameters
button_names – tuple or list of button names

Returns
get_right_shoulder()

Get right ‘shoulder’ trigger state.

Returns
bool, True if pressed down

get_right_thumbstick()

Get the state of the right joystick button; activated by pressing down on the stick.

Returns
bool, True if pressed down

get_right_thumbstick_axis()

Get the axis displacement values of the right thumbstick.

Returns a tuple (X,Y) indicating thumbstick displacement between -1.0 and +1.0. Positive values indicate
the stick is displaced right or up.

Returns
tuple, zero centered X, Y values.

get_start()

Get ‘start’ button state (button to the left of the ‘X’ button).

Returns
bool, True if pressed down

get_trigger_axis()

Get the axis displacement values of both index triggers.

Returns a tuple (L,R) indicating index trigger displacement between -1.0 and +1.0. Values increase from
-1.0 to 1.0 the further a trigger is pushed.

10.6. psychopy.hardware - hardware interfaces 587

PsychoPy - Psychology software for Python, Release 2023.2.3

Returns
tuple, zero centered L, R values.

get_x()

Get the ‘X’ button state.

Returns
bool, True if pressed down

get_y()

Get the ‘Y’ button state.

Returns
bool, True if pressed down

psychopy.hardware.joystick.getNumJoysticks()

Return a count of the number of joysticks available.

class psychopy.hardware.joystick.Joystick(id)
An object to control a multi-axis joystick or gamepad.

Known issues
Currently under pyglet backends the axis values initialise to zero rather than reading the current
true value. This gets fixed on the first change to each axis.

getAllAxes()

Get a list of all current axis values.

getAllButtons()

Get the state of all buttons as a list.

getAllHats()

Get the current values of all available hats as a list of tuples.

Each value is a tuple (x, y) where x and y can be -1, 0, +1

getAxis(axisId)
Get the value of an axis by an integer id.

(from 0 to number of axes - 1)

getButton(buttonId)
Get the state of a given button.

buttonId should be a value from 0 to the number of buttons-1

getHat(hatId=0)
Get the position of a particular hat.

The position returned is an (x, y) tuple where x and y can be -1, 0 or +1

getName()

Return the manufacturer-defined name describing the device.

getNumAxes()

Return the number of joystick axes found.

getNumButtons()

Return the number of digital buttons on the device.

10.6. psychopy.hardware - hardware interfaces 588

PsychoPy - Psychology software for Python, Release 2023.2.3

getNumHats()

Get the number of hats on this joystick.

The GLFW backend makes no distinction between hats and buttons. Calling ‘getNumHats()’ will return 0.

getX()

Return the X axis value (equivalent to joystick.getAxis(0)).

getY()

Return the Y axis value (equivalent to joystick.getAxis(1)).

getZ()

Return the Z axis value (equivalent to joystick.getAxis(2)).

10.6.13 labjacks (USB I/O devices)

provides an interface to the labjack U3 class with a couple of minor additions.

This is accessible by:

from psychopy.hardware.labjacks import U3

Except for the additional setdata function the U3 class operates exactly as that in the U3 library that labjack provides,
documented here:

http://labjack.com/support/labjackpython

Note: To use labjack devices you do need also to install the driver software described on the page above

class psychopy.hardware.labjacks.U3(debug=False, autoOpen=True, **kargs)
Name: U3.__init__(debug = False, autoOpen = True, **openArgs)

Args: debug is False, True (for stdout) or a logging.Logger
autoOpen, if true, the class will try to open a U3 using openArgs **openArgs, the arguments to pass to the
open call. See U3.open()

Desc: Instantiates a new U3 object. If autoOpen == True, then it will
also open a U3.

Examples: Simplest: >>> import u3 >>> d = u3.U3()

For debug output: >>> import u3 >>> d = u3.U3(debug = True)

To open a U3 with Local ID = 2: >>> import u3 >>> d = u3.U3(firstFound = False, localId = 2)

setData(byte, endian='big', address=6701)
Write 1 byte of data to the U3 register address (EIO default)

Parameters
• byte (-) – the value to write (must be an integer 0:255)

• endian (-) – [‘big’ or ‘small’] ignored from 1.84 onwards

• address (-) – U3 register to write byte to. Both str and int constants are supported:

– ’FIO’ == 6700

– ’EIO’ == 6701 (default, accessed from DB15 breakout)

– ’CIO’ == 6702 (4 bits wide (0 - 15))

10.6. psychopy.hardware - hardware interfaces 589

http://labjack.com/support/labjackpython

PsychoPy - Psychology software for Python, Release 2023.2.3

10.6.14 Minolta

Interfaces for Minolta light-measuring devices.

These are optional components that can be obtained by installing the psychopy-minolta extension into the current
environment.

10.6.15 PhotoResearch

Supported devices:

• PR650

• PR655/PR670

Interfaces for Photo Research Inc. spectroradiometers.

These are optional components that can be obtained by installing the psychopy-photoresearch extension into the current
environment.

10.6.16 pylink (SR Research)

For now the SR Research pylink module is packaged with the Standalone flavours of and can be imported with:

import pylink

You do need to install the Display Software (which they also call Eyelink Developers Kit) for your particular platform.
This can be found by following the threads from the SR Research support forum (creating an account is required):

https://www.sr-support.com/thread-13.html

For documentation of pylink, see:

https://www.sr-support.com/thread-48.html

10.6.17 pump - A simple interface to the Cetoni neMESYS syringe pump system

Please specify the name of the pump configuration to use in the preferences under Hardware / Qmix pump
configuration. See the readme file of the pyqmix project for details on how to set up your computer and create
the configuration file.

Interfaces for Cetoni neMESYS syringe pump systems.

These are optional components that can be obtained by installing the psychopy-qmix extension into the current envi-
ronment.

class psychopy.hardware.qmix.Pump(index, volumeUnit='mL', flowRateUnit='mL/s', syringeType='50 mL
glass')

An interface to Cetoni neMESYS syringe pumps, based on the pyqmix library.

Parameters
• index (int) – The index of the pump. The first pump in the system has index=0, the second

index=1, etc.

• volumeUnit ('mL') – The unit in which the volumes are provided. Currently, only ‘ml’ is
supported.

• flowRateUnit ('mL/s' or 'mL/min) – The unit in which flow rates are provided.

10.6. psychopy.hardware - hardware interfaces 590

https://www.sr-support.com/thread-13.html
https://www.sr-support.com/thread-48.html
https://github.com/psyfood/pyqmix/blob/master/README.md
https://github.com/psyfood/pyqmix/
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

• syringeType ('25 mL glass' or '50 mL glass') – Type of the installed syringe, as un-
derstood by pyqmix.

aspirate(volume, flowRate, waitUntilDone=False, switchValveWhenDone=False)
Aspirate the specified volume.

Parameters
• volume (float) – The volume to aspirate.

• flowRate (float) – The desired flow rate.

• waitUntilDone (bool) – Whether to block program execution until calibration is com-
pleted.

• switchValveWhenDone (bool) – If True, switch the valve to dispense position after the
aspiration is finished. Implies wait_until_done=True.

calibrate(waitUntilDone=False)
Calibrate the syringe pump.

You must not use this function if a syringe is installed in the pump as the syringe may be damaged!

Parameters
waitUntilDone (bool) – Whether to block program execution until calibration is completed.

clearFaultState()

Switch the pump back to an operational state after an error had occurred.

dispense(volume, flowRate, waitUntilDone=False, switchValveWhenDone=False)
Dispense the specified volume.

Parameters
• volume (float) – The volume to dispense.

• flowRate (float) – The desired flow rate.

• waitUntilDone (bool) – Whether to block program execution until calibration is com-
pleted.

• switchValveWhenDone (bool) – If True, switch the valve to aspiation position after the
dispense is finished. Implies wait_until_done=True.

empty(flowRate, waitUntilDone=False, switchValveWhenDone=False)
Empty the syringe entirely.

Parameters
• flowRate (float) – The desired flow rate.

• waitUntilDone (bool) – Whether to block program execution until calibration is com-
pleted.

• switchValveWhenDone (bool) – If True, switch the valve to aspirate position after the
dispensing is finished. Implies wait_until_done=True.

fill(flowRate, waitUntilDone=False, switchValveWhenDone=False)
Fill the syringe entirely.

Parameters
• flowRate (float) – The desired flow rate.

10.6. psychopy.hardware - hardware interfaces 591

https://pyqmix.readthedocs.io/en/latest/interface.html#pyqmix.pump.QmixPump.set_syringe_params_by_type
https://pyqmix.readthedocs.io/en/latest/interface.html#pyqmix.pump.QmixPump.set_syringe_params_by_type
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

• waitUntilDone (bool) – Whether to block program execution until calibration is com-
pleted.

• switchValveWhenDone (bool) – If True, switch the valve to dispense position after the
aspiration is finished. Implies wait_until_done=True.

property fillLevel

Current fill level of the syringe.

property flowRateUnit

The unit in which flow rates are provided.

property isInFaultState

Whether the pump is currently in a non-operational “fault state”.

To enable the pump again, call clearFaultState().

property maxFlowRate

Maximum flow rate the pump can provide with the installed syringe.

stop()

Stop any pump operation immediately.

switchValvePosition()

Switch the valve to the opposite position.

property syringeType

Type of the installed syringe.

property volumeUnit

The unit in which the volumes are provided.

psychopy.hardware.findPhotometer(ports=None, device=None)
Try to find a connected photometer/photospectrometer!

PsychoPy will sweep a series of serial ports trying to open them. If a port successfully opens then it will try
to issue a command to the device. If it responds with one of the expected values then it is assumed to be the
appropriate device.

Parameters
• ports (list) – A list of ports to search. Each port can be a string (e.g. ‘COM1’,

‘/dev/tty.Keyspan1.1’) or a number (for win32 comports only). If None is provided then
PsychoPy will sweep COM0-10 on Win32 and search known likely port names on MacOS
and Linux.

• device (str) – String giving expected device (e.g. ‘PR650’, ‘PR655’, ‘CS100A’, ‘LS100’,
‘LS110’, ‘S470’). If this is not given then an attempt will be made to find a device of any
type, but this often fails.

Returns
An object representing the first photometer found, None if the ports didn’t yield a valid response.
None if there were not even any valid ports (suggesting a driver not being installed.)

Return type
object or None

10.6. psychopy.hardware - hardware interfaces 592

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Sweeps ports 0 to 10 searching for a PR655:

photom = findPhotometer(device='PR655')
print(photom.getLum())
if hasattr(photom, 'getSpectrum'):

can retrieve spectrum (e.g. a PR650)
print(photom.getSpectrum())

10.7 psychopy.iohub - ioHub event monitoring framework

ioHub monitors for device events in parallel with the experiment execution by running in a separate process than the
main script. This means, for instance, that keyboard and mouse event timing is not quantized by the rate at which the
window.flip() method is called.

ioHub reports device events to the experiment runtime as they occur. Optionally, events can be saved to a HDF5 file.

All iohub events are timestamped using the global time base (psychopy.core.getTime()). Events can be accessed as a
device independent event stream, or from a specific device of interest.

A comprehensive set of examples that each use at least one of the iohub devices is available in the psy-
chopy/demos/coder/iohub folder.

10.7.1 Starting the psychopy.iohub Process

To use ioHub within your Coder experiment script, ioHub needs to be started at the beginning of the experiment script.

The easiest way to do this is by calling the launchHubServer function.

launchHubServer Function

psychopy.iohub.client.launchHubServer(**kwargs)
Starts the ioHub Server subprocess, and return a psychopy.iohub.client.ioHubConnection object that is
used to access enabled iohub device’s events, get events, and control the ioHub process during the experiment.

By default (no kwargs specified), the ioHub server does not create an ioHub HDF5 file, events are available to
the experiment program at runtime. The following Devices are enabled by default:

• Keyboard: named ‘keyboard’, with runtime event reporting enabled.

• Mouse: named ‘mouse’, with runtime event reporting enabled.

• Monitor: named ‘monitor’.

• Experiment: named ‘experiment’.

To customize how the ioHub Server is initialized when started, use one or more of the following keyword argu-
ments when calling the function:

Parameters
• experiment_code (str, <= 256 char) – If experiment_code is provided, an ioHub

HDF5 file will be created for the session.

• session_code (str, <= 256 char) – When specified, used as the name of the ioHub
HDF5 file created for the session.

10.7. psychopy.iohub - ioHub event monitoring framework 593

http://www.hdfgroup.org/HDF5/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

• experiment_info (dict) – Can be used to save the following experiment metadata fields:
code (<=256 chars), title (<=256 chars), description (<=4096 chars), version (<=32 chars)

• session_info (dict) – Can be used to save the following session metadata fields: code
(<=256 chars), name (<=256 chars), comments (<=4096 chars), user_variables (dict)

• datastore_name (str) – Used to provide an ioHub HDF5 file name different than the
session_code.

• window (psychopy.visual.Window) – The psychoPy experiment window being used. In-
formation like display size, viewing distance, coord / color type is used to update the ioHub
Display device.

• iohub_config_name (str) – Specifies the name of the iohub_config.yaml file that contains
the ioHub Device list to be used by the ioHub Server. i.e. the ‘device_list’ section of the yaml
file.

• iohub.device.path (str) – Add an ioHub Device by using the device class path as the
key, and the device’s configuration in a dict value.

• psychopy_monitor ((deprecated)) – The path to a Monitor Center config file

• Examples –

A. Wait for the ‘q’ key to be pressed:

from psychopy.iohub.client import launchHubServer

Start the ioHub process. 'io' can now be used during the
experiment to access iohub devices and read iohub device events.
io=launchHubServer()

print("Press any Key to Exit Example.....")

Wait until a keyboard event occurs
keys = io.devices.keyboard.waitForKeys(keys=['q',])

print("Key press detected: {}".format(keys))
print("Exiting experiment....")

Stop the ioHub Server
io.quit()

• examples (Please see the psychopy/demos/coder/iohub/launchHub.py demo
for) –

• function. (of different ways to use the launchHubServer) –

10.7. psychopy.iohub - ioHub event monitoring framework 594

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

ioHubConnection Class

The psychopy.iohub.ioHubConnection object returned from the launchHubServer function provides methods for con-
trolling the iohub process and accessing iohub devices and events.

class psychopy.iohub.client.ioHubConnection(ioHubConfig=None, ioHubConfigAbsPath=None)
ioHubConnection is responsible for creating, sending requests to, and reading replies from the ioHub Process.
This class is also used to shut down and disconnect the ioHub Server process.

The ioHubConnection class is also used as the interface to any ioHub Device instances that have been created so
that events from the device can be monitored. These device objects can be accessed via the ioHubConnection
.devices attribute, providing ‘dot name’ access to enabled devices. Alternatively, the .getDevice(name) method
can be used and will return None if the device name specified does not exist.

Using the .devices attribute is handy if you know the name of the device to be accessed and you are sure it is
actually enabled on the ioHub Process.

An example of accessing a device using the .devices attribute:

get the Mouse device, named mouse
mouse=hub.devices.mouse
mouse_position = mouse.getPosition()

print 'mouse position: ', mouse_position

Returns something like:
>> mouse position: [-211.0, 371.0]

getDevice(deviceName)
Returns the ioHubDeviceView that has a matching name (based on the device : name property specified in
the ioHub_config.yaml for the experiment). If no device with the given name is found, None is returned.
Example, accessing a Keyboard device that was named ‘kb’

keyboard = self.getDevice('kb')
kb_events= keyboard.getEvent()

This is the same as using the ‘natural naming’ approach supported by the .devices attribute, i.e:

keyboard = self.devices.kb
kb_events= keyboard.getEvent()

However the advantage of using getDevice(device_name) is that an exception is not created if you provide
an invalid device name, or if the device is not enabled on the ioHub server; None is returned instead.

Parameters
deviceName (str) – Name given to the ioHub Device to be returned

Returns
The ioHubDeviceView instance for deviceName.

getEvents(device_label=None, as_type='namedtuple')
Retrieve any events that have been collected by the ioHub Process from monitored devices since the last
call to getEvents() or clearEvents().

By default all events for all monitored devices are returned, with each event being represented as a named-
tuple of all event attributes.

When events are retrieved from an event buffer, they are removed from that buffer as well.

10.7. psychopy.iohub - ioHub event monitoring framework 595

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

If events are only needed from one device instead of all devices, providing a valid device name as the
device_label argument will result in only events from that device being returned.

Events can be received in one of several object types by providing the optional as_type property to the
method. Valid values for as_type are the following str values:

• ‘list’: Each event is a list of ordered attributes.

• ‘namedtuple’: Each event is converted to a namedtuple object.

• ‘dict’: Each event converted to a dict object.

• ‘object’: Each event is converted to a DeviceEvent subclass
based on the event’s type.

Parameters
• device_label (str) – Name of device to retrieve events for. If None (the default) returns

device events from all devices.

• as_type (str) – Returned event object type. Default: ‘namedtuple’.

Returns
List of event objects; object type controlled by ‘as_type’.

Return type
tuple

clearEvents(device_label='all')
Clears unread events from the ioHub Server’s Event Buffer(s) so that unneeded events are not discarded.

If device_label is ‘all’, (the default), then events from both the ioHub Global Event Buffer and all Device
Event Buffer’s are cleared.

If device_label is None then all events in the ioHub Global Event Buffer are cleared, but the Device Event
Buffers are unaffected.

If device_label is a str giving a valid device name, then that Device Event Buffer is cleared, but the Global
Event Buffer is not affected.

Parameters
device_label (str) – device name, ‘all’, or None

Returns
None

sendMessageEvent(text, category='', offset=0.0, sec_time=None)
Create and send an Experiment MessageEvent to the ioHub Server for storage in the ioDataStore hdf5 file.

Parameters
• text (str) – The text message for the message event. 128 char max.

• category (str) – A str grouping code for the message. Optional. 32 char max.

• offset (float) – Optional sec.msec offset applied to the message event time stamp. De-
fault 0.

• sec_time (float) – Absolute sec.msec time stamp for the message in. If not provided, or
None, then the MessageEvent is time stamped when this method is called using the global
timer (core.getTime()).

10.7. psychopy.iohub - ioHub event monitoring framework 596

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

cacheMessageEvent(text, category='', offset=0.0, sec_time=None)
Create an Experiment MessageEvent and store in local cache. Message must be sent before it is saved to
hdf5 file.

Parameters
• text (str) – The text message for the message event. 128 char max.

• category (str) – A str grouping code for the message. Optional. 32 char max.

• offset (float) – Optional sec.msec offset applied to the message event time stamp. De-
fault 0.

• sec_time (float) – Absolute sec.msec time stamp for the message in. If not provided, or
None, then the MessageEvent is time stamped when this method is called using the global
timer (core.getTime()).

createTrialHandlerRecordTable(trials, cv_order=None)
Create a condition variable table in the ioHub data file based on the a psychopy TrialHandler. By doing
so, the iohub data file can contain the DV and IV values used for each trial of an experiment session, along
with all the iohub device events recorded by iohub during the session.

Example psychopy code usage:

Load a trial handler and
create an associated table in the iohub data file
#
from psychopy.data import TrialHandler, importConditions

exp_conditions=importConditions('trial_conditions.xlsx')
trials = TrialHandler(exp_conditions, 1)

Inform the ioHub server about the TrialHandler
#
io.createTrialHandlerRecordTable(trials)

Read a row of the trial handler for
each trial of your experiment
#
for trial in trials:

do whatever...

During the trial, trial variable values can be updated
#
trial['TRIAL_START']=flip_time

At the end of each trial, before getting
the next trial handler row, send the trial
variable states to iohub so they can be stored for future
reference.
#
io.addTrialHandlerRecord(trial)

addTrialHandlerRecord(cv_row)
Adds the values from a TriaHandler row / record to the iohub data file for future data analysis use.

10.7. psychopy.iohub - ioHub event monitoring framework 597

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
cv_row –

Returns
None

getTime()

Deprecated Method: Use Computer.getTime instead. Remains here for testing time bases between pro-
cesses only.

syncClock(clock)
Synchronise ioHub’s internal clock with a given instance of MonotonicClock.

setPriority(level='normal', disable_gc=False)
See Computer.setPriority documentation, where current process will be the iohub process.

getPriority()

See Computer.getPriority documentation, where current process will be the iohub process.

getProcessAffinity()

Returns the current ioHub Process affinity setting, as a list of ‘processor’ id’s (from 0 to
getSystemProcessorCount()-1). A Process’s Affinity determines which CPU’s or CPU cores a process can
run on. By default the ioHub Process can run on any CPU or CPU core.

This method is not supported on OS X at this time.

Parameters
None –

Returns
A list of integer values between 0 and

Computer.getSystemProcessorCount()-1, where values in the list indicate processing unit
indexes that the ioHub process is able to run on.

Return type
list

setProcessAffinity(processor_list)
Sets the ioHub Process Affinity based on the value of processor_list.

A Process’s Affinity determines which CPU’s or CPU cores a process can run on. By default the ioHub
Process can run on any CPU or CPU core.

The processor_list argument must be a list of ‘processor’ id’s; integers in the range of 0 to
Computer.processing_unit_count-1, representing the processing unit indexes that the ioHub Server should
be allowed to run on.

If processor_list is given as an empty list, the ioHub Process will be able to run on any processing unit on
the computer.

This method is not supported on OS X at this time.

Parameters
processor_list (list) – A list of integer values between 0 and
Computer.processing_unit_count-1, where values in the list indicate processing unit
indexes that the ioHub process is able to run on.

Returns
None

10.7. psychopy.iohub - ioHub event monitoring framework 598

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PsychoPy - Psychology software for Python, Release 2023.2.3

flushDataStoreFile()

Manually tell the iohub datastore to flush any events it has buffered in memory to disk. Any cached message
events are sent to the iohub server before flushing the iohub datastore.

Parameters
None –

Returns
None

startCustomTasklet(task_name, task_class_path, **class_kwargs)
Instruct the iohub server to start running a custom tasklet given by task_class_path. It is important that
the custom task does not block for any significant amount of time, or the processing of events by the iohub
server will be negatively effected.

See the customtask.py demo for an example of how to make a long running task not block the rest of the
iohub server.

stopCustomTasklet(task_name)
Instruct the iohub server to stop the custom task that was previously started by calling
self.startCustomTasklet(. . . .). task_name identifies which custom task should be stopped and must
match the task_name of a previously started custom task.

shutdown()

Tells the ioHub Server to close all ioHub Devices, the ioDataStore, and the connection monitor between
the PsychoPy and ioHub Processes. Then end the server process itself.

Parameters
None –

Returns
None

quit()

Same as the shutdown() method, but has same name as PsychoPy core.quit() so maybe easier to remember.

_startServer(ioHubConfig=None, ioHubConfigAbsPath=None)
Starts the ioHub Process, storing it’s process id, and creating the experiment side device representation for
IPC access to public device methods.

_createDeviceList(monitor_devices_config)
Create client side iohub device views.

_addDeviceView(dev_cls_name, dev_config)
Add an iohub device view to self.devices

_sendToHubServer(tx_data)
General purpose local <-> iohub server process UDP based request - reply code. The method blocks until
the request is fulfilled and and a response is received from the ioHub server.

Parameters
tx_data (tuple) – data to send to iohub server

Return (object): response from the ioHub Server process.

_sendExperimentInfo(experimentInfoDict)
Sends the experiment info from the experiment config file to the ioHub Server, which passes it to the
ioDataStore, determines if the experiment already exists in the hdf5 file based on ‘experiment_code’, and
returns a new or existing experiment ID based on that criteria.

10.7. psychopy.iohub - ioHub event monitoring framework 599

https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

_sendSessionInfo(sess_info)
Sends the experiment session info from the experiment config file and the values entered into the session
dialog to the ioHub Server, which passes it to the ioDataStore.

The dataStore determines if the session already exists in the experiment file based on ‘session_code’, and
returns a new session ID if session_code is not in use by the experiment.

static _isErrorReply(data)
Check if an iohub server reply contains an error that should be raised by the local process.

10.7.2 Supported Devices

psychopy.iohub supports several different device types.

Details for each device can be found in the following sections.

Keyboard Device

The iohub Keyboard device provides methods to:
• Check for any new keyboard events that have occurred since the last time keyboard events were checked or

cleared.

• Wait until a keyboard event occurs.

• Clear the device of any unread events.

• Get a list of all currently pressed keys.

class psychopy.iohub.client.keyboard.Keyboard(ioclient, dev_cls_name, dev_config)
The Keyboard device provides access to KeyboardPress and KeyboardRelease events as well as the current key-
board state.

Examples

A. Print all keyboard events received for 5 seconds:

from psychopy.iohub import launchHubServer
from psychopy.core import getTime

Start the ioHub process. 'io' can now be used during the
experiment to access iohub devices and read iohub device events.
io = launchHubServer()

keyboard = io.devices.keyboard

Check for and print any Keyboard events received for 5 seconds.
stime = getTime()
while getTime()-stime < 5.0:

for e in keyboard.getEvents():
print(e)

Stop the ioHub Server
io.quit()

10.7. psychopy.iohub - ioHub event monitoring framework 600

PsychoPy - Psychology software for Python, Release 2023.2.3

B. Wait for a keyboard press event (max of 5 seconds):

from psychopy.iohub import launchHubServer
from psychopy.core import getTime

Start the ioHub process. 'io' can now be used during the
experiment to access iohub devices and read iohub device events.
io = launchHubServer()

keyboard = io.devices.keyboard

Wait for a key keypress event (max wait of 5 seconds)
presses = keyboard.waitForPresses(maxWait=5.0)

print(presses)

Stop the ioHub Server
io.quit()

_syncDeviceState()

An optimized iohub server request that receives all device state and event information in one response.

Returns
None

getKeys(keys=None, chars=None, ignoreKeys=None, mods=None, duration=None, etype=None,
clear=True)

Return a list of any KeyboardPress or KeyboardRelease events that have occurred since the last time either:

• this method was called with the kwarg clear=True (default)

• the keyboard.clear() method was called.

Other than the ‘clear’ kwarg, any kwargs that are not None or an empty list are used to filter the possible
events that can be returned. If multiple filter criteria are provided, only events that match all specified
criteria are returned.

If no KeyboardEvent’s are found that match the filtering criteria, an empty tuple is returned.

Returned events are sorted by time.

Parameters
• keys – Include events where .key in keys.

• chars – Include events where .char in chars.

• ignoreKeys – Ignore events where .key in ignoreKeys.

• mods – Include events where .modifiers include >=1 mods element.

• duration – Include KeyboardRelease events where .duration > duration or .duration <
-(duration).

• etype – Include events that match etype of Keyboard.KEY_PRESS or Key-
board.KEY_RELEASE.

• clear – True (default) = clear returned events from event buffer, False = leave the keyboard
event buffer unchanged.

10.7. psychopy.iohub - ioHub event monitoring framework 601

PsychoPy - Psychology software for Python, Release 2023.2.3

Returns
tuple of KeyboardEvent instances, or ()

getPresses(keys=None, chars=None, ignoreKeys=None, mods=None, clear=True)
See the getKeys() method documentation.

This method is identical, but only returns KeyboardPress events.

getReleases(keys=None, chars=None, ignoreKeys=None, mods=None, duration=None, clear=True)
See the getKeys() method documentation.

This method is identical, but only returns KeyboardRelease events.

property reporting

Specifies if the the keyboard device is reporting / recording events.

• True: keyboard events are being reported.

• False: keyboard events are not being reported.

By default, the Keyboard starts reporting events automatically when the ioHub process is started and con-
tinues to do so until the process is stopped.

This property can be used to read or set the device reporting state:

Read the reporting state of the keyboard.
is_reporting_keyboard_event = keyboard.reporting

Stop the keyboard from reporting any new events.
keyboard.reporting = False

property state

time values. The key is taken from the originating press event .key field. The time value is time of the key
press event.

Note that any pressed, or active, modifier keys are included in the return value.

Returns
dict

Type
Returns all currently pressed keys as a dictionary of key

waitForKeys(maxWait=None, keys=None, chars=None, mods=None, duration=None, etype=None,
clear=True, checkInterval=0.002)

Blocks experiment execution until at least one matching KeyboardEvent occurs, or until maxWait seconds
has passed since the method was called.

Keyboard events are filtered the same way as in the getKeys() method.

As soon as at least one matching KeyboardEvent occurs prior to maxWait, the matching events are returned
as a tuple.

Returned events are sorted by time.

Parameters
• maxWait – Maximum seconds method waits for >=1 matching event. If <=0.0, method

functions the same as getKeys(). If None, the methods blocks indefinitely.

• keys – Include events where .key in keys.

• chars – Include events where .char in chars.

10.7. psychopy.iohub - ioHub event monitoring framework 602

PsychoPy - Psychology software for Python, Release 2023.2.3

• mods – Include events where .modifiers include >=1 mods element.

• duration – Include KeyboardRelease events where .duration > duration or .duration <
-(duration).

• etype – Include events that match etype of Keyboard.KEY_PRESS or Key-
board.KEY_RELEASE.

• clear – True (default) = clear returned events from event buffer, False = leave the keyboard
event buffer unchanged.

• checkInterval – The time between geyKeys() calls while waiting. The method sleeps
between geyKeys() calls, up until checkInterval*2.0 sec prior to the maxWait. After that
time, keyboard events are constantly checked until the method times out.

Returns
tuple of KeyboardEvent instances, or ()

waitForPresses(maxWait=None, keys=None, chars=None, mods=None, duration=None, clear=True,
checkInterval=0.002)

See the waitForKeys() method documentation.

This method is identical, but only returns KeyboardPress events.

waitForReleases(maxWait=None, keys=None, chars=None, mods=None, duration=None, clear=True,
checkInterval=0.002)

See the waitForKeys() method documentation.

This method is identical, but only returns KeyboardRelease events.

Keyboard Events

The Keyboard device can return two types of events, which represent key press and key release actions on the keyboard.

KeyboardPress Event

class psychopy.iohub.client.keyboard.KeyboardPress(ioe_array)
An iohub Keyboard device key press event.

property char

The unicode value of the keyboard event, if available. This field is only populated when the keyboard event
results in a character that could be printable.

Returns
unicode, ‘’ if no char value is available for the event.

property device

The ioHubDeviceView that is associated with the event, i.e. the iohub device view for the device that
generated the event.

Returns
ioHubDeviceView

property modifiers

A list of any modifier keys that were pressed when this keyboard event occurred. Each element of the list
contains a keyboard modifier string constant. Possible values are:

• ‘lctrl’, ‘rctrl’

10.7. psychopy.iohub - ioHub event monitoring framework 603

PsychoPy - Psychology software for Python, Release 2023.2.3

• ‘lshift’, ‘rshift’

• ‘lalt’, ‘ralt’ (labelled as ‘option’ keys on Apple Keyboards)

• ‘lcmd’, ‘rcmd’ (map to the ‘windows’ key(s) on Windows keyboards)

• ‘menu’

• ‘capslock’

• ‘numlock’

• ‘function’ (OS X only)

• ‘modhelp’ (OS X only)

If no modifiers were active when the event occurred, an empty list is returned.

Returns
tuple

property time

The time stamp of the event. Uses the same time base that is used by psychopy.core.getTime()

Returns
float

property type

The event type string constant.

Returns
str

KeyboardRelease Event

class psychopy.iohub.client.keyboard.KeyboardRelease(ioe_array)
An iohub Keyboard device key release event.

property duration

The duration (in seconds) of the key press. This is calculated by subtracting the current event.time from
the associated keypress.time.

If no matching keypress event was reported prior to this event, then 0.0 is returned. This can happen, for
example, when the key was pressed prior to psychopy starting to monitor the device. This condition can
also happen when keyboard.reset() method is called between the press and release event times.

Returns
float

property pressEventID

The event.id of the associated press event.

The key press id is 0 if no associated KeyboardPress event was found. See the duration property documen-
tation for details on when this can occur.

Returns
unsigned int

property char

The unicode value of the keyboard event, if available. This field is only populated when the keyboard event
results in a character that could be printable.

10.7. psychopy.iohub - ioHub event monitoring framework 604

PsychoPy - Psychology software for Python, Release 2023.2.3

Returns
unicode, ‘’ if no char value is available for the event.

property device

The ioHubDeviceView that is associated with the event, i.e. the iohub device view for the device that
generated the event.

Returns
ioHubDeviceView

property modifiers

A list of any modifier keys that were pressed when this keyboard event occurred. Each element of the list
contains a keyboard modifier string constant. Possible values are:

• ‘lctrl’, ‘rctrl’

• ‘lshift’, ‘rshift’

• ‘lalt’, ‘ralt’ (labelled as ‘option’ keys on Apple Keyboards)

• ‘lcmd’, ‘rcmd’ (map to the ‘windows’ key(s) on Windows keyboards)

• ‘menu’

• ‘capslock’

• ‘numlock’

• ‘function’ (OS X only)

• ‘modhelp’ (OS X only)

If no modifiers were active when the event occurred, an empty list is returned.

Returns
tuple

property time

The time stamp of the event. Uses the same time base that is used by psychopy.core.getTime()

Returns
float

property type

The event type string constant.

Returns
str

The ioHub Mouse Device

Platforms: Windows, macOS, Linux

10.7. psychopy.iohub - ioHub event monitoring framework 605

PsychoPy - Psychology software for Python, Release 2023.2.3

Mouse Event Types

The Mouse device supports the following event types. Device events returned by getEvents() are automatically con-
verted to either namedtuple or dictionary objects with the same attributes / keys as the associated event class attributes.

ioHub Common Eye Tracker Interface

The iohub common eye tracker interface provides a consistent way to configure and collected data from several different
eye tracker manufacturers.

Supported Eye Trackers

The following eye trackers are currently supported by iohub.

Gazepoint

Platforms:
• Windows 7 / 10 only

Required Python Version:
• Python 3.6 +

Supported Models:
• Gazepoint GP3

Additional Software Requirements

To use your Gazepoint GP3 during an experiment you must first start the Gazepoint Control software on the computer
running .

EyeTracker Class

Supported Event Types

The Gazepoint GP3 provides real-time access to binocular sample data. iohub creates a BinocularEyeSampleEvent for
each sample received from the GP3.

The following fields of the BinocularEyeSample event are supported:

class psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent(*args, **kwargs)
The BinocularEyeSampleEvent event represents the eye position and eye attribute data collected from one frame
or reading of an eye tracker device that is recording both eyes of a participant.

Event Type ID: EventConstants.BINOCULAR_EYE_SAMPLE

Event Type String: ‘BINOCULAR_EYE_SAMPLE’

time

time of event, in sec.msec format, using psychopy timebase.

10.7. psychopy.iohub - ioHub event monitoring framework 606

PsychoPy - Psychology software for Python, Release 2023.2.3

left_gaze_x

The horizontal position of the left eye on the computer screen, in Display Coordinate Type Units. Calibra-
tion must be done prior to reading (meaningful) gaze data. Uses Gazepoint LPOGX field.

left_gaze_y

The vertical position of the left eye on the computer screen, in Display Coordinate Type Units. Calibration
must be done prior to reading (meaningful) gaze data. Uses Gazepoint LPOGY field.

left_raw_x

The uncalibrated x position of the left eye in a device specific coordinate space. Uses Gazepoint LPCX
field.

left_raw_y

The uncalibrated y position of the left eye in a device specific coordinate space. Uses Gazepoint LPCY
field.

left_pupil_measure_1

Left eye pupil diameter. (in camera pixels??). Uses Gazepoint LPD field.

right_gaze_x

The horizontal position of the right eye on the computer screen, in Display Coordinate Type Units. Cali-
bration must be done prior to reading (meaningful) gaze data. Uses Gazepoint RPOGX field.

right_gaze_y

The vertical position of the right eye on the computer screen, in Display Coordinate Type Units. Calibration
must be done prior to reading (meaningful) gaze data. Uses Gazepoint RPOGY field.

right_raw_x

The uncalibrated x position of the right eye in a device specific coordinate space. Uses Gazepoint RPCX
field.

right_raw_y

The uncalibrated y position of the right eye in a device specific coordinate space. Uses Gazepoint RPCY
field.

right_pupil_measure_1

Right eye pupil diameter. (in camera pixels??). Uses Gazepoint RPD field.

status

Indicates if eye sample contains ‘valid’ data for left and right eyes. 0 = Eye sample is OK. 2 = Right eye
data is likely invalid. 20 = Left eye data is likely invalid. 22 = Eye sample is likely invalid.

iohub also creates basic start and end fixation events by using Gazepoint FPOG* fields. Identical / duplicate fixation
events are created for the left and right eye.

class psychopy.iohub.devices.eyetracker.FixationStartEvent(*args, **kwargs)
A FixationStartEvent is generated when the beginning of an eye fixation (in very general terms, a period of
relatively stable eye position) is detected by the eye trackers sample parsing algorithms.

Event Type ID: EventConstants.FIXATION_START

Event Type String: ‘FIXATION_START’

time

time of event, in sec.msec format, using psychopy timebase.

eye

Eye that generated the event. Either EyeTrackerConstants.LEFT_EYE or EyeTrackerCon-
stants.RIGHT_EYE.

10.7. psychopy.iohub - ioHub event monitoring framework 607

PsychoPy - Psychology software for Python, Release 2023.2.3

gaze_x

The calibrated horizontal eye position on the computer screen at the start of the fixation. Units are same as
Display. Calibration must be done prior to reading (meaningful) gaze data. Uses Gazepoint FPOGX field.

gaze_y

The calibrated horizontal eye position on the computer screen at the start of the fixation. Units are same as
Display. Calibration must be done prior to reading (meaningful) gaze data. Uses Gazepoint FPOGY field.

class psychopy.iohub.devices.eyetracker.FixationEndEvent(*args, **kwargs)
A FixationEndEvent is generated when the end of an eye fixation (in very general terms, a period of relatively
stable eye position) is detected by the eye trackers sample parsing algorithms.

Event Type ID: EventConstants.FIXATION_END

Event Type String: ‘FIXATION_END’

time

time of event, in sec.msec format, using psychopy timebase.

eye

Eye that generated the event. Either EyeTrackerConstants.LEFT_EYE or EyeTrackerCon-
stants.RIGHT_EYE.

average_gaze_x

Average calibrated horizontal eye position during the fixation, specified in Display Units. Uses Gazepoint
FPOGX field.

average_gaze_y

Average calibrated vertical eye position during the fixation, specified in Display Units. Uses Gazepoint
FPOGY field.

duration

Duration of the fixation in sec.msec format. Uses Gazepoint FPOGD field.

Default Device Settings

eyetracker.hw.gazepoint.gp3.EyeTracker:
Indicates if the device should actually be loaded at experiment runtime.
enable: True

The variable name of the device that will be used to access the ioHub Device class
during experiment run-time, via the devices.[name] attribute of the ioHub
connection or experiment runtime class.
name: tracker

Should eye tracker events be saved to the ioHub DataStore file when the device
is recording data ?
save_events: True

Should eye tracker events be sent to the Experiment process when the device
is recording data ?
stream_events: True

How many eye events (including samples) should be saved in the ioHub event buffer␣
(continues on next page)

10.7. psychopy.iohub - ioHub event monitoring framework 608

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

→˓before
old eye events start being replaced by new events. When the event buffer reaches
the maximum event length of the buffer defined here, older events will start to be␣

→˓dropped.
event_buffer_length: 1024

The GP3 implementation of the common eye tracker interface supports the
BinocularEyeSampleEvent event type.
monitor_event_types: [BinocularEyeSampleEvent, FixationStartEvent, FixationEndEvent]

device_timer:
interval: 0.005

calibration:
target_duration is the number of sec.msec that a calibration point should
be displayed before moving onto the next point.
(Sets the GP3 CALIBRATE_TIMEOUT)
target_duration: 1.25
target_delay specifies the target animation duration in sec.msec.
(Sets the GP3 CALIBRATE_DELAY)
target_delay: 0.5

The model name of the device.
model_name: GP3

The serial number of the GP3 device.
serial_number:

manufacturer_name is used to store the name of the maker of the eye tracking
device. This is for informational purposes only.
manufacturer_name: GazePoint

Last Updated: January, 2021

Pupil Labs - Core

Table of Contents

• Pupil Labs - Core

– High Level Pupil Core Introduction

– Device, Software, and Connection Setup

∗ Additional Software Requirements

∗ Setting Up the Eye Tracker

∗ Setting Up

∗ Pupillometry + Gaze Mode

– Implementation and API Overview

10.7. psychopy.iohub - ioHub event monitoring framework 609

PsychoPy - Psychology software for Python, Release 2023.2.3

∗ EyeTracker Class

∗ Supported Event Types

· Default Device Settings

High Level Pupil Core Introduction

Pupil Core is a wearable eye tracker. The system consists of two inward-facing eye cameras and one forward-facing
world camera mounted on a wearable eyeglasses-like frame.

Pupil Core provides gaze data in its world camera’s field of view, regardless of the wearer’s head position. As such,
gaze can be analysed with the wearer looking and moving freely in their environment.

Pupil Core differs from remote eye trackers often used with . Remote eye trackers employ cameras mounted on or near
a computer monitor. They provide gaze in screen-based coordinates, and this facilitates closed-loop analyses of gaze
based on the known position of stimuli on-screen and eye gaze direction.

In order to use Pupil Core for screen-based work in , the screen will need to be robustly located within the world
camera’s field of view, and Pupil Core’s gaze data subsequently transformed from world camera-based coordinates to
screen-based coordinates. This is achieved with the use of AprilTag Markers.

For a detailed overview of wearable vs remote eye trackers, check out this Pupil Labs blog post.

Join the Pupil Labs Discord community to share your research and/or questions.

10.7. psychopy.iohub - ioHub event monitoring framework 610

https://pupil-labs.com/products/core/
https://docs.pupil-labs.com/core/software/pupil-capture/#markers
https://pupil-labs.com/blog/news/what-is-eye-tracking/
https://pupil-labs.com/chat

PsychoPy - Psychology software for Python, Release 2023.2.3

Device, Software, and Connection Setup

Additional Software Requirements

Pupil Capture version v2.0 or newer

Platforms:

• Windows 10

• macOS 10.14 or newer

• Ubuntu 16.04 or newer

Supported Models:

• Pupil Core headset

Setting Up the Eye Tracker

1. Follow Pupil Core’s Getting Started guide to setup the headset and Capture software

Setting Up

1. Open experiment settings in the Builder Window (cog icon in top panel)

2. Open the Eyetracking tab

3. Modify the properties as follows:

• Select Pupil Labs from the Eyetracker Device drop down menu

• Pupil Remote Address / Port - Defines how to connect to Pupil Capture. See Pupil Capture’s Network
API menu to check address and port are correct. will wait the amount of milliseconds declared in Pupil
Remote Timeout (ms) for the connection to be established. An error will be raised if the timeout is
reached.

• Pupil Capture Recording - Enable this option to tell Pupil Capture to record the eye tracker’s raw data
during the experiment. You can read more about that in Pupil Capture’s official documentation. Leave
Pupil Capture Recording Location empty to record to the default

• Gaze Confidence Threshold - Set the minimum data quality received from Pupil Capture. Ranges from
0.0 (all data) to 1.0 (highest possible quality). We recommend using the default value of 0.6.

• Pupillometry Only - If this mode is selected you will only receive pupillometry data. No further setup
is required. If you are interested in gaze data, keep this option disabled and read on below.

10.7. psychopy.iohub - ioHub event monitoring framework 611

https://github.com/pupil-labs/pupil/releases/latest
https://docs.pupil-labs.com/core/#getting-started
https://docs.pupil-labs.com/core/software/pupil-capture/#recording

PsychoPy - Psychology software for Python, Release 2023.2.3

Pupillometry + Gaze Mode

To receive gaze, enable Pupil Capture’s Surface Tracking plugin:

1. Start by printing four apriltag markers and attaching them at the screen corners. Avoid occluding the screen and
leave sufficient white space around the marker squares. Read more about the general marker setup here.

10.7. psychopy.iohub - ioHub event monitoring framework 612

https://docs.pupil-labs.com/assets/img/apriltags_tag36h11_0-23.37196546.jpg
https://docs.pupil-labs.com/core/software/pupil-capture/#surface-tracking

PsychoPy - Psychology software for Python, Release 2023.2.3

1. Enable the surface tracker plugin

2. Define a surface and align its surface corners with the screen corners as good as possible

3. Rename the surface to the name set in the Surface Name field of the eye tracking project settings (default:
psychopy_iohub_surface)

4. Run the calibration component as part of your experiment

Implementation and API Overview

EyeTracker Class

class psychopy.iohub.devices.eyetracker.hw.pupil_labs.pupil_core.EyeTracker(*args,
**kwargs)

Bases: EyeTrackerDevice

Implementation of the Common Eye Tracker Interface for the Pupil Core headset.

Uses ioHub’s polling method to process data from Pupil Capture’s Network API.

To synchronize time between Pupil Capture and PsychoPy, the integration estimates the offset between their
clocks and applies it to the incoming data. This step effectively transforms time between the two softwares while
taking the transmission delay into account. For details, see this real-time time-sync tutorial.

This class operates in two modes, depending on the pupillometry_only runtime setting:

1. Pupillometry-only mode
If the pupillometry_only setting is to True, the integration will only receive eye-camera based
metrics, e.g. pupil size, its location in eye camera coordinates, etc. The advatage of this mode is that

10.7. psychopy.iohub - ioHub event monitoring framework 613

https://docs.pupil-labs.com/core/software/pupil-capture/#plugins
https://docs.pupil-labs.com/core/software/pupil-capture/#defining-a-surface
https://docs.pupil-labs.com/developer/core/network-api/
https://github.com/pupil-labs/pupil-helpers/blob/master/python/simple_realtime_time_sync.py

PsychoPy - Psychology software for Python, Release 2023.2.3

it does not require calibrating the eye tracker or setting up AprilTag markers for the AoI tracking. To
receive gaze data in PsychoPy screen coordinates, see the Pupillometry+Gaze mode below.

Internally, this is implemented by subscribing to the pupil. data topic.

2. Pupillometry+Gaze mode
If the Pupillometry only setting is set to False, the integration will receive positional data in
addition to the pupillometry data mentioned above. For this to work, one has to setup Pupil Capture’s
built-in AoI tracking system and perform a calibration for each subject.

The integration takes care of translating the spatial coordinates to PsychoPy display coordinates.

Internally, this mode is implemented by subscribing to the gaze.3d. and the corresponding surface
name data topics.only

Note: Only one instance of EyeTracker can be created within an experiment. Attempting to create > 1 instance
will raise an exception.

getLastGazePosition()→ Tuple[float, float] | None
The getLastGazePosition method returns the most recent eye gaze position received from the Eye Tracker.
This is the position on the calibrated 2D surface that the eye tracker is reporting as the current eye position.
The units are in the units in use by the ioHub Display device.

If binocular recording is being performed, the average position of both eyes is returned.

If no samples have been received from the eye tracker, or the eye tracker is not currently recording data,
None is returned.

Returns
• None:

If the eye tracker is not currently recording data or no eye samples have been received.

• tuple:
Latest (gaze_x,gaze_y) position of the eye(s)

getLastSample()→ None | psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent |
psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent

The getLastSample method returns the most recent eye sample received from the Eye Tracker. The Eye
Tracker must be in a recording state for a sample event to be returned, otherwise None is returned.

Returns
• MonocularEyeSampleEvent:

Gaze mapping result from a single pupil detection. Only emitted if a second eye cam-
era is not being operated or the confidence of the pupil detection was insufficient for a
binocular pair. See also this high-level overview of the Pupil Capture Data Matching
algorithm

• BinocularEyeSample:
Gaze mapping result from two combined pupil detections

• None:
If the eye tracker is not currently recording data.

isConnected()→ bool
isConnected returns whether the ioHub EyeTracker Device is connected to Pupil Capture or not. A Pupil
Core headset must be connected and working properly for any of the Common Eye Tracker Interface func-
tionality to work.

10.7. psychopy.iohub - ioHub event monitoring framework 614

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://github.com/N-M-T/pupil-docs/commit/1dafe298565720a4bb7500a245abab7a6a2cd92f
https://github.com/N-M-T/pupil-docs/commit/1dafe298565720a4bb7500a245abab7a6a2cd92f
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
None –

Returns
bool: True = the eye tracking hardware is connected. False otherwise.

isRecordingEnabled()→ bool
The isRecordingEnabled method indicates if the eye tracker device is currently recording data.

Returns
True == the device is recording data; False == Recording is not occurring

runSetupProcedure(calibration_args: Dict | None = None)→ int
The runSetupProcedure method starts the Pupil Capture calibration choreography.

Note: This is a blocking call for the PsychoPy Process and will not return to the experiment script until
the calibration procedure was either successful, aborted, or failed.

Parameters
calibration_args – This argument will be ignored and has only been added for the purpose
of compatibility with the Common Eye Tracker Interface

Returns
• EyeTrackerConstants.EYETRACKER_OK

if the calibration was succesful

• EyeTrackerConstants.EYETRACKER_SETUP_ABORTED
if the choreography was aborted by the user

• EyeTrackerConstants.EYETRACKER_CALIBRATION_ERROR
if the calibration failed, check logs for details

• EyeTrackerConstants.EYETRACKER_ERROR
if any other error occured, check logs for details

setConnectionState(enable: bool)→ None
setConnectionState either connects (setConnectionState(True)) or disables
(setConnectionState(False)) active communication between the ioHub and Pupil Capture.

Note: A connection to the Eye Tracker is automatically established when the ioHub Process is initialized
(based on the device settings in the iohub_config.yaml), so there is no need to explicitly call this method in
the experiment script.

Note: Connecting an Eye Tracker to the ioHub does not necessarily collect and send eye sample data to the
ioHub Process. To start actual data collection, use the Eye Tracker method setRecordingState(bool)
or the ioHub Device method (device type independent) enableEventRecording(bool).

Parameters
enable (bool) – True = enable the connection, False = disable the connection.

Returns
bool: indicates the current connection state to the eye tracking hardware.

10.7. psychopy.iohub - ioHub event monitoring framework 615

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

setRecordingState(should_be_recording: bool)→ bool
The setRecordingState method is used to start or stop the recording and transmission of eye data from the
eye tracking device to the ioHub Process.

If the pupil_capture_recording.enabled runtime setting is set to True, a corresponding raw record-
ing within Pupil Capture will be started or stopped.

should_be_recording will also be passed to EyeTrackerDevice.enableEventReporting().

Parameters
recording (bool) – if True, the eye tracker will start recordng data.; false = stop recording
data.

Returns
bool: the current recording state of the eye tracking device

property surface_topic: str

Read-ony Pupil Capture subscription topic to receive data from the configured surface

trackerSec()→ float
Returns EyeTracker.trackerTime()

Returns
The eye tracker hardware’s reported current time in sec.msec-usec format.

trackerTime()→ float
Returns the current time reported by the eye tracker device.

Implementation measures the current time in PsychoPy time and applies the estimated clock offset to trans-
form the measurement into tracker time.

Returns
The eye tracker hardware’s reported current time.

Supported Event Types

The Pupil Core– integration provides real-time access to monocular and binocular sample data. In pupillometry-only
mode, all events will be emitted as MonocularEyeSampleEvents. In pupillometry+gaze mode, the software only
emits BinocularEyeSampleEvents events if Pupil Capture is driving a binocular headset and the detection from
both eyes have sufficient confidence to be paired. See this high-level overview of the Pupil Capture Data Matching
algorithm for details.

The supported fields are described below.

class psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent(*args, **kwargs)
A MonocularEyeSampleEvent represents the eye position and eye attribute data collected from one frame or
reading of an eye tracker device that is recoding from only one eye, or is recording from both eyes and averaging
the binocular data.

Event Type ID: EventConstants.MONOCULAR_EYE_SAMPLE

Event Type String: ‘MONOCULAR_EYE_SAMPLE’

device_time: float

time of gaze measurement, in sec.msec format, using Pupil Capture clock

logged_time: float

time at which the sample was received in , in sec.msec format, using PsychoPy clock

10.7. psychopy.iohub - ioHub event monitoring framework 616

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.pupil-labs.com/core/terminology/#confidence
https://github.com/N-M-T/pupil-docs/commit/1dafe298565720a4bb7500a245abab7a6a2cd92f
https://github.com/N-M-T/pupil-docs/commit/1dafe298565720a4bb7500a245abab7a6a2cd92f
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

time: float

time of gaze measurement, in sec.msec format, using PsychoPy clock

confidence_interval: float = -1.0

currently not supported, always set to -1.0

delay: float

The difference between logged_time and time, in sec.msec format

eye: int = 21 or 22

psychopy.iohub.constants.EyeTrackerConstants.RIGHT_EYE (22) or psychopy.iohub.
constants.EyeTrackerConstants.LEFT_EYE (21)

gaze_x: float

x component of gaze location in display coordinates. Set to float("nan") in pupillometry-only mode.

gaze_y: float

y component of gaze location in display coordinates. Set to float("nan") in pupillometry-only mode.

gaze_z: float = 0 or float("nan")

z component of gaze location in display coordinates. Set to float("nan") in pupillometry-only mode.
Set to 0.0 otherwise.

eye_cam_x: float

x component of 3d eye model location in undistorted eye camera coordinates

eye_cam_y: float

y component of 3d eye model location in undistorted eye camera coordinates

eye_cam_z: float

z component of 3d eye model location in undistorted eye camera coordinates

angle_x: float

phi angle / horizontal rotation of the 3d eye model location in radians. -pi/2 corresponds to looking
directly into the eye camera

angle_y: float

theta angle / vertical rotation of the 3d eye model location in radians. pi/2 corresponds to looking directly
into the eye camera

raw_x: float

x component of the pupil center location in normalized coordinates

raw_y: float

y component of the pupil center location in normalized coordinates

pupil_measure1: float

Major axis of the detected pupil ellipse in pixels

pupil_measure1_type: int =
psychopy.iohub.constants.EyeTrackerConstants.PUPIL_MAJOR_AXIS

pupil_measure2: float | None

Diameter of the detected pupil in mm or None if not available

pupil_measure2_type: int =
psychopy.iohub.constants.EyeTrackerConstants.PUPIL_DIAMETER_MM

10.7. psychopy.iohub - ioHub event monitoring framework 617

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.pupil-labs.com/core/terminology/#coordinate-system
https://docs.python.org/3/library/functions.html#float
https://docs.pupil-labs.com/core/terminology/#coordinate-system
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

class psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent(*args, **kwargs)
The BinocularEyeSampleEvent event represents the eye position and eye attribute data collected from one frame
or reading of an eye tracker device that is recording both eyes of a participant.

Event Type ID: EventConstants.BINOCULAR_EYE_SAMPLE

Event Type String: ‘BINOCULAR_EYE_SAMPLE’

device_time: float

time of gaze measurement, in sec.msec format, using Pupil Capture clock

logged_time: float

time at which the sample was received in PsychoPy, in sec.msec format, using PsychoPy clock

time: float

time of gaze measurement, in sec.msec format, using PsychoPy clock

confidence_interval: float = -1.0

currently not supported, always set to -1.0

delay: float

The difference between logged_time and time, in sec.msec format

left_gaze_x: float

x component of gaze location in display coordinates. Set to float("nan") in pupillometry-only mode.
Same as right_gaze_x.

left_gaze_y: float

y component of gaze location in display coordinates. Set to float("nan") in pupillometry-only mode.
Same as right_gaze_y.

left_gaze_z: float = 0 or float("nan")

z component of gaze location in display coordinates. Set to float("nan") in pupillometry-only mode.
Set to 0.0 otherwise. Same as right_gaze_z.

left_eye_cam_x: float

x component of 3d eye model location in undistorted eye camera coordinates

left_eye_cam_y: float

y component of 3d eye model location in undistorted eye camera coordinates

left_eye_cam_z: float

z component of 3d eye model location in undistorted eye camera coordinates

left_angle_x: float

phi angle / horizontal rotation of the 3d eye model location in radians. -pi/2 corresponds to looking
directly into the eye camera

left_angle_y: float

theta angle / vertical rotation of the 3d eye model location in radians. pi/2 corresponds to looking directly
into the eye camera

left_raw_x: float

x component of the pupil center location in normalized coordinates

left_raw_y: float

y component of the pupil center location in normalized coordinates

10.7. psychopy.iohub - ioHub event monitoring framework 618

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.pupil-labs.com/core/terminology/#coordinate-system
https://docs.python.org/3/library/functions.html#float
https://docs.pupil-labs.com/core/terminology/#coordinate-system

PsychoPy - Psychology software for Python, Release 2023.2.3

left_pupil_measure1: float

Major axis of the detected pupil ellipse in pixels

left_pupil_measure1_type: int =
psychopy.iohub.constants.EyeTrackerConstants.PUPIL_MAJOR_AXIS

left_pupil_measure2: float | None

Diameter of the detected pupil in mm or None if not available

pupil_measure2_type: int =
psychopy.iohub.constants.EyeTrackerConstants.PUPIL_DIAMETER_MM

right_gaze_x: float

x component of gaze location in display coordinates. Set to float("nan") in pupillometry-only mode.
Same as left_gaze_x.

right_gaze_y: float

y component of gaze location in display coordinates. Set to float("nan") in pupillometry-only mode.
Same as left_gaze_y.

right_gaze_z: float = 0 or float("nan")

z component of gaze location in display coordinates. Set to float("nan") in pupillometry-only mode.
Set to 0.0 otherwise. Same as left_gaze_z.

right_eye_cam_x: float

x component of 3d eye model location in undistorted eye camera coordinates

right_eye_cam_y: float

y component of 3d eye model location in undistorted eye camera coordinates

right_eye_cam_z: float

z component of 3d eye model location in undistorted eye camera coordinates

right_angle_x: float

phi angle / horizontal rotation of the 3d eye model location in radians. -pi/2 corresponds to looking
directly into the eye camera

right_angle_y: float

theta angle / vertical rotation of the 3d eye model location in radians. pi/2 corresponds to looking directly
into the eye camera

right_raw_x: float

x component of the pupil center location in normalized coordinates

right_raw_y: float

y component of the pupil center location in normalized coordinates

right_pupil_measure1: float

Major axis of the detected pupil ellipse in pixels

right_pupil_measure1_type: int =
psychopy.iohub.constants.EyeTrackerConstants.PUPIL_MAJOR_AXIS

right_pupil_measure2: float | None

Diameter of the detected pupil in mm or None if not available

right_pupil_measure2_type: int =
psychopy.iohub.constants.EyeTrackerConstants.PUPIL_DIAMETER_MM

10.7. psychopy.iohub - ioHub event monitoring framework 619

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.pupil-labs.com/core/terminology/#coordinate-system
https://docs.python.org/3/library/functions.html#float
https://docs.pupil-labs.com/core/terminology/#coordinate-system
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Default Device Settings

eyetracker.hw.pupil_labs.pupil_core.EyeTracker:
Indicates if the device should actually be loaded at experiment runtime.
enable: True

The variable name of the device that will be used to access the ioHub Device class
during experiment run-time, via the devices.[name] attribute of the ioHub
connection or experiment runtime class.
name: tracker

device_number: 0

#####

model_name: Pupil Core

model_number: "0"

serial_number: N/A

manufacturer_name: Pupil Labs

software_version: N/A

hardware_version: N/A

firmware_version: N/A

#####

monitor_event_types: [MonocularEyeSampleEvent, BinocularEyeSampleEvent]

Should eye tracker events be saved to the ioHub DataStore file when the device
is recording data ?
save_events: True

Should eye tracker events be sent to the Experiment process when the device
is recording data ?
stream_events: True

How many eye events (including samples) should be saved in the ioHub event buffer␣
→˓before
old eye events start being replaced by new events. When the event buffer reaches
the maximum event length of the buffer defined here, older events will start to be␣

→˓dropped.
event_buffer_length: 1024

Do not change this value.
auto_report_events: False

device_timer:
(continues on next page)

10.7. psychopy.iohub - ioHub event monitoring framework 620

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

interval: 0.005

#####

runtime_settings:
pupil_remote:

ip_address: 127.0.0.1
port: 50020
timeout_ms: 1000

pupil_capture_recording:
enabled: True
location: Null # Use Pupil Capture default recording location

Subscribe to pupil data only, does not require calibration or surface setup
pupillometry_only: False
confidence_threshold: 0.6
Only relevant if pupillometry_only is False
surface_name: psychopy_iohub_surface

Last Updated: February, 2022

Pupil Labs - Neon

Table of Contents

• Pupil Labs - Neon

– High Level Neon Introduction

– Device, Software, and Connection Setup

∗ Setting Up the Eye Tracker

∗ Setting Up

– Implementation and API Overview

∗ EyeTracker Class

∗ Supported Event Types

· Default Device Settings

High Level Neon Introduction

Neon is a calibration-free, wearable eye tracker. The system consists of two inward-facing eye cameras and one forward-
facing world camera mounted on a wearable eyeglasses-like frame.

Neon provides gaze data in its world camera’s field of view, regardless of the wearer’s head position. As such, gaze can
be analysed with the wearer looking and moving freely in their environment.

Neon is unlike remote eye trackers which employ cameras mounted on or near a computer monitor. They provide gaze
in screen-based coordinates, and this facilitates closed-loop analyses of gaze based on the known position of stimuli
on-screen and eye gaze direction.

10.7. psychopy.iohub - ioHub event monitoring framework 621

https://pupil-labs.com/products/neon/

PsychoPy - Psychology software for Python, Release 2023.2.3

To use Neon for screen-based work in , the screen needs to be robustly located within the world camera’s field of view,
and Neon’s gaze data subsequently transformed from world camera-based coordinates to screen-based coordinates.
This is achieved with the use of AprilTag Markers.

For a detailed overview of wearable vs remote eye trackers, check out this Pupil Labs blog post.

Join the Pupil Labs Discord community to share your research and/or questions.

Device, Software, and Connection Setup

Setting Up the Eye Tracker

1. Follow Neon’s Getting Started guide to setup the headset and companion device.

Setting Up

1. Install the Pupil Labs plugin using the Plugin Manager and restart Builder.

2. Open experiment settings in the Builder Window (cog icon in top panel)

3. Open the Eyetracking tab

4. Modify the properties as follows:

• Select Pupil Labs (Neon) from the Eyetracker Device drop down menu

10.7. psychopy.iohub - ioHub event monitoring framework 622

https://docs.pupil-labs.com/core/software/pupil-capture/#markers
https://pupil-labs.com/blog/news/what-is-eye-tracking/
https://pupil-labs.com/chat
https://docs.pupil-labs.com/neon/#getting-started

PsychoPy - Psychology software for Python, Release 2023.2.3

• Companion address / Companion port - Defines how to connect to the Companion Device. These
values can be found in the Neon Companion app by clicking the Stream button in the top-left corner of the
app.

• Recording enabled - Enable this option to create a recording on the Companion device.

5. Add AprilTag components to the routines that require eyetracking. - Three tags is generally considered a bare
minimum, but more tags will yield more robust detection and more accurate mapping. - All the tags which are
visible together must each have a unique ID. - Tags can be placed anywhere on the screen as long as they are
fully visible and do not overlap.

A sample experiment is available for reference.

Implementation and API Overview

EyeTracker Class

class psychopy.iohub.devices.eyetracker.hw.pupil_labs.pupil_core.EyeTracker(*args,
**kwargs)

Bases: EyeTrackerDevice

Implementation of the Common Eye Tracker Interface for the Pupil Core headset.

Uses ioHub’s polling method to process data from Pupil Capture’s Network API.

To synchronize time between Pupil Capture and PsychoPy, the integration estimates the offset between their
clocks and applies it to the incoming data. This step effectively transforms time between the two softwares while
taking the transmission delay into account. For details, see this real-time time-sync tutorial.

This class operates in two modes, depending on the pupillometry_only runtime setting:

1. Pupillometry-only mode
If the pupillometry_only setting is to True, the integration will only receive eye-camera based
metrics, e.g. pupil size, its location in eye camera coordinates, etc. The advatage of this mode is that
it does not require calibrating the eye tracker or setting up AprilTag markers for the AoI tracking. To
receive gaze data in PsychoPy screen coordinates, see the Pupillometry+Gaze mode below.

Internally, this is implemented by subscribing to the pupil. data topic.

2. Pupillometry+Gaze mode
If the Pupillometry only setting is set to False, the integration will receive positional data in
addition to the pupillometry data mentioned above. For this to work, one has to setup Pupil Capture’s
built-in AoI tracking system and perform a calibration for each subject.

The integration takes care of translating the spatial coordinates to PsychoPy display coordinates.

Internally, this mode is implemented by subscribing to the gaze.3d. and the corresponding surface
name data topics.only

Note: Only one instance of EyeTracker can be created within an experiment. Attempting to create > 1 instance
will raise an exception.

getLastGazePosition()→ Tuple[float, float] | None
The getLastGazePosition method returns the most recent eye gaze position received from the Eye Tracker.
This is the position on the calibrated 2D surface that the eye tracker is reporting as the current eye position.
The units are in the units in use by the ioHub Display device.

10.7. psychopy.iohub - ioHub event monitoring framework 623

https://github.com/pupil-labs/psychopy-gaze-contingent-demo
https://docs.pupil-labs.com/developer/core/network-api/
https://github.com/pupil-labs/pupil-helpers/blob/master/python/simple_realtime_time_sync.py
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

PsychoPy - Psychology software for Python, Release 2023.2.3

If binocular recording is being performed, the average position of both eyes is returned.

If no samples have been received from the eye tracker, or the eye tracker is not currently recording data,
None is returned.

Returns
• None:

If the eye tracker is not currently recording data or no eye samples have been received.

• tuple:
Latest (gaze_x,gaze_y) position of the eye(s)

getLastSample()→ None | psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent |
psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent

The getLastSample method returns the most recent eye sample received from the Eye Tracker. The Eye
Tracker must be in a recording state for a sample event to be returned, otherwise None is returned.

Returns
• MonocularEyeSampleEvent:

Gaze mapping result from a single pupil detection. Only emitted if a second eye cam-
era is not being operated or the confidence of the pupil detection was insufficient for a
binocular pair. See also this high-level overview of the Pupil Capture Data Matching
algorithm

• BinocularEyeSample:
Gaze mapping result from two combined pupil detections

• None:
If the eye tracker is not currently recording data.

isConnected()→ bool
isConnected returns whether the ioHub EyeTracker Device is connected to Pupil Capture or not. A Pupil
Core headset must be connected and working properly for any of the Common Eye Tracker Interface func-
tionality to work.

Parameters
None –

Returns
bool: True = the eye tracking hardware is connected. False otherwise.

isRecordingEnabled()→ bool
The isRecordingEnabled method indicates if the eye tracker device is currently recording data.

Returns
True == the device is recording data; False == Recording is not occurring

setConnectionState(enable: bool)→ None
setConnectionState either connects (setConnectionState(True)) or disables
(setConnectionState(False)) active communication between the ioHub and Pupil Capture.

Note: A connection to the Eye Tracker is automatically established when the ioHub Process is initialized
(based on the device settings in the iohub_config.yaml), so there is no need to explicitly call this method in
the experiment script.

10.7. psychopy.iohub - ioHub event monitoring framework 624

https://docs.python.org/3/library/constants.html#None
https://github.com/N-M-T/pupil-docs/commit/1dafe298565720a4bb7500a245abab7a6a2cd92f
https://github.com/N-M-T/pupil-docs/commit/1dafe298565720a4bb7500a245abab7a6a2cd92f
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

PsychoPy - Psychology software for Python, Release 2023.2.3

Note: Connecting an Eye Tracker to the ioHub does not necessarily collect and send eye sample data to the
ioHub Process. To start actual data collection, use the Eye Tracker method setRecordingState(bool)
or the ioHub Device method (device type independent) enableEventRecording(bool).

Parameters
enable (bool) – True = enable the connection, False = disable the connection.

Returns
bool: indicates the current connection state to the eye tracking hardware.

setRecordingState(should_be_recording: bool)→ bool
The setRecordingState method is used to start or stop the recording and transmission of eye data from the
eye tracking device to the ioHub Process.

If the pupil_capture_recording.enabled runtime setting is set to True, a corresponding raw record-
ing within Pupil Capture will be started or stopped.

should_be_recording will also be passed to EyeTrackerDevice.enableEventReporting().

Parameters
recording (bool) – if True, the eye tracker will start recordng data.; false = stop recording
data.

Returns
bool: the current recording state of the eye tracking device

property surface_topic: str

Read-ony Pupil Capture subscription topic to receive data from the configured surface

trackerSec()→ float
Returns EyeTracker.trackerTime()

Returns
The eye tracker hardware’s reported current time in sec.msec-usec format.

trackerTime()→ float
Returns the current time reported by the eye tracker device.

Implementation measures the current time in PsychoPy time and applies the estimated clock offset to trans-
form the measurement into tracker time.

Returns
The eye tracker hardware’s reported current time.

Supported Event Types

The Neon– integration provides real-time access to BinocularEyeSampleEvents events. The supported fields are
described below.

class psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent(*args, **kwargs)
The BinocularEyeSampleEvent event represents the eye position and eye attribute data collected from one frame
or reading of an eye tracker device that is recording both eyes of a participant.

Event Type ID: EventConstants.BINOCULAR_EYE_SAMPLE

Event Type String: ‘BINOCULAR_EYE_SAMPLE’

10.7. psychopy.iohub - ioHub event monitoring framework 625

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

device_time: float

time of gaze measurement, in sec.msec format, using Pupil Capture clock

logged_time: float

time at which the sample was received in PsychoPy, in sec.msec format, using PsychoPy clock

time: float

time of gaze measurement, in sec.msec format, using PsychoPy clock

delay: float

The difference between logged_time and time, in sec.msec format

gaze_x: float

x component of gaze location in display coordinates. Set to float("nan") in pupillometry-only mode.

gaze_y: float

y component of gaze location in display coordinates. Set to float("nan") in pupillometry-only mode.

Default Device Settings

eyetracker.hw.pupil_labs.neon.EyeTracker:
Indicates if the device should actually be loaded at experiment runtime.
enable: True

The variable name of the device that will be used to access the ioHub Device class
during experiment run-time, via the devices.[name] attribute of the ioHub
connection or experiment runtime class.
name: tracker

device_number: 0

#####

model_name: Neon

model_number: "1"

serial_number: N/A

manufacturer_name: Pupil Labs (Neon)

software_version: N/A

hardware_version: N/A

firmware_version: N/A

#####

monitor_event_types: [BinocularEyeSampleEvent]

Should eye tracker events be saved to the ioHub DataStore file when the device
is recording data ?

(continues on next page)

10.7. psychopy.iohub - ioHub event monitoring framework 626

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

save_events: True

Should eye tracker events be sent to the Experiment process when the device
is recording data ?
stream_events: True

How many eye events (including samples) should be saved in the ioHub event buffer␣
→˓before
old eye events start being replaced by new events. When the event buffer reaches
the maximum event length of the buffer defined here, older events will start to be␣

→˓dropped.
event_buffer_length: 1024

Do not change this value.
auto_report_events: False

device_timer:
interval: 0.005

#####

runtime_settings:
companion_address: neon.local
companion_port: 8080
recording_enabled: True
camera_calibration: scene_camera.json

Last Updated: September, 2023

SR Research

Platforms:
• Windows 7 / 10

• Linux

• macOS

Required Python Version:
• Python 3.6 +

Supported Models:
• EyeLink 1000

• EyeLink 1000 Plus

10.7. psychopy.iohub - ioHub event monitoring framework 627

PsychoPy - Psychology software for Python, Release 2023.2.3

Additional Software Requirements

The SR Research EyeLink implementation of the ioHub common eye tracker interface uses the pylink package written
by SR Research. If using a |PsychoPy|3 standalone installation, this package should already be included.

If you are manually installing PsychPy3, please install the appropriate version of pylink. Downloads are available to
SR Research customers from their support website.

On macOS and Linux, the EyeLink Developers Kit must also be installed for pylink to work. Please visit SR Research
support site for information about how to install the EyeLink developers kit on macOS or Linux.

EyeTracker Class

Supported Event Types

The EyeLink implementation of the ioHub eye tracker interface supports monoculor or binocular eye samples as well
as fixation, saccade, and blink events.

Eye Samples

class psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent(*args, **kwargs)
A MonocularEyeSampleEvent represents the eye position and eye attribute data collected from one frame or
reading of an eye tracker device that is recoding from only one eye, or is recording from both eyes and averaging
the binocular data.

Event Type ID: EventConstants.MONOCULAR_EYE_SAMPLE

Event Type String: ‘MONOCULAR_EYE_SAMPLE’

time

time of event, in sec.msec format, using psychopy timebase.

eye

Eye that generated the sample. Either EyeTrackerConstants.LEFT_EYE or EyeTrackerCon-
stants.RIGHT_EYE.

gaze_x

The horizontal position of the eye on the computer screen, in Display Coordinate Type Units. Calibration
must be done prior to reading (meaningful) gaze data.

gaze_y

The vertical position of the eye on the computer screen, in Display Coordinate Type Units. Calibration
must be done prior to reading (meaningful) gaze data.

angle_x

Horizontal eye angle.

angle_y

Vertical eye angle.

raw_x

The uncalibrated x position of the eye in a device specific coordinate space.

raw_y

The uncalibrated y position of the eye in a device specific coordinate space.

10.7. psychopy.iohub - ioHub event monitoring framework 628

PsychoPy - Psychology software for Python, Release 2023.2.3

pupil_measure_1

Pupil size. Use pupil_measure1_type to determine what type of pupil size data was being saved by the
tracker.

pupil_measure1_type

Coordinate space type being used for left_pupil_measure_1.

ppd_x

Horizontal pixels per visual degree for this eye position as reported by the eye tracker.

ppd_y

Vertical pixels per visual degree for this eye position as reported by the eye tracker.

velocity_x

Horizontal velocity of the eye at the time of the sample; as reported by the eye tracker.

velocity_y

Vertical velocity of the eye at the time of the sample; as reported by the eye tracker.

velocity_xy

2D Velocity of the eye at the time of the sample; as reported by the eye tracker.

status

Indicates if eye sample contains ‘valid’ data. 0 = Eye sample is OK. 2 = Eye sample is invalid.

class psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent(*args, **kwargs)
The BinocularEyeSampleEvent event represents the eye position and eye attribute data collected from one frame
or reading of an eye tracker device that is recording both eyes of a participant.

Event Type ID: EventConstants.BINOCULAR_EYE_SAMPLE

Event Type String: ‘BINOCULAR_EYE_SAMPLE’

time

time of event, in sec.msec format, using psychopy timebase.

left_gaze_x

The horizontal position of the left eye on the computer screen, in Display Coordinate Type Units. Calibra-
tion must be done prior to reading (meaningful) gaze data.

left_gaze_y

The vertical position of the left eye on the computer screen, in Display Coordinate Type Units. Calibration
must be done prior to reading (meaningful) gaze data.

left_angle_x

The horizontal angle of left eye the relative to the head.

left_angle_y

The vertical angle of left eye the relative to the head.

left_raw_x

The uncalibrated x position of the left eye in a device specific coordinate space.

left_raw_y

The uncalibrated y position of the left eye in a device specific coordinate space.

left_pupil_measure_1

Left eye pupil diameter.

10.7. psychopy.iohub - ioHub event monitoring framework 629

PsychoPy - Psychology software for Python, Release 2023.2.3

left_pupil_measure1_type

Coordinate space type being used for left_pupil_measure_1.

left_ppd_x

Pixels per degree for left eye horizontal position as reported by the eye tracker. Display distance must be
correctly set for this to be accurate at all.

left_ppd_y

Pixels per degree for left eye vertical position as reported by the eye tracker. Display distance must be
correctly set for this to be accurate at all.

left_velocity_x

Horizontal velocity of the left eye at the time of the sample; as reported by the eye tracker.

left_velocity_y

Vertical velocity of the left eye at the time of the sample; as reported by the eye tracker.

left_velocity_xy

2D Velocity of the left eye at the time of the sample; as reported by the eye tracker.

right_gaze_x

The horizontal position of the right eye on the computer screen, in Display Coordinate Type Units. Cali-
bration must be done prior to reading (meaningful) gaze data.

right_gaze_y

The vertical position of the right eye on the computer screen, in Display Coordinate Type Units. Calibration
must be done prior to reading (meaningful) gaze data.

right_angle_x

The horizontal angle of right eye the relative to the head.

right_angle_y

The vertical angle of right eye the relative to the head.

right_raw_x

The uncalibrated x position of the right eye in a device specific coordinate space.

right_raw_y

The uncalibrated y position of the right eye in a device specific coordinate space.

right_pupil_measure_1

Right eye pupil diameter.

right_pupil_measure1_type

Coordinate space type being used for right_pupil_measure1_type.

right_ppd_x

Pixels per degree for right eye horizontal position as reported by the eye tracker. Display distance must be
correctly set for this to be accurate at all.

right_ppd_y

Pixels per degree for right eye vertical position as reported by the eye tracker. Display distance must be
correctly set for this to be accurate at all.

right_velocity_x

Horizontal velocity of the right eye at the time of the sample; as reported by the eye tracker.

10.7. psychopy.iohub - ioHub event monitoring framework 630

PsychoPy - Psychology software for Python, Release 2023.2.3

right_velocity_y

Vertical velocity of the right eye at the time of the sample; as reported by the eye tracker.

right_velocity_xy

2D Velocity of the right eye at the time of the sample; as reported by the eye tracker.

status

Indicates if eye sample contains ‘valid’ data for left and right eyes. 0 = Eye sample is OK. 2 = Right eye
data is likely invalid. 20 = Left eye data is likely invalid. 22 = Eye sample is likely invalid.

Fixation Events

Successful eye tracker calibration must be performed prior to reading (meaningful) fixation event data.

class psychopy.iohub.devices.eyetracker.FixationStartEvent(*args, **kwargs)
A FixationStartEvent is generated when the beginning of an eye fixation (in very general terms, a period of
relatively stable eye position) is detected by the eye trackers sample parsing algorithms.

Event Type ID: EventConstants.FIXATION_START

Event Type String: ‘FIXATION_START’

time

time of event, in sec.msec format, using psychopy timebase.

eye

Eye that generated the event. Either EyeTrackerConstants.LEFT_EYE or EyeTrackerCon-
stants.RIGHT_EYE.

gaze_x

Horizontal gaze position at the start of the event, in Display Coordinate Type Units.

gaze_y

Vertical gaze position at the start of the event, in Display Coordinate Type Units.

angle_x

Horizontal eye angle at the start of the event.

angle_y

Vertical eye angle at the start of the event.

pupil_measure_1

Pupil size. Use pupil_measure1_type to determine what type of pupil size data was being saved by the
tracker.

pupil_measure1_type

EyeTrackerConstants.PUPIL_AREA

ppd_x

Horizontal pixels per degree at start of event.

ppd_y

Vertical pixels per degree at start of event.

velocity_xy

2D eye velocity at the start of the event.

10.7. psychopy.iohub - ioHub event monitoring framework 631

PsychoPy - Psychology software for Python, Release 2023.2.3

status

Event status as reported by the eye tracker.

class psychopy.iohub.devices.eyetracker.FixationEndEvent(*args, **kwargs)
A FixationEndEvent is generated when the end of an eye fixation (in very general terms, a period of relatively
stable eye position) is detected by the eye trackers sample parsing algorithms.

Event Type ID: EventConstants.FIXATION_END

Event Type String: ‘FIXATION_END’

time

time of event, in sec.msec format, using psychopy timebase.

eye

Eye that generated the event. Either EyeTrackerConstants.LEFT_EYE or EyeTrackerCon-
stants.RIGHT_EYE.

duration

Duration of the event in sec.msec format.

start_gaze_x

Horizontal gaze position at the start of the event, in Display Coordinate Type Units.

start_gaze_y

Vertical gaze position at the start of the event, in Display Coordinate Type Units.

start_angle_x

Horizontal eye angle at the start of the event.

start_angle_y

Vertical eye angle at the start of the event.

start_pupil_measure_1

Pupil size at the start of the event.

start_pupil_measure1_type

EyeTrackerConstants.PUPIL_AREA

start_ppd_x

Horizontal pixels per degree at start of event.

start_ppd_y

Vertical pixels per degree at start of event.

start_velocity_xy

2D eye velocity at the start of the event.

end_gaze_x

Horizontal gaze position at the end of the event, in Display Coordinate Type Units.

end_gaze_y

Vertical gaze position at the end of the event, in Display Coordinate Type Units.

end_angle_x

Horizontal eye angle at the end of the event.

end_angle_y

Vertical eye angle at the end of the event.

10.7. psychopy.iohub - ioHub event monitoring framework 632

PsychoPy - Psychology software for Python, Release 2023.2.3

end_pupil_measure_1

Pupil size at the end of the event.

end_pupil_measure1_type

EyeTrackerConstants.PUPIL_AREA

end_ppd_x

Horizontal pixels per degree at end of event.

end_ppd_y

Vertical pixels per degree at end of event.

end_velocity_xy

2D eye velocity at the end of the event.

average_gaze_x

Average horizontal gaze position during the event, in Display Coordinate Type Units.

average_gaze_y

Average vertical gaze position during the event, in Display Coordinate Type Units.

average_angle_x

Average horizontal eye angle during the event,

average_angle_y

Average vertical eye angle during the event,

average_pupil_measure_1

Average pupil size during the event.

average_pupil_measure1_type

EyeTrackerConstants.PUPIL_AREA

average_velocity_xy

Average 2D velocity of the eye during the event.

peak_velocity_xy

Peak 2D velocity of the eye during the event.

status

Event status as reported by the eye tracker.

Saccade Events

Successful eye tracker calibration must be performed prior to reading (meaningful) saccade event data.

class psychopy.iohub.devices.eyetracker.SaccadeStartEvent(*args, **kwargs)

time

time of event, in sec.msec format, using psychopy timebase.

eye

Eye that generated the event. Either EyeTrackerConstants.LEFT_EYE or EyeTrackerCon-
stants.RIGHT_EYE.

gaze_x

Horizontal gaze position at the start of the event, in Display Coordinate Type Units.

10.7. psychopy.iohub - ioHub event monitoring framework 633

PsychoPy - Psychology software for Python, Release 2023.2.3

gaze_y

Vertical gaze position at the start of the event, in Display Coordinate Type Units.

angle_x

Horizontal eye angle at the start of the event.

angle_y

Vertical eye angle at the start of the event.

pupil_measure_1

Pupil size. Use pupil_measure1_type to determine what type of pupil size data was being saved by the
tracker.

pupil_measure1_type

EyeTrackerConstants.PUPIL_AREA

ppd_x

Horizontal pixels per degree at start of event.

ppd_y

Vertical pixels per degree at start of event.

velocity_xy

2D eye velocity at the start of the event.

status

Event status as reported by the eye tracker.

class psychopy.iohub.devices.eyetracker.SaccadeEndEvent(*args, **kwargs)

time

time of event, in sec.msec format, using psychopy timebase.

eye

Eye that generated the event. Either EyeTrackerConstants.LEFT_EYE or EyeTrackerCon-
stants.RIGHT_EYE.

duration

Duration of the event in sec.msec format.

start_gaze_x

Horizontal gaze position at the start of the event, in Display Coordinate Type Units.

start_gaze_y

Vertical gaze position at the start of the event, in Display Coordinate Type Units.

start_angle_x

Horizontal eye angle at the start of the event.

start_angle_y

Vertical eye angle at the start of the event.

start_pupil_measure_1

Pupil size at the start of the event.

start_pupil_measure1_type

EyeTrackerConstants.PUPIL_AREA

10.7. psychopy.iohub - ioHub event monitoring framework 634

PsychoPy - Psychology software for Python, Release 2023.2.3

start_ppd_x

Horizontal pixels per degree at start of event.

start_ppd_y

Vertical pixels per degree at start of event.

start_velocity_xy

2D eye velocity at the start of the event.

end_gaze_x

Horizontal gaze position at the end of the event, in Display Coordinate Type Units.

end_gaze_y

Vertical gaze position at the end of the event, in Display Coordinate Type Units.

end_angle_x

Horizontal eye angle at the end of the event.

end_angle_y

Vertical eye angle at the end of the event.

end_pupil_measure_1

Pupil size at the end of the event.

end_pupil_measure1_type

EyeTrackerConstants.PUPIL_AREA

end_ppd_x

Horizontal pixels per degree at end of event.

end_ppd_y

Vertical pixels per degree at end of event.

end_velocity_xy

2D eye velocity at the end of the event.

average_gaze_x

Average horizontal gaze position during the event, in Display Coordinate Type Units.

average_gaze_y

Average vertical gaze position during the event, in Display Coordinate Type Units.

average_angle_x

Average horizontal eye angle during the event,

average_angle_y

Average vertical eye angle during the event,

average_pupil_measure_1

Average pupil size during the event.

average_pupil_measure1_type

EyeTrackerConstants.PUPIL_AREA

average_velocity_xy

Average 2D velocity of the eye during the event.

10.7. psychopy.iohub - ioHub event monitoring framework 635

PsychoPy - Psychology software for Python, Release 2023.2.3

peak_velocity_xy

Peak 2D velocity of the eye during the event.

status

Event status as reported by the eye tracker.

Blink Events

class psychopy.iohub.devices.eyetracker.BlinkStartEvent(*args, **kwargs)

time

time of event, in sec.msec format, using psychopy timebase.

eye

Eye that generated the event. Either EyeTrackerConstants.LEFT_EYE or EyeTrackerCon-
stants.RIGHT_EYE.

status

Event status as reported by the eye tracker.

class psychopy.iohub.devices.eyetracker.BlinkEndEvent(*args, **kwargs)

time

time of event, in sec.msec format, using psychopy timebase.

eye

Eye that generated the event. Either EyeTrackerConstants.LEFT_EYE or EyeTrackerCon-
stants.RIGHT_EYE.

duration

Blink duration, in sec.msec format.

status

Event status as reported by the eye tracker.

Default Device Settings

This section includes all valid sr_research.eyelink.EyeTracker Device
settings that can be specified in an iohub_config.yaml
or in a Python dictionary form and passed to the launchHubServer
method. Any device parameters not specified when the device class is
created by the ioHub Process will be assigned the default value
indicated here.
#
eyetracker.hw.sr_research.eyelink.EyeTracker:

name: The unique name to assign to the device instance created.
The device is accessed from within the PsychoPy script
using the name's value; therefore it must be a valid Python
variable name as well.
#
name: tracker

enable: Specifies if the device should be enabled by ioHub and monitored
(continues on next page)

10.7. psychopy.iohub - ioHub event monitoring framework 636

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

for events.
True = Enable the device on the ioHub Server Process
False = Disable the device on the ioHub Server Process. No events for
this device will be reported by the ioHub Server.
#
enable: True

saveEvents: *If* the ioHubDataStore is enabled for the experiment, then
indicate if events for this device should be saved to the
data_collection/keyboard event group in the hdf5 event file.
True = Save events for this device to the ioDataStore.
False = Do not save events for this device in the ioDataStore.
#
saveEvents: True

streamEvents: Indicate if events from this device should be made available
during experiment runtime to the PsychoPy Process.
True = Send events for this device to the PsychoPy Process in real-time.
False = Do *not* send events for this device to the PsychoPy Process in real-

→˓time.
#
streamEvents: True

auto_report_events: Indicate if events from this device should start being
processed by the ioHub as soon as the device is loaded at the start of an␣

→˓experiment,
or if events should only start to be monitored on the device when a call to the
device's enableEventReporting method is made with a parameter value of True.
True = Automatically start reporting events for this device when the experiment␣

→˓starts.
False = Do not start reporting events for this device until␣

→˓enableEventReporting(True)
is set for the device during experiment runtime.
#
auto_report_events: False

event_buffer_length: Specify the maximum number of events (for each
event type the device produces) that can be stored by the ioHub Server
before each new event results in the oldest event of the same type being
discarded from the ioHub device event buffer.
#
event_buffer_length: 1024

device_timer: The EyeLink EyeTracker class uses the polling method to
check for new events received from the EyeTracker device.
device_timer.interval specifies the sec.msec time between device polls.
0.001 = 1 msec, so the device will be polled at a rate of 1000 Hz.
device_timer:

interval: 0.001

monitor_event_types: The eyelink implementation of the common eye tracker
interface supports the following event types. If you would like to

(continues on next page)

10.7. psychopy.iohub - ioHub event monitoring framework 637

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

exclude certain events from being saved or streamed during runtime,
remove them from the list below.
#
monitor_event_types: [MonocularEyeSampleEvent, BinocularEyeSampleEvent,␣

→˓FixationStartEvent, FixationEndEvent, SaccadeStartEvent, SaccadeEndEvent,␣
→˓BlinkStartEvent, BlinkEndEvent]

calibration:
IMPORTANT: Note that while the gaze position data provided by ioHub
will be in the Display's coordinate system, the EyeLink internally
always uses a 0,0 pixel_width, pixel_height coordinate system
since internally calibration point positions are given as integers,
so if the actual display coordinate system was passed to EyeLink,
coordinate types like deg and norm would become very coarse in
possible target locations during calibration.

type: sr_research.eyelink.EyeTracker supports the following
calibration types:
THREE_POINTS, FIVE_POINTS, NINE_POINTS, THIRTEEN_POINTS
type: NINE_POINTS

auto_pace: If True, the eye tracker will automatically progress from
one calibration point to the next. If False, a manual key or button press
is needed to progress to the next point.
#
auto_pace: True

pacing_speed: The number of sec.msec that a calibration point should
be displayed before moving onto the next point when auto_pace is set to true.
If auto_pace is False, pacing_speed is ignored.
#
pacing_speed: 1.5

screen_background_color: Specifies the r,g,b,a background color to
set the calibration, validation, etc, screens to. Each element of the color
should be a value between 0 and 255. 0 == black, 255 == white. In general
the last value of the color list (alpha) can be left at 255, indicating
the color not mixed with the background color at all.
screen_background_color: [128,128,128,255]

target_type: Defines what form of calibration graphic should be used
during calibration, validation, etc. modes. sr_research.eyelink.EyeTracker
supports the CIRCLE_TARGET type.
#
target_type: CIRCLE_TARGET

target_attributes: The associated target attributes must be supplied
for the given target_type. If target type attribute sections are provided
for target types other than the entry associated with the specified
target_type value they will simple be ignored.
#
target_attributes:

(continues on next page)

10.7. psychopy.iohub - ioHub event monitoring framework 638

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

outer_diameter and inner_diameter are specified in pixels
outer_diameter: 33
inner_diameter: 6
outer_color: [255,255,255,255]
inner_color: [0,0,0,255]

network_settings: Specify the Host computer IP address. Normally
leaving it set to the default value is fine.
#
network_settings: 100.1.1.1

default_native_data_file_name: The sr_research.eyelink.EyeTracker supports
saving a native eye tracker edf data file, the
default_native_data_file_name value is used to set the default name for
the file that will be saved, not including the .edf file type extension.
#
default_native_data_file_name: et_data

simulation_mode: Indicate if the eye tracker should provide mouse simulated
eye data instead of sending eye data based on a participants actual
eye movements.
#
simulation_mode: False

enable_interface_without_connection: Specifying if the ioHub Device
should be enabled without truly connecting to the underlying eye tracking
hardware. If True, ioHub EyeTracker methods can be called but will
provide no-op results and no eye data will be received by the ioHub Server.
This mode can be useful for working on aspects of an eye tracking experiment␣

→˓when the
actual eye tracking device is not available, for example stimulus presentation
or other non eye tracker dependent experiment functionality.
#
enable_interface_without_connection: False

runtime_settings:
sampling_rate: Specify the desired sampling rate to use. Actual
sample rates depend on the model being used.
Overall, possible rates are 250, 500, 1000, and 2000 Hz.
#
sampling_rate: 250

track_eyes: Which eye(s) should be tracked?
Supported Values: LEFT_EYE, RIGHT_EYE, BINOCULAR
#
track_eyes: RIGHT_EYE

sample_filtering: Defines the native eye tracker filtering level to be
applied to the sample event data before it is sent to the specified data␣

→˓stream.
The sample filter section can contain multiple key : value entries if
the tracker implementation supports it, where each key is a sample stream␣

(continues on next page)

10.7. psychopy.iohub - ioHub event monitoring framework 639

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

→˓type,
and each value is the accociated filter level for that sample data stream.
sr_research.eyelink.EyeTracker supported stream types are:
FILTER_ALL, FILTER_FILE, FILTER_ONLINE
Supported sr_research.eyelink.EyeTracker filter levels are:
FILTER_LEVEL_OFF, FILTER_LEVEL_1, FILTER_LEVEL_2
Note that if FILTER_ALL is specified, then other sample data stream values␣

→˓are
ignored. If FILTER_ALL is not provided, ensure to specify the setting
for both FILTER_FILE and FILTER_ONLINE as in this case if either is not␣

→˓provided then
the missing filter type will have filter level set to FILTER_OFF.
#
sample_filtering:

FILTER_ALL: FILTER_LEVEL_OFF

vog_settings:
pupil_measure_types: sr_research.eyelink.EyeTracker supports one
pupil_measure_type parameter that is used for all eyes being tracked.
Valid options are:
PUPIL_AREA, PUPIL_DIAMETER,
#
pupil_measure_types: PUPIL_AREA

tracking_mode: Define whether the eye tracker should run in a pupil only
mode or run in a pupil-cr mode. Valid options are:
PUPIL_CR_TRACKING, PUPIL_ONLY_TRACKING
Depending on other settngs on the eyelink Host and the model and mode of
eye tracker being used, this parameter may not be able to set the
specified tracking mode. CHeck the mode listed on the camera setup
screen of the Host PC after the experiment has started to confirm if
the requested tracking mode was enabled. IMPORTANT: only use
PUPIL_ONLY_TRACKING mode if using an EyeLink II system, or using
the EyeLink 1000 is a head **fixed** setup. Any head movement
when using PUPIL_ONLY_TRACKING will result in eye position signal drift.
#
tracking_mode: PUPIL_CR_TRACKING

pupil_center_algorithm: The pupil_center_algorithm defines what
type of image processing approach should
be used to determine the pupil center during image processing.
Valid possible values are for eyetracker.hw.sr_research.eyelink.

→˓EyeTracker are:
ELLIPSE_FIT, or CENTROID_FIT
#
pupil_center_algorithm: ELLIPSE_FIT

model_name: The model_name setting allows the definition of the eye tracker model␣
→˓being used.
For the eyelink implementation, valid values are:
'EYELINK 1000 DESKTOP', 'EYELINK 1000 TOWER', 'EYELINK 1000 REMOTE',
'EYELINK 1000 LONG RANGE', 'EYELINK 2'

(continues on next page)

10.7. psychopy.iohub - ioHub event monitoring framework 640

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

model_name: EYELINK 1000 DESKTOP

manufacturer_name: manufacturer_name is used to store the name of the
maker of the eye tracking device. This is for informational purposes only.
#
manufacturer_name: SR Research Ltd.

model_name: The below parameters are not used by the EyeGaze eye tracker
implementation, so they can be left as is, or filled out for FYI only.
#
model_name: N/A

serial_number: The serial number for the specific isnstance of device used
can be specified here. It is not used by the ioHub, so is FYI only.
#
serial_number: N/A

manufacture_date: The date of manufactiurer of the device
can be specified here. It is not used by the ioHub,
so is FYI only.
#
manufacture_date: DD-MM-YYYY

hardware_version: The device's hardware version can be specified here.
It is not used by the ioHub, so is FYI only.
#
hardware_version: N/A

firmware_version: If the device has firmware, its revision number
can be indicated here. It is not used by the ioHub, so is FYI only.
#
firmware_version: N/A

model_number: The device model number can be specified here.
It is not used by the ioHub, so is FYI only.
#
model_number: N/A

software_version: The device driver and / or SDK software version number.
This field is not used by ioHub, so is FYI only.
software_version: N/A

device_number: The device number to assign to the Analog Input device.
device_number is not used by this device type.
#
device_number: 0

Last Updated: January, 2021

10.7. psychopy.iohub - ioHub event monitoring framework 641

PsychoPy - Psychology software for Python, Release 2023.2.3

Tobii

Platforms:
• Windows 7 / 10

• Linux

• macOS

Required Python Version:
• Python 3.6 +

Supported Models:
Tobii Pro eye tracker models that can use the tobii_research Python package. For a complete list please visit Tobii
support.

Additional Software Requirements

To use the ioHub interface for Tobii, the Tobi Pro SDK must be installed in your Python environment. If a recent
standalone installation of , this package should already be included.

To install tobii-research type:

pip install tobii-research

EyeTracker Class

class psychopy.iohub.devices.eyetracker.hw.tobii.EyeTracker

To start iohub with a Tobii eye tracker device, add the Tobii device to the dictionary passed to launchHubServer
or the experiment’s iohub_config.yaml:

eyetracker.hw.tobii.EyeTracker

Examples

A. Start ioHub with a Tobii device and run tracker calibration:

from psychopy.iohub import launchHubServer
from psychopy.core import getTime, wait

iohub_config = {'eyetracker.hw.tobii.EyeTracker':
{'name': 'tracker', 'runtime_settings': {'sampling_rate': 120}}}

io = launchHubServer(**iohub_config)

Get the eye tracker device.
tracker = io.devices.tracker

run eyetracker calibration
r = tracker.runSetupProcedure()

10.7. psychopy.iohub - ioHub event monitoring framework 642

http://developer.tobiipro.com/tobiiprosdk/supportedeyetrackers.html
http://developer.tobiipro.com/tobiiprosdk/supportedeyetrackers.html

PsychoPy - Psychology software for Python, Release 2023.2.3

B. Print all eye tracker events received for 2 seconds:

Check for and print any eye tracker events received...
tracker.setRecordingState(True)

stime = getTime()
while getTime()-stime < 2.0:

for e in tracker.getEvents():
print(e)

C. Print current eye position for 5 seconds:

Check for and print current eye position every 100 msec.
stime = getTime()
while getTime()-stime < 5.0:

print(tracker.getPosition())
wait(0.1)

tracker.setRecordingState(False)

Stop the ioHub Server
io.quit()

clearEvents(event_type=None, filter_id=None, call_proc_events=True)
Clears any DeviceEvents that have occurred since the last call to the device’s getEvents(), or clearEvents()
methods.

Note that calling clearEvents() at the device level only clears the given device’s event buffer. The ioHub
Process’s Global Event Buffer is unchanged.

Parameters
None –

Returns
None

enableEventReporting(enabled=True)
enableEventReporting is functionally identical to the eye tracker device specific enableEventReporting
method.

getConfiguration()

Retrieve the configuration settings information used to create the device instance. This will the default
settings for the device, found in iohub.devices.<device_name>.default_<device_name>.yaml, updated with
any device settings provided via launchHubServer(. . .).

Changing any values in the returned dictionary has no effect on the device state.

Parameters
None –

Returns
The dictionary of the device configuration settings used to create the device.

Return type
(dict)

10.7. psychopy.iohub - ioHub event monitoring framework 643

https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

getEvents(*args, **kwargs)
Retrieve any DeviceEvents that have occurred since the last call to the device’s getEvents() or clearEvents()
methods.

Note that calling getEvents() at a device level does not change the Global Event Buffer’s contents.

Parameters
• event_type_id (int) – If specified, provides the ioHub DeviceEvent ID for which events

should be returned for. Events that have occurred but do not match the event ID specified
are ignored. Event type ID’s can be accessed via the EventConstants class; all available
event types are class attributes of EventConstants.

• clearEvents (int) – Can be used to indicate if the events being returned should also be
removed from the device event buffer. True (the default) indicates to remove events being
returned. False results in events being left in the device event buffer.

• asType (str) – Optional kwarg giving the object type to return events as. Valid values are
‘namedtuple’ (the default), ‘dict’, ‘list’, or ‘object’.

Returns
New events that the ioHub has received since the last getEvents() or clearEvents() call to the
device. Events are ordered by the ioHub time of each event, older event at index 0. The
event object type is determined by the asType parameter passed to the method. By default a
namedtuple object is returned for each event.

Return type
(list)

getLastGazePosition()

Returns the latest 2D eye gaze position retrieved from the Tobii device. This represents where the eye
tracker is reporting each eye gaze vector is intersecting the calibrated surface.

In general, the y or vertical component of each eyes gaze position should be the same value, since in typical
user populations the two eyes are yoked vertically when they move. Therefore any difference between the
two eyes in the y dimension is likely due to eye tracker error.

Differences between the x, or horizontal component of the gaze position, indicate that the participant is
being reported as looking behind or in front of the calibrated plane. When a user is looking at the calibration
surface , the x component of the two eyes gaze position should be the same. Differences between the x value
for each eye either indicates that the user is not focussing at the calibrated depth, or that there is error in the
eye data.

The above remarks are true for any eye tracker in general.

The getLastGazePosition method returns the most recent eye gaze position retrieved from the eye tracker
device. This is the position on the calibrated 2D surface that the eye tracker is reporting as the current eye
position. The units are in the units in use by the Display device.

If binocular recording is being performed, the average position of both eyes is returned.

If no samples have been received from the eye tracker, or the eye tracker is not currently recording data,
None is returned.

Parameters
None –

Returns
If the eye tracker is not currently recording data or no eye samples have been received.

tuple: Latest (gaze_x,gaze_y) position of the eye(s)

10.7. psychopy.iohub - ioHub event monitoring framework 644

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PsychoPy - Psychology software for Python, Release 2023.2.3

Return type
None

getLastSample()

Returns the latest sample retrieved from the Tobii device. The Tobii system always using the BinocularSam-
ple Event type.

Parameters
None –

Returns
If the eye tracker is not currently recording data.

EyeSample: If the eye tracker is recording in a monocular tracking mode, the latest sample
event of this event type is returned.

BinocularEyeSample: If the eye tracker is recording in a binocular tracking mode, the latest
sample event of this event type is returned.

Return type
None

getPosition()

See getLastGazePosition().

isRecordingEnabled()

isRecordingEnabled returns the recording state from the eye tracking device.

Parameters
None –

Returns
True == the device is recording data; False == Recording is not occurring

Return type
bool

runSetupProcedure(calibration_args={})
runSetupProcedure performs a calibration routine for the Tobii eye tracking system.

setRecordingState(recording)
setRecordingState is used to start or stop the recording of data from the eye tracking device.

Parameters
recording (bool) – if True, the eye tracker will start recordng available eye data and sending
it to the experiment program if data streaming was enabled for the device. If recording ==
False, then the eye tracker stops recording eye data and streaming it to the experiment.

If the eye tracker is already recording, and setRecordingState(True) is called, the eye tracker will simple
continue recording and the method call is a no-op. Likewise if the system has already stopped recording
and setRecordingState(False) is called again.

Parameters
recording (bool) – if True, the eye tracker will start recordng data.; false = stop recording
data.

Returns
the current recording state of the eye tracking device

Return type
bool

10.7. psychopy.iohub - ioHub event monitoring framework 645

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Supported Event Types

tobii_research provides real-time access to binocular sample data.

The following fields of the ioHub BinocularEyeSample event are supported:

class psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent(*args, **kwargs)
The BinocularEyeSampleEvent event represents the eye position and eye attribute data collected from one frame
or reading of an eye tracker device that is recording both eyes of a participant.

Event Type ID: EventConstants.BINOCULAR_EYE_SAMPLE

Event Type String: ‘BINOCULAR_EYE_SAMPLE’

time

time of event, in sec.msec format, using psychopy timebase.

left_gaze_x

The horizontal position of the left eye on the computer screen, in Display Coordinate Type Units.
Calibration must be done prior to reading (meaningful) gaze data. Uses tobii_research gaze data
‘left_gaze_point_on_display_area’[0] field.

left_gaze_y

The vertical position of the left eye on the computer screen, in Display Coordinate Type Units.
Calibration must be done prior to reading (meaningful) gaze data. Uses tobii_research gaze data
‘left_gaze_point_on_display_area’[1] field.

left_eye_cam_x

The left x eye position in the eye trackers 3D coordinate space. Uses tobii_research gaze data
‘left_gaze_origin_in_trackbox_coordinate_system’[0] field.

left_eye_cam_y

The left y eye position in the eye trackers 3D coordinate space. Uses tobii_research gaze data
‘left_gaze_origin_in_trackbox_coordinate_system’[1] field.

left_eye_cam_z

The left z eye position in the eye trackers 3D coordinate space. Uses tobii_research gaze data
‘left_gaze_origin_in_trackbox_coordinate_system’[2] field.

left_pupil_measure_1

Left eye pupil diameter in mm. Uses tobii_research gaze data ‘left_pupil_diameter’ field.

right_gaze_x

The horizontal position of the right eye on the computer screen, in Display Coordinate Type Units.
Calibration must be done prior to reading (meaningful) gaze data. Uses tobii_research gaze data
‘right_gaze_point_on_display_area’[0] field.

right_gaze_y

The vertical position of the right eye on the computer screen, in Display Coordinate Type Units.
Calibration must be done prior to reading (meaningful) gaze data. Uses tobii_research gaze data
‘right_gaze_point_on_display_area’[1] field.

right_eye_cam_x

The right x eye position in the eye trackers 3D coordinate space. Uses tobii_research gaze data
‘right_gaze_origin_in_trackbox_coordinate_system’[0] field.

10.7. psychopy.iohub - ioHub event monitoring framework 646

PsychoPy - Psychology software for Python, Release 2023.2.3

right_eye_cam_y

The right y eye position in the eye trackers 3D coordinate space. Uses tobii_research gaze data
‘right_gaze_origin_in_trackbox_coordinate_system’[1] field.

right_eye_cam_z

The right z eye position in the eye trackers 3D coordinate space. Uses tobii_research gaze data
‘right_gaze_origin_in_trackbox_coordinate_system’[2] field.

right_pupil_measure_1

Right eye pupil diameter in mm. Uses tobii_research gaze data ‘right_pupil_diameter’ field.

status

Indicates if eye sample contains ‘valid’ data for left and right eyes. 0 = Eye sample is OK. 2 = Right eye
data is likely invalid. 20 = Left eye data is likely invalid. 22 = Eye sample is likely invalid.

Default Device Settings

eyetracker.hw.tobii.EyeTracker:
Indicates if the device should actually be loaded at experiment runtime.
enable: True

The variable name of the device that will be used to access the ioHub Device class
during experiment run-time, via the devices.[name] attribute of the ioHub
connection or experiment runtime class.
name: tracker

Should eye tracker events be saved to the ioHub DataStore file when the device
is recording data ?
save_events: True

Should eye tracker events be sent to the Experiment process when the device
is recording data ?
stream_events: True

How many eye events (including samples) should be saved in the ioHub event buffer␣
→˓before
old eye events start being replaced by new events. When the event buffer reaches
the maximum event length of the buffer defined here, older events will start to be␣

→˓dropped.
event_buffer_length: 1024

The Tobii implementation of the common eye tracker interface supports the
BinocularEyeSampleEvent event type.
monitor_event_types: [BinocularEyeSampleEvent,]

The model name of the Tobii device that you wish to connect to can be specified␣
→˓here,
and only Tobii systems matching that model name will be considered as possible␣

→˓candidates for connection.
If you only have one Tobii system connected to the computer, this field can just␣

→˓be left empty.
model_name:

(continues on next page)

10.7. psychopy.iohub - ioHub event monitoring framework 647

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

The serial number of the Tobii device that you wish to connect to can be specified␣
→˓here,
and only the Tobii system matching that serial number will be connected to, if␣

→˓found.
If you only have one Tobii system connected to the computer, this field can just␣

→˓be left empty,
in which case the first Tobii device found will be connected to.
serial_number:

calibration:
The Tobii ioHub Common Eye Tracker Interface currently support
a 3, 5 and 9 point calibration mode.
THREE_POINTS,FIVE_POINTS,NINE_POINTS
#
type: NINE_POINTS

Should the target positions be randomized?
#
randomize: True

auto_pace can be True or False. If True, the eye tracker will
automatically progress from one calibration point to the next.
If False, a manual key or button press is needed to progress to
the next point.
#
auto_pace: True

pacing_speed is the number of sec.msec that a calibration point should
be displayed before moving onto the next point when auto_pace is set to true.
If auto_pace is False, pacing_speed is ignored.
#
pacing_speed: 1.5

screen_background_color specifies the r,g,b background color to
set the calibration, validation, etc, screens to. Each element of the color
should be a value between 0 and 255. 0 == black, 255 == white.
#
screen_background_color: [128,128,128]

Target type defines what form of calibration graphic should be used
during calibration, validation, etc. modes.
Currently the Tobii implementation supports the following
target type: CIRCLE_TARGET.
To do: Add support for other types, etc.
#
target_type: CIRCLE_TARGET

The associated target attribute properties can be supplied
for the given target_type.
target_attributes:

CIRCLE_TARGET is drawn using two PsychoPy
(continues on next page)

10.7. psychopy.iohub - ioHub event monitoring framework 648

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

Circle Stim. The _outer_ circle is drawn first, and should be
be larger than the _inner_ circle, which is drawn on top of the
outer circle. The target_attributes starting with 'outer_' define
how the outer circle of the calibration targets should be drawn.
The target_attributes starting with 'inner_' define
how the inner circle of the calibration targets should be drawn.
#
outer_diameter: The size of the outer circle of the calibration target
#
outer_diameter: 35
outer_stroke_width: The thickness of the outer circle edge.
#
outer_stroke_width: 2
outer_fill_color: RGB255 color to use to fill the outer circle.
#
outer_fill_color: [128,128,128]
outer_line_color: RGB255 color to used for the outer circle edge.
#
outer_line_color: [255,255,255]
inner_diameter: The size of the inner circle calibration target
#
inner_diameter: 7
inner_stroke_width: The thickness of the inner circle edge.
#
inner_stroke_width: 1
inner_fill_color: RGB255 color to use to fill the inner circle.
#
inner_fill_color: [0,0,0]
inner_line_color: RGB255 color to used for the inner circle edge.
#
inner_line_color: [0,0,0]
The Tobii Calibration routine supports using moving target graphics.
The following parameters control target movement (if any).
#
animate:

enable: True if the calibration target should be animated.
False specifies that the calibration targets could just jump
from one calibration position to another.
#
enable: True
movement_velocity: The velocity that a calibration target
graphic should use when gliding from one calibration
point to another. Always in pixels / second.
#
movement_velocity: 600.0
expansion_ratio: The outer circle of the calibration target
can expand (and contract) when displayed at each position.
expansion_ratio gives the largest size of the outer circle
as a ratio of the outer_diameter length. For example,
if outer_diameter = 30, and expansion_ratio = 2.0, then
the outer circle of each calibration point will expand out
to 60 pixels. Set expansion_ratio to 1.0 for no expansion.

(continues on next page)

10.7. psychopy.iohub - ioHub event monitoring framework 649

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

#
expansion_ratio: 3.0
expansion_speed: The rate at which the outer circle
graphic should expand. Always in pixels / second.
#
expansion_speed: 30.0
contract_only: If the calibration target should expand from
the outer circle initial diameter to the larger diameter
and then contract back to the original diameter, set
contract_only to False. To only have the outer circle target
go from an expanded state to the smaller size, set this to True.
#
contract_only: True

runtime_settings:
The supported sampling rates for Tobii are model dependent.
Using a default of 60 Hz.
sampling_rate: 60

Tobii implementation supports BINOCULAR tracking mode only.
track_eyes: BINOCULAR

manufacturer_name is used to store the name of the maker of the eye tracking
device. This is for informational purposes only.
manufacturer_name: Tobii Technology

Last Updated: January, 2021

MouseGaze

MouseGaze simulates an eye tracker using the computer Mouse.

Platforms:
• Windows 7 / 10

• Linux

• macOS

Required Python Version:
• Python 3.6 +

Supported Models:
• Any Mouse. ;)

10.7. psychopy.iohub - ioHub event monitoring framework 650

PsychoPy - Psychology software for Python, Release 2023.2.3

Additional Software Requirements

None

EyeTracker Class

class psychopy.iohub.devices.eyetracker.hw.mouse.EyeTracker

To start iohub with a Mouse Simulated eye tracker, add the full iohub device name as a kwarg passed to launch-
HubServer:

eyetracker.hw.mouse.EyeTracker

Examples

A. Start ioHub with the Mouse Simulated eye tracker:

from psychopy.iohub import launchHubServer
from psychopy.core import getTime, wait

iohub_config = {'eyetracker.hw.mouse.EyeTracker': {}}

io = launchHubServer(**iohub_config)

Get the eye tracker device.
tracker = io.devices.tracker

B. Print all eye tracker events received for 2 seconds:

Check for and print any eye tracker events received...
tracker.setRecordingState(True)

stime = getTime()
while getTime()-stime < 2.0:

for e in tracker.getEvents():
print(e)

C. Print current eye position for 5 seconds:

Check for and print current eye position every 100 msec.
stime = getTime()
while getTime()-stime < 5.0:

print(tracker.getPosition())
wait(0.1)

tracker.setRecordingState(False)

Stop the ioHub Server
io.quit()

10.7. psychopy.iohub - ioHub event monitoring framework 651

PsychoPy - Psychology software for Python, Release 2023.2.3

clearEvents(event_type=None, filter_id=None, call_proc_events=True)
Clears any DeviceEvents that have occurred since the last call to the device’s getEvents(), or clearEvents()
methods.

Note that calling clearEvents() at the device level only clears the given device’s event buffer. The ioHub
Process’s Global Event Buffer is unchanged.

Parameters
None –

Returns
None

enableEventReporting(enabled=True)
enableEventReporting is functionally identical to the eye tracker device specific setRecordingState method.

getConfiguration()

Retrieve the configuration settings information used to create the device instance. This will the default
settings for the device, found in iohub.devices.<device_name>.default_<device_name>.yaml, updated with
any device settings provided via launchHubServer(. . .).

Changing any values in the returned dictionary has no effect on the device state.

Parameters
None –

Returns
The dictionary of the device configuration settings used to create the device.

Return type
(dict)

getEvents(*args, **kwargs)
Retrieve any DeviceEvents that have occurred since the last call to the device’s getEvents() or clearEvents()
methods.

Note that calling getEvents() at a device level does not change the Global Event Buffer’s contents.

Parameters
• event_type_id (int) – If specified, provides the ioHub DeviceEvent ID for which events

should be returned for. Events that have occurred but do not match the event ID specified
are ignored. Event type ID’s can be accessed via the EventConstants class; all available
event types are class attributes of EventConstants.

• clearEvents (int) – Can be used to indicate if the events being returned should also be
removed from the device event buffer. True (the default) indicates to remove events being
returned. False results in events being left in the device event buffer.

• asType (str) – Optional kwarg giving the object type to return events as. Valid values are
‘namedtuple’ (the default), ‘dict’, ‘list’, or ‘object’.

Returns
New events that the ioHub has received since the last getEvents() or clearEvents() call to the
device. Events are ordered by the ioHub time of each event, older event at index 0. The
event object type is determined by the asType parameter passed to the method. By default a
namedtuple object is returned for each event.

Return type
(list)

10.7. psychopy.iohub - ioHub event monitoring framework 652

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PsychoPy - Psychology software for Python, Release 2023.2.3

getLastGazePosition()

The getLastGazePosition method returns the most recent eye gaze position received from the Eye Tracker.
This is the position on the calibrated 2D surface that the eye tracker is reporting as the current eye position.
The units are in the units in use by the ioHub Display device.

If binocular recording is being performed, the average position of both eyes is returned.

If no samples have been received from the eye tracker, or the eye tracker is not currently recording data,
None is returned.

Parameters
None –

Returns
If this method is not supported by the eye tracker interface, EyeTrackerCon-
stants.EYETRACKER_INTERFACE_METHOD_NOT_SUPPORTED is returned.

None: If the eye tracker is not currently recording data or no eye samples have been received.

tuple: Latest (gaze_x,gaze_y) position of the eye(s)

Return type
int

getLastSample()

The getLastSample method returns the most recent eye sample received from the Eye Tracker. The Eye
Tracker must be in a recording state for a sample event to be returned, otherwise None is returned.

Parameters
None –

Returns
If this method is not supported by the eye tracker interface, EyeTrackerCon-
stants.FUNCTIONALITY_NOT_SUPPORTED is returned.

None: If the eye tracker is not currently recording data.

EyeSample: If the eye tracker is recording in a monocular tracking mode, the latest sample
event of this event type is returned.

BinocularEyeSample: If the eye tracker is recording in a binocular tracking mode, the latest
sample event of this event type is returned.

Return type
int

getPosition()

See getLastGazePosition().

isRecordingEnabled()

isRecordingEnabled returns the recording state from the eye tracking device.

Returns
True == the device is recording data; False == Recording is not occurring

Return type
bool

runSetupProcedure(calibration_args={})
runSetupProcedure displays a mock calibration procedure. No calibration is actually done.

10.7. psychopy.iohub - ioHub event monitoring framework 653

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

setRecordingState(recording)
setRecordingState is used to start or stop the recording of data from the eye tracking device.

trackerSec()

Same as trackerTime().

trackerTime()

Current eye tracker time.

Returns
current eye tracker time in seconds.

Return type
float

Supported Event Types

MouseGaze generates monocular eye samples. A MonocularEyeSampleEvent is created every 10 or 20 msec depending
on the sampling_rate set for the device.

The following fields of the MonocularEyeSample event are supported:

class psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent(*args, **kwargs)
The BinocularEyeSampleEvent event represents the eye position and eye attribute data collected from one frame
or reading of an eye tracker device that is recording both eyes of a participant.

Event Type ID: EventConstants.BINOCULAR_EYE_SAMPLE

Event Type String: ‘BINOCULAR_EYE_SAMPLE’

time

time of event, in sec.msec format, using psychopy timebase.

gaze_x

The horizontal position of MouseGaze on the computer screen, in Display Coordinate Type Units. Cali-
bration must be done prior to reading (meaningful) gaze data. Uses Gazepoint LPOGX field.

gaze_y

The vertical position of MouseGaze on the computer screen, in Display Coordinate Type Units. Calibration
must be done prior to reading (meaningful) gaze data. Uses Gazepoint LPOGY field.

left_pupil_measure_1

MouseGaze pupil diameter, static at 5 mm.

status

Indicates if eye sample contains ‘valid’ position data. 0 = MouseGaze position is valid. 2 = MouseGaze
position is missing (in simulated blink).

MouseGaze also creates basic fixation, saccade, and blink events based on mouse event data.

class psychopy.iohub.devices.eyetracker.FixationStartEvent(*args, **kwargs)
A FixationStartEvent is generated when the beginning of an eye fixation (in very general terms, a period of
relatively stable eye position) is detected by the eye trackers sample parsing algorithms.

Event Type ID: EventConstants.FIXATION_START

Event Type String: ‘FIXATION_START’

10.7. psychopy.iohub - ioHub event monitoring framework 654

https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

time

time of event, in sec.msec format, using psychopy timebase.

eye

EyeTrackerConstants.RIGHT_EYE.

gaze_x

The horizontal ‘eye’ position on the computer screen at the start of the fixation. Units are same as Window.

gaze_y

The vertical eye position on the computer screen at the start of the fixation. Units are same as Window.

class psychopy.iohub.devices.eyetracker.FixationEndEvent(*args, **kwargs)
A FixationEndEvent is generated when the end of an eye fixation (in very general terms, a period of relatively
stable eye position) is detected by the eye trackers sample parsing algorithms.

Event Type ID: EventConstants.FIXATION_END

Event Type String: ‘FIXATION_END’

time

time of event, in sec.msec format, using psychopy timebase.

eye

EyeTrackerConstants.RIGHT_EYE.

start_gaze_x

The horizontal ‘eye’ position on the computer screen at the start of the fixation. Units are same as Window.

start_gaze_y

The vertical ‘eye’ position on the computer screen at the start of the fixation. Units are same as Window.

end_gaze_x

The horizontal ‘eye’ position on the computer screen at the end of the fixation. Units are same as Window.

end_gaze_y

The vertical ‘eye’ position on the computer screen at the end of the fixation. Units are same as Window.

average_gaze_x

Average calibrated horizontal eye position during the fixation, specified in Display Units.

average_gaze_y

Average calibrated vertical eye position during the fixation, specified in Display Units.

duration

Duration of the fixation in sec.msec format.

Default Device Settings

eyetracker.hw.mouse.EyeTracker:
True = Automatically start reporting events for this device when the experiment␣

→˓starts.
False = Do not start reporting events for this device until␣

→˓enableEventReporting(True)
is called for the device.
auto_report_events: False

(continues on next page)

10.7. psychopy.iohub - ioHub event monitoring framework 655

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

Should eye tracker events be saved to the ioHub DataStore file when the device
is recording data ?
save_events: True

Should eye tracker events be sent to the Experiment process when the device
is recording data ?
stream_events: True

How many eye events (including samples) should be saved in the ioHub event buffer␣
→˓before
old eye events start being replaced by new events. When the event buffer reaches
the maximum event length of the buffer defined here, older events will start to be␣

→˓dropped.
event_buffer_length: 1024
runtime_settings:

How many samples / second should Mousegaze Generate.
50 or 100 hz are supported.
sampling_rate: 50

MouseGaze always generates Monocular Right eye samples.
track_eyes: RIGHT_EYE

controls:
Mouse Button used to make a MouseGaze position change.
LEFT_BUTTON, MIDDLE_BUTTON, RIGHT_BUTTON.
move: RIGHT_BUTTON

Mouse Button(s) used to make MouseGaze generate a blink event.
LEFT_BUTTON, MIDDLE_BUTTON, RIGHT_BUTTON.
blink: [LEFT_BUTTON, RIGHT_BUTTON]

Threshold for saccade generation. Specified in visual degrees.
saccade_threshold: 0.5

MouseGaze creates (minimally populated) fixation, saccade, and blink events.
monitor_event_types: [MonocularEyeSampleEvent, FixationStartEvent, FixationEndEvent,␣

→˓SaccadeStartEvent, SaccadeEndEvent, BlinkStartEvent, BlinkEndEvent]

Last Updated: March, 2021

10.7.3 psychopy.iohub Specific Requirements

Computer Specifications

The design / requirements of your experiment itself can obviously influence what the minimum computer specification
should be to provide good timing / performance.

The dual process design when running using psychopy.iohub also influences the minimum suggested specifications as
follows:

• Intel i5 or i7 CPU. A minimum of two CPU cores is needed.

10.7. psychopy.iohub - ioHub event monitoring framework 656

PsychoPy - Psychology software for Python, Release 2023.2.3

• 8 GB of RAM

• Windows 7 +, OS X 10.7.5 +, or Linux Kernel 2.6 +

Please see the Recommended hardware section for further information that applies to in general.

Usage Considerations

When using psychopy.iohub, the following constrains should be noted:

1. The pyglet graphics backend must be used; pygame is not supported.

2. ioHub devices that report position data use the unit type defined by the Window. However, position data is
reported using the full screen area and size the window was created in. Therefore, for accurate window position
reporting, the window must be made full screen.

3. On macOS, Assistive Device support must be enabled when using psychopy.iohub:

• See instructions for OS X 10.7 - 10.8.5

• See instructions for For OS X 10.9 +

10.8 psychopy.tools - miscellaneous tools

Container for all miscellaneous functions and classes

10.8.1 psychopy.tools.colorspacetools

Tools related to working with various color spaces.

The routines provided in the module are used to transform color coordinates between spaces. Most of the functions
here are vectorized, allowing for array inputs to convert multiple color values at once.

As of version 2021.0 of PsychoPy, users ought to use the Color class for working with color coordinate values.

CIELAB

Conversion functions for the CIELAB and CIELCH color space.

cielab2rgb(lab[, whiteXYZ, ...]) Transform CIE L*a*b* (1976) color space coordinates
to RGB tristimulus values.

cielch2rgb(lch[, whiteXYZ, ...]) Transform CIE L*C*h* coordinates to RGB tristimulus
values.

10.8. psychopy.tools - miscellaneous tools 657

http://mizage.com/help/accessibility.html#10.8
http://mizage.com/help/accessibility.html#10.9

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.colorspacetools.cielab2rgb

psychopy.tools.colorspacetools.cielab2rgb(lab, whiteXYZ=None, conversionMatrix=None,
transferFunc=None, clip=False, **kwargs)

Transform CIE L*a*b* (1976) color space coordinates to RGB tristimulus values.

CIE L*a*b* are first transformed into CIE XYZ (1931) color space, then the RGB conversion is applied. By
default, the sRGB conversion matrix is used with a reference D65 white point. You may specify your own RGB
conversion matrix and white point (in CIE XYZ) appropriate for your display.

Parameters
• lab (tuple, list or ndarray) – 1-, 2-, 3-D vector of CIE L*a*b* coordinates to con-

vert. The last dimension should be length-3 in all cases specifying a single coordinate.

• whiteXYZ (tuple, list or ndarray) – 1-D vector coordinate of the white point in CIE-
XYZ color space. Must be the same white point needed by the conversion matrix. The default
white point is D65 if None is specified, defined as X, Y, Z = 0.9505, 1.0000, 1.0890.

• conversionMatrix (tuple, list or ndarray) – 3x3 conversion matrix to transform
CIE-XYZ to RGB values. The default matrix is sRGB with a D65 white point if None is
specified. Note that values must be gamma corrected to appear correctly according to the
sRGB standard.

• transferFunc (pyfunc or None) – Signature of the transfer function to use. If None, val-
ues are kept as linear RGB (it’s assumed your display is gamma corrected via the hardware
CLUT). The TF must be appropriate for the conversion matrix supplied (default is sRGB).
Additional arguments to ‘transferFunc’ can be passed by specifying them as keyword argu-
ments. Gamma functions that come with PsychoPy are ‘srgbTF’ and ‘rec709TF’, see their
docs for more information.

• clip (bool) – Make all output values representable by the display. However, colors outside
of the display’s gamut may not be valid!

Returns
Array of RGB tristimulus values.

Return type
ndarray

Example

Converting a CIE L*a*b* color to linear RGB:

import psychopy.tools.colorspacetools as cst
cielabColor = (53.0, -20.0, 0.0) # greenish color (L*, a*, b*)
rgbColor = cst.cielab2rgb(cielabColor)

Using a transfer function to convert to sRGB:

rgbColor = cst.cielab2rgb(cielabColor, transferFunc=cst.srgbTF)

10.8. psychopy.tools - miscellaneous tools 658

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.colorspacetools.cielch2rgb

psychopy.tools.colorspacetools.cielch2rgb(lch, whiteXYZ=None, conversionMatrix=None,
transferFunc=None, clip=False, **kwargs)

Transform CIE L*C*h* coordinates to RGB tristimulus values.

Parameters
• lch (tuple, list or ndarray) – 1-, 2-, 3-D vector of CIE L*C*h* coordinates to con-

vert. The last dimension should be length-3 in all cases specifying a single coordinate. The
hue angle *h is expected in degrees.

• whiteXYZ (tuple, list or ndarray) – 1-D vector coordinate of the white point in CIE-
XYZ color space. Must be the same white point needed by the conversion matrix. The default
white point is D65 if None is specified, defined as X, Y, Z = 0.9505, 1.0000, 1.0890

• conversionMatrix (tuple, list or ndarray) – 3x3 conversion matrix to transform
CIE-XYZ to RGB values. The default matrix is sRGB with a D65 white point if None is
specified. Note that values must be gamma corrected to appear correctly according to the
sRGB standard.

• transferFunc (pyfunc or None) – Signature of the transfer function to use. If None, val-
ues are kept as linear RGB (it’s assumed your display is gamma corrected via the hardware
CLUT). The TF must be appropriate for the conversion matrix supplied. Additional argu-
ments to ‘transferFunc’ can be passed by specifying them as keyword arguments. Gamma
functions that come with PsychoPy are ‘srgbTF’ and ‘rec709TF’, see their docs for more
information.

• clip (boolean) – Make all output values representable by the display. However, colors
outside of the display’s gamut may not be valid!

Returns
array of RGB tristimulus values

Return type
ndarray

DKL

Conversion functions for the Derrington Krauskopf and Lennie (DKL) color space.

dkl2rgb(dkl[, conversionMatrix]) Convert from DKL color space (Derrington, Krauskopf
& Lennie) to RGB.

dklCart2rgb(LUM, LM, S[, conversionMatrix]) Like dkl2rgb except that it uses cartesian coords
(LM,S,LUM) rather than spherical coords for DKL (elev,
azim, contr).

rgb2dklCart(picture[, conversionMatrix]) Convert an RGB image into Cartesian DKL space.

10.8. psychopy.tools - miscellaneous tools 659

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.colorspacetools.dkl2rgb

psychopy.tools.colorspacetools.dkl2rgb(dkl, conversionMatrix=None)
Convert from DKL color space (Derrington, Krauskopf & Lennie) to RGB.

Requires a conversion matrix, which will be generated from generic Sony Trinitron phosphors if not supplied
(note that this will not be an accurate representation of the color space unless you supply a conversion matrix).

Examples

Converting a single DKL color to RGB:

dkl = [90, 0, 1]
rgb = dkl2rgb(dkl, conversionMatrix)

psychopy.tools.colorspacetools.dklCart2rgb

psychopy.tools.colorspacetools.dklCart2rgb(LUM, LM, S, conversionMatrix=None)
Like dkl2rgb except that it uses cartesian coords (LM,S,LUM) rather than spherical coords for DKL (elev, azim,
contr).

NB: this may return rgb values >1 or <-1

psychopy.tools.colorspacetools.rgb2dklCart

psychopy.tools.colorspacetools.rgb2dklCart(picture, conversionMatrix=None)
Convert an RGB image into Cartesian DKL space.

HSV

Conversion functions for the Hue-Saturation-Value (HSV) color space.

hsv2rgb(hsv_Nx3) Convert from HSV color space to RGB gun values.
rgb2hsv(rgb) Convert values from linear RGB to HSV colorspace.

psychopy.tools.colorspacetools.hsv2rgb

psychopy.tools.colorspacetools.hsv2rgb(hsv_Nx3)
Convert from HSV color space to RGB gun values.

usage:

rgb_Nx3 = hsv2rgb(hsv_Nx3)

Note that in some uses of HSV space the Hue component is given in radians or cycles (range 0:1]). In this version
H is given in degrees (0:360).

Also note that the RGB output ranges -1:1, in keeping with other PsychoPy functions.

10.8. psychopy.tools - miscellaneous tools 660

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.colorspacetools.rgb2hsv

psychopy.tools.colorspacetools.rgb2hsv(rgb)
Convert values from linear RGB to HSV colorspace.

Parameters
rgb (array_like) – 1-, 2-, 3-D vector of RGB coordinates to convert. The last dimension should
be length-3 in all cases, specifying a single coordinate.

Returns
HSV values with the same shape as the input.

Return type
ndarray

LMS

lms2rgb(lms_Nx3[, conversionMatrix]) Convert from cone space (Long, Medium, Short) to
RGB.

rgb2lms(rgb_Nx3[, conversionMatrix]) Convert from RGB to cone space (LMS).

psychopy.tools.colorspacetools.lms2rgb

psychopy.tools.colorspacetools.lms2rgb(lms_Nx3, conversionMatrix=None)
Convert from cone space (Long, Medium, Short) to RGB.

Requires a conversion matrix, which will be generated from generic Sony Trinitron phosphors if not supplied
(note that you will not get an accurate representation of the color space unless you supply a conversion matrix)

usage:

rgb_Nx3 = lms2rgb(dkl_Nx3(el,az,radius), conversionMatrix)

psychopy.tools.colorspacetools.rgb2lms

psychopy.tools.colorspacetools.rgb2lms(rgb_Nx3, conversionMatrix=None)
Convert from RGB to cone space (LMS).

Requires a conversion matrix, which will be generated from generic Sony Trinitron phosphors if not supplied
(note that you will not get an accurate representation of the color space unless you supply a conversion matrix)

usage:

lms_Nx3 = rgb2lms(rgb_Nx3(el,az,radius), conversionMatrix)

10.8. psychopy.tools - miscellaneous tools 661

PsychoPy - Psychology software for Python, Release 2023.2.3

Gamma/Transfer Functions

Standard gamma functions for converting between linear RGB space and sRGB.

srgbTF(rgb[, reverse]) Apply sRGB transfer function (or gamma) to linear RGB
values.

rec709TF(rgb, **kwargs) Apply the Rec 709 transfer function (or gamma) to linear
RGB values.

psychopy.tools.colorspacetools.srgbTF

psychopy.tools.colorspacetools.srgbTF(rgb, reverse=False, **kwargs)
Apply sRGB transfer function (or gamma) to linear RGB values.

Input values must have been transformed using a conversion matrix derived from sRGB primaries relative to
D65.

Parameters
• rgb (tuple, list or ndarray of floats) – Nx3 or NxNx3 array of linear RGB val-

ues, last dim must be size == 3 specifying RBG values.

• reverse (boolean) – If True, the reverse transfer function will convert sRGB -> linear
RGB.

Returns
Array of transformed colors with same shape as input.

Return type
ndarray

psychopy.tools.colorspacetools.rec709TF

psychopy.tools.colorspacetools.rec709TF(rgb, **kwargs)
Apply the Rec 709 transfer function (or gamma) to linear RGB values.

This transfer function is defined in the ITU-R BT.709 (2015) recommendation document (https://www.itu.int/
rec/R-REC-BT.709-6-201506-I/en) and is commonly used with HDTV televisions.

Parameters
rgb (tuple, list or ndarray of floats) – Nx3 or NxNx3 array of linear RGB values,
last dim must be size == 3 specifying RBG values.

Returns
Array of transformed colors with same shape as input.

Return type
ndarray

10.8. psychopy.tools - miscellaneous tools 662

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://www.itu.int/rec/R-REC-BT.709-6-201506-I/en
https://www.itu.int/rec/R-REC-BT.709-6-201506-I/en
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list

PsychoPy - Psychology software for Python, Release 2023.2.3

Helpers

Helper functions for working with color coordinates.

rescaleColor(rgb[, convertTo, clip]) Rescale RGB colors.

psychopy.tools.colorspacetools.rescaleColor

psychopy.tools.colorspacetools.rescaleColor(rgb, convertTo='signed', clip=False)
Rescale RGB colors.

This function can be used to convert RGB value triplets from the PsychoPy signed color format to the normalized
OpenGL format.

PsychoPy represents colors using values between -1 and 1. However, colors are commonly represented using
values between 0 and 1 when working with OpenGL and various other contexts. This function simply rescales
values to switch between these formats.

Parameters
• rgb (array_like) – 1-, 2-, 3-D vector of RGB coordinates to convert. The last dimension

should be length-3 in all cases, specifying a single coordinate.

• convertTo (str) – If ‘signed’, this function will assume rgb is in OpenGL format [0:1] and
rescale them to PsychoPy’s format [-1:1]. If ‘unsigned’, input values are treated as OpenGL
format and will be rescaled to use PsychoPy’s. Default is ‘signed’.

• clip (bool) – Clip values to the range that can be represented on a display. This is an
optional step. Default is False.

Returns
Rescaled values with the same shape as rgb.

Return type
ndarray

Notes

The convertTo argument also accepts strings ‘opengl’ and ‘psychopy’ as substitutes for ‘signed’ and ‘unsigned’,
respectively. This might be more explicit in some contexts.

Examples

Convert a signed RGB value to unsigned format:

rgb_signed = [-1, 0, 1]
rgb_unsigned = rescaleColor(rgb_signed, convertTo='unsigned')

10.8. psychopy.tools - miscellaneous tools 663

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

10.8.2 psychopy.tools.coordinatetools

Functions and classes related to coordinate system conversion

cart2pol(x, y[, units]) Convert from cartesian to polar coordinates.
cart2sph (z, y, x) Convert from cartesian coordinates (x,y,z) to spherical

(elevation, azimuth, radius).
pol2cart(theta, radius[, units]) Convert from polar to cartesian coordinates.
sph2cart(*args) Convert from spherical coordinates (elevation, azimuth,

radius) to cartesian (x,y,z).

Function details

psychopy.tools.coordinatetools.cart2pol(x, y, units='deg')
Convert from cartesian to polar coordinates.

Usage
theta, radius = cart2pol(x, y, units=’deg’)

units refers to the units (rad or deg) for theta that should be returned

psychopy.tools.coordinatetools.cart2sph(z, y, x)
Convert from cartesian coordinates (x,y,z) to spherical (elevation, azimuth, radius). Output is in degrees.

usage:
array3xN[el,az,rad] = cart2sph(array3xN[x,y,z]) OR elevation, azimuth, radius = cart2sph(x,y,z)

If working in DKL space, z = Luminance, y = S and x = LM

psychopy.tools.coordinatetools.pol2cart(theta, radius, units='deg')
Convert from polar to cartesian coordinates.

usage:

x,y = pol2cart(theta, radius, units='deg')

psychopy.tools.coordinatetools.sph2cart(*args)
Convert from spherical coordinates (elevation, azimuth, radius) to cartesian (x,y,z).

usage:
array3xN[x,y,z] = sph2cart(array3xN[el,az,rad]) OR x,y,z = sph2cart(elev, azim, radius)

10.8.3 psychopy.tools.filetools

Functions and classes related to file and directory handling

psychopy.tools.filetools.toFile(filename, data)
Save data (of any sort) as a pickle file.

simple wrapper of the cPickle module in core python

psychopy.tools.filetools.fromFile(filename, encoding='utf-8-sig')
Load data from a psydat, pickle or JSON file.

10.8. psychopy.tools - miscellaneous tools 664

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
encoding (str) – The encoding to use when reading a JSON file. This parameter will be ignored
for any other file type.

psychopy.tools.filetools.mergeFolder(src, dst, pattern=None)
Merge a folder into another.

Existing files in dst folder with the same name will be overwritten. Non-existent files/folders will be created.

psychopy.tools.filetools.openOutputFile(fileName=None, append=False, fileCollisionMethod='rename',
encoding='utf-8-sig')

Open an output file (or standard output) for writing.

Parameters

fileName
[None, ‘stdout’, or str] The desired output file name. If None or stdout, return sys.stdout. Any other string
will be considered a filename.

append
[bool, optional] If True, append data to an existing file; otherwise, overwrite it with new data. Defaults to
True, i.e. appending.

fileCollisionMethod
[string, optional] How to handle filename collisions. Valid values are ‘rename’, ‘overwrite’, and ‘fail’. This
parameter is ignored if append is set to True. Defaults to rename.

encoding
[string, optional] The encoding to use when writing the file. This parameter will be ignored if append is
False and fileName ends with .psydat or .npy (i.e. if a binary file is to be written). Defaults to 'utf-8'.

Returns

f
[file] A writable file handle.

psychopy.tools.filetools.genDelimiter(fileName)
Return a delimiter based on a filename.

Parameters

fileName
[string] The output file name.

Returns

delim
[string] A delimiter picked based on the supplied filename. This will be , if the filename extension is .csv,
and a tabulator character otherwise.

10.8. psychopy.tools - miscellaneous tools 665

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

10.8.4 psychopy.tools.gltools

OpenGL related helper functions.

Shaders

Tools for creating, compiling, using, and inspecting shader programs.

createProgram() Create an empty program object for shaders.
createProgramObjectARB() Create an empty program object for shaders.
compileShader(shaderSrc, shaderType) Compile shader GLSL code and return a shader object.
compileShaderObjectARB(shaderSrc, shaderType) Compile shader GLSL code and return a shader object.
embedShaderSourceDefs(shaderSrc, defs) Embed preprocessor definitions into GLSL source code.
deleteObject(obj) Delete a shader or program object.
deleteObjectARB(obj) Delete a program or shader object.
attachShader(program, shader) Attach a shader to a program.
attachObjectARB(program, shader) Attach a shader object to a program.
detachShader(program, shader) Detach a shader object from a program.
detachObjectARB(program, shader) Detach a shader object from a program.
linkProgram(program) Link a shader program.
linkProgramObjectARB(program) Link a shader program object.
validateProgram(program) Check if the program can execute given the current

OpenGL state.
validateProgramARB(program) Check if the program can execute given the current

OpenGL state.
useProgram(program) Use a program object's executable shader attachments in

the current OpenGL rendering state.
useProgramObjectARB(program) Use a program object's executable shader attachments in

the current OpenGL rendering state.
getInfoLog(obj) Get the information log from a shader or program.
getUniformLocations(program[, builtins]) Get uniform names and locations from a given shader

program object.
getAttribLocations(program[, builtins]) Get attribute names and locations from the specified pro-

gram object.

psychopy.tools.gltools.createProgram

psychopy.tools.gltools.createProgram()

Create an empty program object for shaders.

Returns
OpenGL program object handle retrieved from a glCreateProgram call.

Return type
int

10.8. psychopy.tools - miscellaneous tools 666

https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Building a program with vertex and fragment shader attachments:

myProgram = createProgram() # new shader object

compile vertex and fragment shader sources
vertexShader = compileShader(vertShaderSource, GL.GL_VERTEX_SHADER)
fragmentShader = compileShader(fragShaderSource, GL.GL_FRAGMENT_SHADER)

attach shaders to program
attachShader(myProgram, vertexShader)
attachShader(myProgram, fragmentShader)

link the shader, makes `myProgram` attachments executable by their
respective processors and available for use
linkProgram(myProgram)

optional, validate the program
validateProgram(myProgram)

optional, detach and discard shader objects
detachShader(myProgram, vertexShader)
detachShader(myProgram, fragmentShader)

deleteObject(vertexShader)
deleteObject(fragmentShader)

You can install the program for use in the current rendering state by calling:

useProgram(myShader) # OR glUseProgram(myShader)
set uniforms/attributes and start drawing here ...

psychopy.tools.gltools.createProgramObjectARB

psychopy.tools.gltools.createProgramObjectARB()

Create an empty program object for shaders.

This creates an Architecture Review Board (ARB) program variant which is compatible with older GLSL versions
and OpenGL coding practices (eg. immediate mode) on some platforms. Use *ARB variants of shader helper
functions (eg. compileShaderObjectARB instead of compileShader) when working with these ARB program
objects. This was included for legacy support of existing PsychoPy shaders. However, it is recommended that
you use createShader() and follow more recent OpenGL design patterns for new code (if possible of course).

Returns
OpenGL program object handle retrieved from a glCreateProgramObjectARB call.

Return type
int

10.8. psychopy.tools - miscellaneous tools 667

https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Building a program with vertex and fragment shader attachments:

myProgram = createProgramObjectARB() # new shader object

compile vertex and fragment shader sources
vertexShader = compileShaderObjectARB(

vertShaderSource, GL.GL_VERTEX_SHADER_ARB)
fragmentShader = compileShaderObjectARB(

fragShaderSource, GL.GL_FRAGMENT_SHADER_ARB)

attach shaders to program
attachObjectARB(myProgram, vertexShader)
attachObjectARB(myProgram, fragmentShader)

link the shader, makes `myProgram` attachments executable by their
respective processors and available for use
linkProgramObjectARB(myProgram)

optional, validate the program
validateProgramARB(myProgram)

optional, detach and discard shader objects
detachObjectARB(myProgram, vertexShader)
detachObjectARB(myProgram, fragmentShader)

deleteObjectARB(vertexShader)
deleteObjectARB(fragmentShader)

Use the program in the current OpenGL state:

useProgramObjectARB(myProgram)

psychopy.tools.gltools.compileShader

psychopy.tools.gltools.compileShader(shaderSrc, shaderType)
Compile shader GLSL code and return a shader object. Shader objects can then be attached to programs an made
executable on their respective processors.

Parameters
• shaderSrc (str, list of str) – GLSL shader source code.

• shaderType (GLenum) – Shader program type (eg. GL_VERTEX_SHADER,
GL_FRAGMENT_SHADER, GL_GEOMETRY_SHADER, etc.)

Returns
OpenGL shader object handle retrieved from a glCreateShader call.

Return type
int

10.8. psychopy.tools - miscellaneous tools 668

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Compiling GLSL source code and attaching it to a program object:

GLSL vertex shader source
vertexSource = '''

#version 330 core
layout (location = 0) in vec3 vertexPos;

void main()
{

gl_Position = vec4(vertexPos, 1.0);
}
'''

compile it, specifying `GL_VERTEX_SHADER`
vertexShader = compileShader(vertexSource, GL.GL_VERTEX_SHADER)
attachShader(myProgram, vertexShader) # attach it to `myProgram`

psychopy.tools.gltools.compileShaderObjectARB

psychopy.tools.gltools.compileShaderObjectARB(shaderSrc, shaderType)
Compile shader GLSL code and return a shader object. Shader objects can then be attached to programs an made
executable on their respective processors.

Parameters
• shaderSrc (str, list of str) – GLSL shader source code text.

• shaderType (GLenum) – Shader program type. Must be *_ARB enums
such as GL_VERTEX_SHADER_ARB, GL_FRAGMENT_SHADER_ARB,
GL_GEOMETRY_SHADER_ARB, etc.

Returns
OpenGL shader object handle retrieved from a glCreateShaderObjectARB call.

Return type
int

psychopy.tools.gltools.embedShaderSourceDefs

psychopy.tools.gltools.embedShaderSourceDefs(shaderSrc, defs)
Embed preprocessor definitions into GLSL source code.

This function generates and inserts #define statements into existing GLSL source code, allowing one to use
GLSL preprocessor statements to alter program source at compile time.

Passing {'MAX_LIGHTS': 8, 'NORMAL_MAP': False} to defs will create and insert the following #define
statements into shaderSrc:

#define MAX_LIGHTS 8
#define NORMAL_MAP 0

As per the GLSL specification, the #version directive must be specified at the top of the file before any other
statement (with the exception of comments). If a #version directive is present, generated #define statements

10.8. psychopy.tools - miscellaneous tools 669

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

will be inserted starting at the following line. If no #version directive is found in shaderSrc, the statements will
be prepended to shaderSrc.

Using preprocessor directives, multiple shader program routines can reside in the same source text if enclosed
by #ifdef and #endif statements as shown here:

#ifdef VERTEX
// vertex shader code here ...

#endif

#ifdef FRAGMENT
// pixel shader code here ...

#endif

Both the vertex and fragment shader can be built from the same GLSL code listing by setting either VERTEX or
FRAGMENT as True:

vertexShader = gltools.compileShaderObjectARB(
gltools.embedShaderSourceDefs(glslSource, {'VERTEX': True}),
GL.GL_VERTEX_SHADER_ARB)

fragmentShader = gltools.compileShaderObjectARB(
gltools.embedShaderSourceDefs(glslSource, {'FRAGMENT': True}),
GL.GL_FRAGMENT_SHADER_ARB)

In addition, #ifdef blocks can be used to prune render code paths. Here, this GLSL snippet shows a shader
having diffuse color sampled from a texture is conditional on DIFFUSE_TEXTURE being True, if not, the material
color is used instead:

#ifdef DIFFUSE_TEXTURE
uniform sampler2D diffuseTexture;

#endif
...
#ifdef DIFFUSE_TEXTURE

// sample color from texture
vec4 diffuseColor = texture2D(diffuseTexture, gl_TexCoord[0].st);

#else
// code path for no textures, just output material color
vec4 diffuseColor = gl_FrontMaterial.diffuse;

#endif

This avoids needing to provide two separate GLSL program sources to build shaders to handle cases where a
diffuse texture is or isn’t used.

Parameters
• shaderSrc (str) – GLSL shader source code.

• defs (dict) – Names and values to generate #define statements. Keys must all be valid
GLSL preprocessor variable names of type str. Values can only be int, float, str, bytes, or
bool types. Boolean values True and False are converted to integers 1 and 0, respectively.

Returns
GLSL source code with #define statements inserted.

Return type
str

10.8. psychopy.tools - miscellaneous tools 670

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Defining MAX_LIGHTS as 8 in a fragment shader program at runtime:

fragSrc = embedShaderSourceDefs(fragSrc, {'MAX_LIGHTS': 8})
fragShader = compileShaderObjectARB(fragSrc, GL_FRAGMENT_SHADER_ARB)

psychopy.tools.gltools.deleteObject

psychopy.tools.gltools.deleteObject(obj)
Delete a shader or program object.

Parameters
obj (int) – Shader or program object handle. Must have originated from a createProgram(),
compileShader(), glCreateProgram or glCreateShader call.

psychopy.tools.gltools.deleteObjectARB

psychopy.tools.gltools.deleteObjectARB(obj)
Delete a program or shader object.

Parameters
obj (int) – Program handle to attach shader to. Must have origi-
nated from a createProgramObjectARB(), compileShaderObjectARB,
`glCreateProgramObjectARB() or glCreateShaderObjectARB call.

psychopy.tools.gltools.attachShader

psychopy.tools.gltools.attachShader(program, shader)
Attach a shader to a program.

Parameters
• program (int) – Program handle to attach shader to. Must have originated from a
createProgram() or glCreateProgram call.

• shader (int) – Handle of shader object to attach. Must have originated from a
compileShader() or glCreateShader call.

psychopy.tools.gltools.attachObjectARB

psychopy.tools.gltools.attachObjectARB(program, shader)
Attach a shader object to a program.

Parameters
• program (int) – Program handle to attach shader to. Must have originated from a
createProgramObjectARB() or glCreateProgramObjectARB call.

• shader (int) – Handle of shader object to attach. Must have originated from a
compileShaderObjectARB() or glCreateShaderObjectARB call.

10.8. psychopy.tools - miscellaneous tools 671

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.gltools.detachShader

psychopy.tools.gltools.detachShader(program, shader)
Detach a shader object from a program.

Parameters
• program (int) – Program handle to detach shader from. Must have originated from a
createProgram() or glCreateProgram call.

• shader (int) – Handle of shader object to detach. Must have been previously attached to
program.

psychopy.tools.gltools.detachObjectARB

psychopy.tools.gltools.detachObjectARB(program, shader)
Detach a shader object from a program.

Parameters
• program (int) – Program handle to detach shader from. Must have originated from a
createProgramObjectARB() or glCreateProgramObjectARB call.

• shader (int) – Handle of shader object to detach. Must have been previously attached to
program.

psychopy.tools.gltools.linkProgram

psychopy.tools.gltools.linkProgram(program)

Link a shader program. Any attached shader objects will be made executable to run on associated GPU processor
units when the program is used.

Parameters
program (int) – Program handle to link. Must have originated from a createProgram() or
glCreateProgram call.

Raises
• ValueError – Specified program handle is invalid.

• RuntimeError – Program failed to link. Log will be dumped to sterr.

psychopy.tools.gltools.linkProgramObjectARB

psychopy.tools.gltools.linkProgramObjectARB(program)

Link a shader program object. Any attached shader objects will be made executable to run on associated GPU
processor units when the program is used.

Parameters
program (int) – Program handle to link. Must have originated from a
createProgramObjectARB() or glCreateProgramObjectARB call.

Raises
• ValueError – Specified program handle is invalid.

• RuntimeError – Program failed to link. Log will be dumped to sterr.

10.8. psychopy.tools - miscellaneous tools 672

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#RuntimeError

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.gltools.validateProgram

psychopy.tools.gltools.validateProgram(program)

Check if the program can execute given the current OpenGL state.

Parameters
program (int) – Handle of program to validate. Must have originated from a
createProgram() or glCreateProgram call.

psychopy.tools.gltools.validateProgramARB

psychopy.tools.gltools.validateProgramARB(program)

Check if the program can execute given the current OpenGL state. If validation fails, information from the driver
is dumped giving the reason.

Parameters
program (int) – Handle of program object to validate. Must have originated from a
createProgramObjectARB() or glCreateProgramObjectARB call.

psychopy.tools.gltools.useProgram

psychopy.tools.gltools.useProgram(program)

Use a program object’s executable shader attachments in the current OpenGL rendering state.

In order to install the program object in the current rendering state, a program must have been successfully linked
by calling linkProgram() or glLinkProgram.

Parameters
program (int) – Handle of program to use. Must have originated from a createProgram() or
glCreateProgram call and was successfully linked. Passing 0 or None disables shader programs.

Examples

Install a program for use in the current rendering state:

useProgram(myShader)

Disable the current shader program by specifying 0:

useProgram(0)

psychopy.tools.gltools.useProgramObjectARB

psychopy.tools.gltools.useProgramObjectARB(program)

Use a program object’s executable shader attachments in the current OpenGL rendering state.

In order to install the program object in the current rendering state, a program must have been successfully linked
by calling linkProgramObjectARB() or glLinkProgramObjectARB.

10.8. psychopy.tools - miscellaneous tools 673

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
program (int) – Handle of program object to use. Must have originated from a
createProgramObjectARB() or glCreateProgramObjectARB call and was successfully linked.
Passing 0 or None disables shader programs.

Examples

Install a program for use in the current rendering state:

useProgramObjectARB(myShader)

Disable the current shader program by specifying 0:

useProgramObjectARB(0)

Notes

Some drivers may support using glUseProgram for objects created by calling createProgramObjectARB() or
glCreateProgramObjectARB.

psychopy.tools.gltools.getInfoLog

psychopy.tools.gltools.getInfoLog(obj)
Get the information log from a shader or program.

This retrieves a text log from the driver pertaining to the shader or program. For instance, a log can report shader
compiler output or validation results. The verbosity and formatting of the logs are platform-dependent, where
one driver may provide more information than another.

This function works with both standard and ARB program object variants.

Parameters
obj (int) – Program or shader to retrieve a log from. If a shader, the handle must have orig-
inated from a compileShader(), glCreateShader, createProgramObjectARB() or glCre-
ateProgramObjectARB call. If a program, the handle must have came from a createProgram(),
createProgramObjectARB(), glCreateProgram or glCreateProgramObjectARB call.

Returns
Information log data. Logs can be empty strings if the driver has no information available.

Return type
str

psychopy.tools.gltools.getUniformLocations

psychopy.tools.gltools.getUniformLocations(program, builtins=False)
Get uniform names and locations from a given shader program object.

This function works with both standard and ARB program object variants.

Parameters

10.8. psychopy.tools - miscellaneous tools 674

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

• program (int) – Handle of program to retrieve uniforms. Must have originated from
a createProgram(), createProgramObjectARB(), glCreateProgram or glCreatePro-
gramObjectARB call.

• builtins (bool, optional) – Include built-in GLSL uniforms (eg.
gl_ModelViewProjectionMatrix). Default is False.

Returns
Uniform names and locations.

Return type
dict

psychopy.tools.gltools.getAttribLocations

psychopy.tools.gltools.getAttribLocations(program, builtins=False)
Get attribute names and locations from the specified program object.

This function works with both standard and ARB program object variants.

Parameters
• program (int) – Handle of program to retrieve attributes. Must have originated from

a createProgram(), createProgramObjectARB(), glCreateProgram or glCreatePro-
gramObjectARB call.

• builtins (bool, optional) – Include built-in GLSL attributes (eg. gl_Vertex). Default
is False.

Returns
Attribute names and locations.

Return type
dict

Query

Tools for using OpenGL query objects.

createQueryObject([target]) Create a GL query object.
QueryObjectInfo(name, target) Object for querying information.
beginQuery(query) Begin query.
endQuery(query) End a query.
getQuery(query) Get the value stored in a query object.
getAbsTimeGPU() Get the absolute GPU time in nanoseconds.

10.8. psychopy.tools - miscellaneous tools 675

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.gltools.createQueryObject

psychopy.tools.gltools.createQueryObject(target=35007)
Create a GL query object.

Parameters
target (Glenum or int) – Target for the query.

Returns
Query object.

Return type
QueryObjectInfo

Examples

Get GPU time elapsed executing rendering/GL calls associated with some stimuli (this is not the difference in
absolute time between consecutive beginQuery and endQuery calls!):

create a new query object
qGPU = createQueryObject(GL_TIME_ELAPSED)

beginQuery(query)
myStim.draw() # OpenGL calls here
endQuery(query)

get time elapsed in seconds spent on the GPU
timeRendering = getQueryValue(qGPU) * 1e-9

You can also use queries to test if vertices are occluded, as their samples would be rejected during depth testing:

drawVAO(shape0, GL_TRIANGLES) # draw the first object

check if the object was completely occluded
qOcclusion = createQueryObject(GL_ANY_SAMPLES_PASSED)

draw the next shape within query context
beginQuery(qOcclusion)
drawVAO(shape1, GL_TRIANGLES) # draw the second object
endQuery(qOcclusion)

isOccluded = getQueryValue(qOcclusion) == 1

This can be leveraged to perform occlusion testing/culling, where you can render a cheap version of your
mesh/shape, then the more expensive version if samples were passed.

10.8. psychopy.tools - miscellaneous tools 676

https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.gltools.QueryObjectInfo

class psychopy.tools.gltools.QueryObjectInfo(name, target)
Object for querying information. This includes GPU timing information.

__init__(name, target)

Methods

__init__(name, target)

isValid() Check if the name associated with this object is valid.

Attributes

name

target

psychopy.tools.gltools.beginQuery

psychopy.tools.gltools.beginQuery(query)
Begin query.

Parameters
query (QueryObjectInfo) – Query object descriptor returned by createQueryObject().

psychopy.tools.gltools.endQuery

psychopy.tools.gltools.endQuery(query)
End a query.

Parameters
query (QueryObjectInfo) – Query object descriptor returned by createQueryObject(),
previously passed to beginQuery().

psychopy.tools.gltools.getQuery

psychopy.tools.gltools.getQuery(query)
Get the value stored in a query object.

Parameters
query (QueryObjectInfo) – Query object descriptor returned by createQueryObject(),
previously passed to endQuery().

10.8. psychopy.tools - miscellaneous tools 677

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.gltools.getAbsTimeGPU

psychopy.tools.gltools.getAbsTimeGPU()

Get the absolute GPU time in nanoseconds.

Returns
Time elapsed in nanoseconds since the OpenGL context was fully realized.

Return type
int

Examples

Get the current GPU time in seconds:

timeInSeconds = getAbsTimeGPU() * 1e-9

Get the GPU time elapsed:

t0 = getAbsTimeGPU()
some drawing commands here ...
t1 = getAbsTimeGPU()
timeElapsed = (t1 - t0) * 1e-9 # take difference, convert to seconds

Framebuffer Objects (FBO)

Tools for creating Framebuffer Objects (FBOs).

createFBO([attachments]) Create a Framebuffer Object.
attach (attachPoint, imageBuffer) Attach an image to a specified attachment point on the

presently bound FBO.
isComplete() Check if the currently bound framebuffer is complete.
deleteFBO(fbo) Delete a framebuffer.
blitFBO(srcRect[, dstRect, filter]) Copy a block of pixels between framebuffers via blitting.
useFBO(fbo) Context manager for Framebuffer Object bindings.

psychopy.tools.gltools.createFBO

psychopy.tools.gltools.createFBO(attachments=())
Create a Framebuffer Object.

Parameters
attachments (list or tuple of tuple) – Optional attachments to initialize the Frame-
buffer with. Attachments are specified as a list of tuples. Each tuple must contain
an attachment point (e.g. GL_COLOR_ATTACHMENT0, GL_DEPTH_ATTACHMENT,
etc.) and a buffer descriptor type (Renderbuffer or TexImage2D). If using a combined
depth/stencil format such as GL_DEPTH24_STENCIL8, GL_DEPTH_ATTACHMENT and
GL_STENCIL_ATTACHMENT must be passed the same buffer. Alternatively, one can
use GL_DEPTH_STENCIL_ATTACHMENT instead. If using multisample buffers, all at-
tachment images must use the same number of samples!. As an example, one may

10.8. psychopy.tools - miscellaneous tools 678

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

specify attachments as ‘attachments=((GL.GL_COLOR_ATTACHMENT0, frameTexture),
(GL.GL_DEPTH_STENCIL_ATTACHMENT, depthRenderBuffer))’.

Returns
Framebuffer descriptor.

Return type
Framebuffer

Notes

• All buffers must have the same number of samples.

• The ‘userData’ field of the returned descriptor is a dictionary that can be used to store arbitrary data asso-
ciated with the FBO.

• Framebuffers need a single attachment to be complete.

Examples

Create an empty framebuffer with no attachments:

fbo = createFBO() # invalid until attachments are added

Create a render target with multiple color texture attachments:

colorTex = createTexImage2D(1024,1024) # empty texture
depthRb = createRenderbuffer(800,600,internalFormat=GL.GL_DEPTH24_STENCIL8)

attach images
GL.glBindFramebuffer(GL.GL_FRAMEBUFFER, fbo.id)
attach(GL.GL_COLOR_ATTACHMENT0, colorTex)
attach(GL.GL_DEPTH_ATTACHMENT, depthRb)
attach(GL.GL_STENCIL_ATTACHMENT, depthRb)
or attach(GL.GL_DEPTH_STENCIL_ATTACHMENT, depthRb)
GL.glBindFramebuffer(GL.GL_FRAMEBUFFER, 0)

above is the same as
with useFBO(fbo):

attach(GL.GL_COLOR_ATTACHMENT0, colorTex)
attach(GL.GL_DEPTH_ATTACHMENT, depthRb)
attach(GL.GL_STENCIL_ATTACHMENT, depthRb)

Examples of userData some custom function might access:

fbo.userData['flags'] = ['left_eye', 'clear_before_use']

Using a depth only texture (for shadow mapping?):

depthTex = createTexImage2D(800, 600,
internalFormat=GL.GL_DEPTH_COMPONENT24,
pixelFormat=GL.GL_DEPTH_COMPONENT)

fbo = createFBO([(GL.GL_DEPTH_ATTACHMENT, depthTex)]) # is valid

(continues on next page)

10.8. psychopy.tools - miscellaneous tools 679

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

discard FBO descriptor, just give me the ID
frameBuffer = createFBO().id

psychopy.tools.gltools.attach

psychopy.tools.gltools.attach(attachPoint, imageBuffer)
Attach an image to a specified attachment point on the presently bound FBO.

:param attachPoint int: Attachment point for ‘imageBuffer’ (e.g. GL.GL_COLOR_ATTACHMENT0). :param
imageBuffer: Framebuffer-attachable buffer descriptor. :type imageBuffer: TexImage2D or Renderbuffer

Examples

Attach an image to attachment points on the framebuffer:

GL.glBindFramebuffer(GL.GL_FRAMEBUFFER, fbo)
attach(GL.GL_COLOR_ATTACHMENT0, colorTex)
attach(GL.GL_DEPTH_STENCIL_ATTACHMENT, depthRb)
GL.glBindFramebuffer(GL.GL_FRAMEBUFFER, lastBoundFbo)

same as above, but using a context manager
with useFBO(fbo):

attach(GL.GL_COLOR_ATTACHMENT0, colorTex)
attach(GL.GL_DEPTH_STENCIL_ATTACHMENT, depthRb)

psychopy.tools.gltools.isComplete

psychopy.tools.gltools.isComplete()

Check if the currently bound framebuffer is complete.

Returns
True if the presently bound FBO is complete.

Return type
bool

psychopy.tools.gltools.deleteFBO

psychopy.tools.gltools.deleteFBO(fbo)
Delete a framebuffer.

10.8. psychopy.tools - miscellaneous tools 680

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.gltools.blitFBO

psychopy.tools.gltools.blitFBO(srcRect, dstRect=None, filter=9729)
Copy a block of pixels between framebuffers via blitting. Read and draw framebuffers must be bound prior to
calling this function. Beware, the scissor box and viewport are changed when this is called to dstRect.

Parameters
• srcRect (list of int) – List specifying the top-left and bottom-right coordinates of the

region to copy from (<X0>, <Y0>, <X1>, <Y1>).

• dstRect (list of int or None) – List specifying the top-left and bottom-right coordinates
of the region to copy to (<X0>, <Y0>, <X1>, <Y1>). If None, srcRect is used for dstRect.

• filter (int) – Interpolation method to use if the image is stretched, default is GL_LINEAR,
but can also be GL_NEAREST.

Return type
None

Examples

Blitting pixels from on FBO to another:

bind framebuffer to read pixels from
GL.glBindFramebuffer(GL.GL_READ_FRAMEBUFFER, srcFbo)

bind framebuffer to draw pixels to
GL.glBindFramebuffer(GL.GL_DRAW_FRAMEBUFFER, dstFbo)

gltools.blitFBO((0,0,800,600), (0,0,800,600))

unbind both read and draw buffers
GL.glBindFramebuffer(GL.GL_FRAMEBUFFER, 0)

psychopy.tools.gltools.useFBO

psychopy.tools.gltools.useFBO(fbo)
Context manager for Framebuffer Object bindings. This function yields the framebuffer name as an integer.

:param fbo int or Framebuffer: OpenGL Framebuffer Object name/ID or descriptor.

Yields
int – OpenGL name of the framebuffer bound in the context.

10.8. psychopy.tools - miscellaneous tools 681

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Using a framebuffer context manager:

FBO bound somewhere deep in our code
GL.glBindFramebuffer(GL.GL_FRAMEBUFFER, someOtherFBO)

...

create a new FBO, but we have no idea what the currently bound FBO is
fbo = createFBO()

use a context to bind attachments
with bindFBO(fbo):

attach(GL.GL_COLOR_ATTACHMENT0, colorTex)
attach(GL.GL_DEPTH_ATTACHMENT, depthRb)
attach(GL.GL_STENCIL_ATTACHMENT, depthRb)
isComplete = gltools.isComplete()

someOtherFBO is still bound!

Renderbuffers

Tools for creating Renderbuffers.

createRenderbuffer(width, height[, ...]) Create a new Renderbuffer Object with a specified inter-
nal format.

deleteRenderbuffer(renderBuffer) Free the resources associated with a renderbuffer.

psychopy.tools.gltools.createRenderbuffer

psychopy.tools.gltools.createRenderbuffer(width, height, internalFormat=32856, samples=1)
Create a new Renderbuffer Object with a specified internal format. A multisample storage buffer is created if
samples > 1.

Renderbuffers contain image data and are optimized for use as render targets. See https://www.khronos.org/
opengl/wiki/Renderbuffer_Object for more information.

Parameters
• width (int) – Buffer width in pixels.

• height (int) – Buffer height in pixels.

• internalFormat (int) – Format for renderbuffer data (e.g. GL_RGBA8,
GL_DEPTH24_STENCIL8).

• samples (int) – Number of samples for multi-sampling, should be >1 and power-of-two.
Work with one sample, but will raise a warning.

Returns
A descriptor of the created renderbuffer.

Return type
Renderbuffer

10.8. psychopy.tools - miscellaneous tools 682

https://www.khronos.org/opengl/wiki/Renderbuffer_Object
https://www.khronos.org/opengl/wiki/Renderbuffer_Object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Notes

The ‘userData’ field of the returned descriptor is a dictionary that can be used to store arbitrary data associated
with the buffer.

psychopy.tools.gltools.deleteRenderbuffer

psychopy.tools.gltools.deleteRenderbuffer(renderBuffer)
Free the resources associated with a renderbuffer. This invalidates the renderbuffer’s ID.

Textures

Tools for creating textures.

createTexImage2D(width, height[, target, ...]) Create a 2D texture in video memory.
createTexImage2dFromFile(imgFile[, transpose]) Load an image from file directly into a texture.
createTexImage2DMultisample(width, height[, ...]) Create a 2D multisampled texture.
deleteTexture(texture) Free the resources associated with a texture.
bindTexture(texture[, unit, enable]) Bind a texture.
unbindTexture([texture]) Unbind a texture.
createCubeMap(width, height[, target, ...]) Create a cubemap.

psychopy.tools.gltools.createTexImage2D

psychopy.tools.gltools.createTexImage2D(width, height, target=3553, level=0, internalFormat=32856,
pixelFormat=6408, dataType=5126, data=None,
unpackAlignment=4, texParams=None)

Create a 2D texture in video memory. This can only create a single 2D texture with targets GL_TEXTURE_2D
or GL_TEXTURE_RECTANGLE.

Parameters
• width (int) – Texture width in pixels.

• height (int) – Texture height in pixels.

• target (int) – The target texture should only be either GL_TEXTURE_2D or
GL_TEXTURE_RECTANGLE.

• level (int) – LOD number of the texture, should be 0 if GL_TEXTURE_RECTANGLE
is the target.

• internalFormat (int) – Internal format for texture data (e.g. GL_RGBA8,
GL_R11F_G11F_B10F).

• pixelFormat (int) – Pixel data format (e.g. GL_RGBA, GL_DEPTH_STENCIL)

• dataType (int) – Data type for pixel data (e.g. GL_FLOAT, GL_UNSIGNED_BYTE).

• data (ctypes or None) – Ctypes pointer to image data. If None is specified, the texture will
be created but pixel data will be uninitialized.

• unpackAlignment (int) – Alignment requirements of each row in memory. Default is 4.

10.8. psychopy.tools - miscellaneous tools 683

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

• texParams (dict) – Optional texture parameters specified as dict. These values
are passed to glTexParameteri. Each tuple must contain a parameter name and
value. For example, texParameters={GL.GL_TEXTURE_MIN_FILTER: GL.GL_LINEAR,
GL.GL_TEXTURE_MAG_FILTER: GL.GL_LINEAR}.

Returns
A TexImage2D descriptor.

Return type
TexImage2D

Notes

The ‘userData’ field of the returned descriptor is a dictionary that can be used to store arbitrary data associated
with the texture.

Previous textures are unbound after calling ‘createTexImage2D’.

Examples

Creating a texture from an image file:

import pyglet.gl as GL # using Pyglet for now

empty texture
textureDesc = createTexImage2D(1024, 1024, internalFormat=GL.GL_RGBA8)

load texture data from an image file using Pillow and NumPy
from PIL import Image
import numpy as np
im = Image.open(imageFile) # 8bpp!
im = im.transpose(Image.FLIP_TOP_BOTTOM) # OpenGL origin is at bottom
im = im.convert("RGBA")
pixelData = np.array(im).ctypes # convert to ctypes!

width = pixelData.shape[1]
height = pixelData.shape[0]
textureDesc = gltools.createTexImage2D(

width,
height,
internalFormat=GL.GL_RGBA,
pixelFormat=GL.GL_RGBA,
dataType=GL.GL_UNSIGNED_BYTE,
data=pixelData,
unpackAlignment=1,
texParameters=[(GL.GL_TEXTURE_MAG_FILTER, GL.GL_LINEAR),

(GL.GL_TEXTURE_MIN_FILTER, GL.GL_LINEAR)])

GL.glBindTexture(GL.GL_TEXTURE_2D, textureDesc.id)

10.8. psychopy.tools - miscellaneous tools 684

https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.gltools.createTexImage2dFromFile

psychopy.tools.gltools.createTexImage2dFromFile(imgFile, transpose=True)
Load an image from file directly into a texture.

This is a convenience function to quickly get an image file loaded into a 2D texture. The image is converted to
RGBA format. Texture parameters are set for linear interpolation.

Parameters
• imgFile (str) – Path to the image file.

• transpose (bool) – Flip the image so it appears upright when displayed in OpenGL image
coordinates.

Returns
Texture descriptor.

Return type
TexImage2D

psychopy.tools.gltools.createTexImage2DMultisample

psychopy.tools.gltools.createTexImage2DMultisample(width, height, target=37120, samples=1,
internalFormat=32856, texParameters=())

Create a 2D multisampled texture.

Parameters
• width (int) – Texture width in pixels.

• height (int) – Texture height in pixels.

• target (int) – The target texture (e.g. GL_TEXTURE_2D_MULTISAMPLE).

• samples (int) – Number of samples for multi-sampling, should be >1 and power-of-two.
Work with one sample, but will raise a warning.

• internalFormat (int) – Internal format for texture data (e.g. GL_RGBA8,
GL_R11F_G11F_B10F).

• texParameters (list of tuple of int) – Optional texture parameters specified as a list
of tuples. These values are passed to ‘glTexParameteri’. Each tuple must contain a pa-
rameter name and value. For example, texParameters=[(GL.GL_TEXTURE_MIN_FILTER,
GL.GL_LINEAR), (GL.GL_TEXTURE_MAG_FILTER, GL.GL_LINEAR)]

Returns
A TexImage2DMultisample descriptor.

Return type
TexImage2DMultisample

10.8. psychopy.tools - miscellaneous tools 685

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.gltools.deleteTexture

psychopy.tools.gltools.deleteTexture(texture)
Free the resources associated with a texture. This invalidates the texture’s ID.

psychopy.tools.gltools.bindTexture

psychopy.tools.gltools.bindTexture(texture, unit=None, enable=True)
Bind a texture.

Function binds texture to unit (if specified). If unit is None, the texture will be bound but not assigned to a texture
unit.

Parameters
• texture (TexImage2D) – Texture descriptor to bind.

• unit (int, optional) – Texture unit to associated the texture with.

• enable (bool) – Enable textures upon binding.

psychopy.tools.gltools.unbindTexture

psychopy.tools.gltools.unbindTexture(texture=None)
Unbind a texture.

Parameters
texture (TexImage2D) – Texture descriptor to unbind.

psychopy.tools.gltools.createCubeMap

psychopy.tools.gltools.createCubeMap(width, height, target=34067, level=0, internalFormat=6408,
pixelFormat=6408, dataType=5121, data=None,
unpackAlignment=4, texParams=None)

Create a cubemap.

Parameters
• name (int or GLuint) – OpenGL handle for the cube map. Is 0 if uninitialized.

• target (int) – The target texture should only be GL_TEXTURE_CUBE_MAP.

• width (int) – Texture width in pixels.

• height (int) – Texture height in pixels.

• level (int) – LOD number of the texture.

• internalFormat (int) – Internal format for texture data (e.g. GL_RGBA8,
GL_R11F_G11F_B10F).

• pixelFormat (int) – Pixel data format (e.g. GL_RGBA, GL_DEPTH_STENCIL)

• dataType (int) – Data type for pixel data (e.g. GL_FLOAT, GL_UNSIGNED_BYTE).

• data (list or tuple) – List of six ctypes pointers to image data for each cubemap face.
Image data is assigned to a face by index [+X, -X, +Y, -Y, +Z, -Z]. All images must have the
same size as specified by width and height.

10.8. psychopy.tools - miscellaneous tools 686

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

• unpackAlignment (int) – Alignment requirements of each row in memory. Default is 4.

• texParams (list of tuple of int) – Optional texture parameters specified as dict. These
values are passed to glTexParameteri. Each tuple must contain a parameter name and
value. For example, texParameters={ GL.GL_TEXTURE_MIN_FILTER: GL.GL_LINEAR,
GL.GL_TEXTURE_MAG_FILTER: GL.GL_LINEAR}. These can be changed and will be
updated the next time this instance is passed to bindTexture().

Vertex Buffer/Array Objects

Tools for creating and working with Vertex Buffer Objects (VBOs) and Vertex Array Objects (VAOs).

VertexArrayInfo([name, count, ...]) Vertex array object (VAO) descriptor.
createVAO(attribBuffers[, indexBuffer, ...]) Create a Vertex Array object (VAO).
drawVAO(vao[, mode, start, count, ...]) Draw a vertex array object.
deleteVAO(vao) Delete a Vertex Array Object (VAO).
VertexBufferInfo([name, target, usage, ...]) Vertex buffer object (VBO) descriptor.
createVBO(data[, target, dataType, usage]) Create an array buffer object (VBO).
bindVBO(vbo) Bind a VBO to the current GL state.
unbindVBO(vbo) Unbind a vertex buffer object (VBO).
mapBuffer(vbo[, start, length, read, write, ...]) Map a vertex buffer object to client memory.
unmapBuffer(vbo) Unmap a previously mapped buffer.
deleteVBO(vbo) Delete a vertex buffer object (VBO).
setVertexAttribPointer(index, vbo[, size, ...]) Define an array of vertex attribute data with a VBO de-

scriptor.
enableVertexAttribArray(index[, legacy]) Enable a vertex attribute array.
disableVertexAttribArray(index[, legacy]) Disable a vertex attribute array.

psychopy.tools.gltools.VertexArrayInfo

class psychopy.tools.gltools.VertexArrayInfo(name=0, count=0, activeAttribs=None,
indexBuffer=None, attribDivisors=None, isLegacy=False,
userData=None)

Vertex array object (VAO) descriptor.

This class only stores information about the VAO it refers to, it does not contain any actual array data associated
with the VAO. Calling createVAO() returns instances of this class.

If isLegacy is True, attribute binding states are using deprecated (but still supported) pointer definition calls (eg.
glVertexPointer). This is to ensure backwards compatibility. The keys stored in activeAttribs must be GLenum
types such as GL_VERTEX_ARRAY.

Parameters
• name (int) – OpenGL handle for the VAO.

• count (int) – Number of vertex elements. If indexBuffer is not None, count corresponds to
the number of elements in the index buffer.

• activeAttribs (dict) – Attributes and buffers defined as part of this VAO state. Keys
are attribute pointer indices or capabilities (ie. GL_VERTEX_ARRAY). Modifying these
values will not update the VAO state.

• indexBuffer (VertexBufferInfo, optional) – Buffer object for indices.

10.8. psychopy.tools - miscellaneous tools 687

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

• attribDivisors (dict, optional) – Divisors for each attribute.

• isLegacy (bool) – Array pointers were defined using the deprecated OpenGL API. If True,
the VAO may work with older GLSL shaders versions and the fixed-function pipeline.

• userData (dict or None, optional) – Optional user defined data associated with this
VAO.

__init__(name=0, count=0, activeAttribs=None, indexBuffer=None, attribDivisors=None, isLegacy=False,
userData=None)

Methods

__init__([name, count, activeAttribs, ...])

Attributes

name

count

activeAttribs

indexBuffer

isLegacy

userData

attribDivisors

psychopy.tools.gltools.createVAO

psychopy.tools.gltools.createVAO(attribBuffers, indexBuffer=None, attribDivisors=None, legacy=False)
Create a Vertex Array object (VAO). VAOs store buffer binding states, reducing CPU overhead when drawing
objects with vertex data stored in VBOs.

Define vertex attributes within a VAO state by passing a mapping for generic attribute indices and VBO buffers.

Parameters
• attribBuffers (dict) – Attributes and associated VBOs to add to the VAO state. Keys are

vertex attribute pointer indices, values are VBO descriptors to define. Values can be tuples
where the first value is the buffer descriptor, the second is the number of attribute components
(int, either 2, 3 or 4), the third is the offset (int), and the last is whether to normalize the array
(bool).

• indexBuffer (VertexBufferInfo) – Optional index buffer.

10.8. psychopy.tools - miscellaneous tools 688

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

• attribDivisors (dict) – Attribute divisors to set. Keys are vertex attribute pointer in-
dices, values are the number of instances that will pass between updates of an attribute.
Setting attribute divisors is only permitted if legacy is False.

• legacy (bool, optional) – Use legacy attribute pointer functions when setting the VAO
state. This is for compatibility with older GL implementations. Key specified to attribBuffers
must be GLenum types such as GL_VERTEX_ARRAY to indicate the capability to use.

Examples

Create a vertex array object and enable buffer states within it:

vao = createVAO({0: vertexPos, 1: texCoords, 2: vertexNormals})

Using an interleaved vertex buffer, all attributes are in the same buffer (vertexAttr). We need to specify offsets
for each attribute by passing a buffer in a tuple with the second value specifying the offset:

buffer with interleaved layout `00011222` per-attribute
vao = createVAO(

{0: (vertexAttr, 3), # size 3, offset 0
1: (vertexAttr, 2, 3), # size 2, offset 3
2: (vertexAttr, 3, 5, True)}) # size 3, offset 5, normalize

You can mix interleaved and single-use buffers:

vao = createVAO(
{0: (vertexAttr, 3, 0), 1: (vertexAttr, 3, 3), 2: vertexColors})

Specifying an optional index array, this is used for indexed drawing of primitives:

vao = createVAO({0: vertexPos}, indexBuffer=indices)

The returned VertexArrayInfo instance will have attribute isIndexed==True.

Drawing vertex arrays using a VAO, will use the indexBuffer if available:

draw the array
drawVAO(vao, mode=GL.GL_TRIANGLES)

Use legacy attribute pointer bindings when building a VAO for compatibility with the fixed-function pipeline
and older GLSL versions:

attribBuffers = {GL_VERTEX_ARRAY: vertexPos, GL_NORMAL_ARRAY: normals}
vao = createVAO(attribBuffers, legacy=True)

If you wish to used instanced drawing, you can specify attribute divisors this way:

vao = createVAO(
{0: (vertexAttr, 3, 0), 1: (vertexAttr, 3, 3), 2: vertexColors},
attribDivisors={2: 1})

10.8. psychopy.tools - miscellaneous tools 689

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.gltools.drawVAO

psychopy.tools.gltools.drawVAO(vao, mode=4, start=0, count=None, instanceCount=None, flush=False)
Draw a vertex array object. Uses glDrawArrays or glDrawElements if instanceCount is None, or else glDrawAr-
raysInstanced or glDrawElementsInstanced is used.

Parameters
• vao (VertexArrayObject) – Vertex Array Object (VAO) to draw.

• mode (int, optional) – Drawing mode to use (e.g. GL_TRIANGLES, GL_QUADS,
GL_POINTS, etc.)

• start (int, optional) – Starting index for array elements. Default is 0 which is the
beginning of the array.

• count (int, optional) – Number of indices to draw from start. Must not exceed
vao.count - start.

• instanceCount (int or None) – Number of instances to draw. If >0 and not None, in-
stanced drawing will be used.

• flush (bool, optional) – Flush queued drawing commands before returning.

Examples

Creating a VAO and drawing it:

draw the VAO, renders the mesh
drawVAO(vaoDesc, GL.GL_TRIANGLES)

psychopy.tools.gltools.deleteVAO

psychopy.tools.gltools.deleteVAO(vao)
Delete a Vertex Array Object (VAO). This does not delete array buffers bound to the VAO.

Parameters
vao (VertexArrayInfo) – VAO to delete. All fields in the descriptor except userData will be
reset.

psychopy.tools.gltools.VertexBufferInfo

class psychopy.tools.gltools.VertexBufferInfo(name=0, target=34962, usage=35044, dataType=5126,
size=0, stride=0, shape=(0,), userData=None)

Vertex buffer object (VBO) descriptor.

This class only stores information about the VBO it refers to, it does not contain any actual array data associated
with the VBO. Calling createVBO() returns instances of this class.

It is recommended to use gltools functions bindVBO(), unbindVBO(), mapBuffer(), etc. when working with
these objects.

Parameters
• name (GLuint or int) – OpenGL handle for the buffer.

10.8. psychopy.tools - miscellaneous tools 690

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

• target (GLenum or int, optional) – Target used when binding the buffer
(e.g. GL_VERTEX_ARRAY or GL_ELEMENT_ARRAY_BUFFER). Default is
GL_VERTEX_ARRAY)

• usage (GLenum or int, optional) – Usage type for the array (i.e.
GL_STATIC_DRAW).

• dataType (Glenum, optional) – Data type of array. Default is GL_FLOAT.

• size (int, optional) – Size of the buffer in bytes.

• stride (int, optional) – Number of bytes between adjacent attributes. If 0, values are
assumed to be tightly packed.

• shape (tuple or list, optional) – Shape of the array used to create this VBO.

• userData (dict, optional) – Optional user defined data associated with the VBO. If
None, userData will be initialized as an empty dictionary.

__init__(name=0, target=34962, usage=35044, dataType=5126, size=0, stride=0, shape=(0,),
userData=None)

Methods

__init__([name, target, usage, dataType, ...])

validate() Check if the data contained in this descriptor matches
what is actually present in the OpenGL state.

Attributes

name

target

usage

dataType

size

stride

shape

userData

hasBuffer Check if the VBO assigned to name is a buffer.
isIndex True if the buffer referred to by this object is an index

array.

10.8. psychopy.tools - miscellaneous tools 691

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.gltools.createVBO

psychopy.tools.gltools.createVBO(data, target=34962, dataType=5126, usage=35044)
Create an array buffer object (VBO).

Creates a VBO using input data, usually as a ndarray or list. Attributes common to one vertex should occupy a
single row of the data array.

Parameters
• data (array_like) – A 2D array of values to write to the array buffer. The data type of the

VBO is inferred by the type of the array. If the input is a Python list or tuple type, the data
type of the array will be GL_FLOAT.

• target (int) – Target used when binding the buffer (e.g. GL_VERTEX_ARRAY or
GL_ELEMENT_ARRAY_BUFFER). Default is GL_VERTEX_ARRAY.

• dataType (Glenum, optional) – Data type of array. Input data will be recast to an ap-
propriate type if necessary. Default is GL_FLOAT.

• usage (GLenum or int, optional) – Usage type for the array (i.e.
GL_STATIC_DRAW).

Returns
A descriptor with vertex buffer information.

Return type
VertexBufferInfo

Examples

Creating a vertex buffer object with vertex data:

vertices of a triangle
verts = [[1.0, 1.0, 0.0], # v0

[0.0, -1.0, 0.0], # v1
[-1.0, 1.0, 0.0]] # v2

load vertices to graphics device, return a descriptor
vboDesc = createVBO(verts)

Drawing triangles or quads using vertex buffer data:

nIndices, vSize = vboDesc.shape # element size

bindVBO(vboDesc)
setVertexAttribPointer(

GL_VERTEX_ARRAY, vSize, vboDesc.dataType, legacy=True)
enableVertexAttribArray(GL_VERTEX_ARRAY, legacy=True)

if vSize == 3:
drawMode = GL_TRIANGLES

elif vSize == 4:
drawMode = GL_QUADS

glDrawArrays(drawMode, 0, nIndices)
(continues on next page)

10.8. psychopy.tools - miscellaneous tools 692

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

glFlush()

disableVertexAttribArray(GL_VERTEX_ARRAY, legacy=True)
unbindVBO()

Custom data can be associated with this vertex buffer by specifying userData:

myVBO = createVBO(data)
myVBO.userData['startIdx'] = 14 # first index to draw with

use it later
nIndices, vSize = vboDesc.shape # element size
startIdx = myVBO.userData['startIdx']
endIdx = nIndices - startIdx
glDrawArrays(GL_TRIANGLES, startIdx, endIdx)
glFlush()

psychopy.tools.gltools.bindVBO

psychopy.tools.gltools.bindVBO(vbo)
Bind a VBO to the current GL state.

Parameters
vbo (VertexBufferInfo) – VBO descriptor to bind.

Returns
True is the binding state was changed. Returns False if the state was not changed due to the buffer
already being bound.

Return type
bool

psychopy.tools.gltools.unbindVBO

psychopy.tools.gltools.unbindVBO(vbo)
Unbind a vertex buffer object (VBO).

Parameters
vbo (VertexBufferInfo) – VBO descriptor to unbind.

psychopy.tools.gltools.mapBuffer

psychopy.tools.gltools.mapBuffer(vbo, start=0, length=None, read=True, write=True, noSync=False)
Map a vertex buffer object to client memory. This allows you to modify its contents.

If planning to update VBO vertex data, make sure the VBO usage types are GL_DYNAMIC_* or GL_STREAM_*
or else serious performance issues may arise.

10.8. psychopy.tools - miscellaneous tools 693

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Warning: Modifying buffer data must be done carefully, or else system stability may be affected. Do not
use the returned view ndarray outside of successive mapBuffer() and unmapBuffer() calls. Do not use
the mapped buffer for rendering until after unmapBuffer() is called.

Parameters
• vbo (VertexBufferInfo) – Vertex buffer to map to client memory.

• start (int) – Initial index of the sub-range of the buffer to modify.

• length (int or None) – Number of elements of the sub-array to map from offset. If None,
all elements to from offset to the end of the array are mapped.

• read (bool, optional) – Allow data to be read from the buffer (sets
GL_MAP_READ_BIT). This is ignored if noSync is True.

• write (bool, optional) – Allow data to be written to the buffer (sets
GL_MAP_WRITE_BIT).

• noSync (bool, optional) – If True, GL will not wait until the buffer is free (i.e. not being
processed by the GPU) to map it (sets GL_MAP_UNSYNCHRONIZED_BIT). The contents
of the previous storage buffer are discarded and the driver returns a new one. This prevents
the CPU from stalling until the buffer is available.

Returns
View of the data. The type of the returned array is one which best matches the data type of the
buffer.

Return type
ndarray

Examples

Map a buffer and edit it:

arr = mapBuffer(vbo)
arr[:, :] += 2.0 # add 2 to all values
unmapBuffer(vbo) # call when done
Don't ever modify `arr` after calling `unmapBuffer`. Delete it if
necessary to prevent it form being used.
del arr

Modify a sub-range of data by specifying start and length, indices correspond to values, not byte offsets:

arr = mapBuffer(vbo, start=12, end=24)
arr[:, :] *= 10.0
unmapBuffer(vbo)

10.8. psychopy.tools - miscellaneous tools 694

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.gltools.unmapBuffer

psychopy.tools.gltools.unmapBuffer(vbo)
Unmap a previously mapped buffer. Must be called after mapBuffer() is called and before any drawing op-
erations which use the buffer are called. Failing to call this before using the buffer could result in a system
error.

Parameters
vbo (VertexBufferInfo) – Vertex buffer descriptor.

Returns
True if the buffer has been successfully modified. If False, the data was corrupted for some reason
and needs to be resubmitted.

Return type
bool

psychopy.tools.gltools.deleteVBO

psychopy.tools.gltools.deleteVBO(vbo)
Delete a vertex buffer object (VBO).

Parameters
vbo (VertexBufferInfo) – Descriptor of VBO to delete.

psychopy.tools.gltools.setVertexAttribPointer

psychopy.tools.gltools.setVertexAttribPointer(index, vbo, size=None, offset=0, normalize=False,
legacy=False)

Define an array of vertex attribute data with a VBO descriptor.

In modern OpenGL implementations, attributes are ‘generic’, where an attribute pointer index does not corre-
spond to any special vertex property. Usually the usage for an attribute is defined in the shader program. It is
recommended that shader programs define attributes using the layout parameters:

layout (location = 0) in vec3 position;
layout (location = 1) in vec2 texCoord;
layout (location = 2) in vec3 normal;

Setting attribute pointers can be done like this:

setVertexAttribPointer(0, posVbo)
setVertexAttribPointer(1, texVbo)
setVertexAttribPointer(2, normVbo)

For compatibility with older OpenGL specifications, some drivers will alias vertex pointers unless they are ex-
plicitly defined in the shader. This allows VAOs the be used with the fixed-function pipeline or older GLSL
versions.

On nVidia graphics drivers (and maybe others), the following attribute pointers indices are aliased with reserved
GLSL names:

• gl_Vertex - 0

• gl_Normal - 2

10.8. psychopy.tools - miscellaneous tools 695

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

• gl_Color - 3

• gl_SecondaryColor - 4

• gl_FogCoord - 5

• gl_MultiTexCoord0 - 8

• gl_MultiTexCoord1 - 9

• gl_MultiTexCoord2 - 10

• gl_MultiTexCoord3 - 11

• gl_MultiTexCoord4 - 12

• gl_MultiTexCoord5 - 13

• gl_MultiTexCoord6 - 14

• gl_MultiTexCoord7 - 15

Specifying legacy as True will allow for old-style pointer definitions. You must specify the capability as a
GLenum associated with the pointer in this case:

setVertexAttribPointer(GL_VERTEX_ARRAY, posVbo, legacy=True)
setVertexAttribPointer(GL_TEXTURE_COORD_ARRAY, texVbo, legacy=True)
setVertexAttribPointer(GL_NORMAL_ARRAY, normVbo, legacy=True)

Parameters
• index (int) – Index of the attribute to modify. If legacy=True, this value should

be a GLenum type corresponding to the capability to bind the buffer to, such as
GL_VERTEX_ARRAY, GL_TEXTURE_COORD_ARRAY, GL_NORMAL_ARRAY, etc.

• vbo (VertexBufferInfo) – VBO descriptor.

• size (int, optional) – Number of components per vertex attribute, can be either 1, 2, 3,
or 4. If None is specified, the component size will be inferred from the shape of the VBO.
You must specify this value if the VBO is interleaved.

• offset (int, optional) – Starting index of the attribute in the buffer.

• normalize (bool, optional) – Normalize fixed-point format values when accessed.

• legacy (bool, optional) – Use legacy vertex attributes (ie. GL_VERTEX_ARRAY,
GL_TEXTURE_COORD_ARRAY, etc.) for backwards compatibility.

Examples

Define a generic attribute from a vertex buffer descriptor:

set the vertex location attribute
setVertexAttribPointer(0, vboDesc) # 0 is vertex in our shader
GL.glColor3f(1.0, 0.0, 0.0) # red triangle

draw the triangle
nIndices, vSize = vboDesc.shape # element size
GL.glDrawArrays(GL.GL_TRIANGLES, 0, nIndices)

If our VBO has interleaved attributes, we can specify offset to account for that:

10.8. psychopy.tools - miscellaneous tools 696

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

define interleaved vertex attributes
| Position | Texture | Normals |
vQuad = [[-1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], # v0

[-1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], # v1
[1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0], # v2
[1.0, -1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0]] # v3

create a VBO with interleaved attributes
vboInterleaved = createVBO(np.asarray(vQuad, dtype=np.float32))

... before rendering, set the attribute pointers
GL.glBindBuffer(vboInterleaved.target, vboInterleaved.name)
gltools.setVertexAttribPointer(

0, vboInterleaved, size=3, offset=0) # vertex pointer
gltools.setVertexAttribPointer(

8, vboInterleaved, size=2, offset=3) # texture pointer
gltools.setVertexAttribPointer(

3, vboInterleaved, size=3, offset=5) # normals pointer

Note, we specified `bind=False` since we are managing the binding
state. It is recommended that you do this when setting up interleaved
buffers to avoid re-binding the same buffer.

draw red, full screen quad
GL.glColor3f(1.0, 0.0, 0.0)
GL.glDrawArrays(GL.GL_QUADS, 0, vboInterleaved.shape[1])

call these when done if `enable=True`
gltools.disableVertexAttribArray(0)
gltools.disableVertexAttribArray(8)
gltools.disableVertexAttribArray(1)

unbind the buffer
GL.glBindBuffer(vboInterleaved.target, 0)

psychopy.tools.gltools.enableVertexAttribArray

psychopy.tools.gltools.enableVertexAttribArray(index, legacy=False)
Enable a vertex attribute array. Attributes will be used for use by subsequent draw operations. Be sure to call
disableVertexAttribArray() on the same attribute to prevent currently enabled attributes from affecting
later rendering.

Parameters
• index (int) – Index of the attribute to enable. If legacy=True, this value should

be a GLenum type corresponding to the capability to bind the buffer to, such as
GL_VERTEX_ARRAY, GL_TEXTURE_COORD_ARRAY, GL_NORMAL_ARRAY, etc.

• legacy (bool, optional) – Use legacy vertex attributes (ie. GL_VERTEX_ARRAY,
GL_TEXTURE_COORD_ARRAY, etc.) for backwards compatibility.

10.8. psychopy.tools - miscellaneous tools 697

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.gltools.disableVertexAttribArray

psychopy.tools.gltools.disableVertexAttribArray(index, legacy=False)
Disable a vertex attribute array.

Parameters
• index (int) – Index of the attribute to enable. If legacy=True, this value should

be a GLenum type corresponding to the capability to bind the buffer to, such as
GL_VERTEX_ARRAY, GL_TEXTURE_COORD_ARRAY, GL_NORMAL_ARRAY, etc.

• legacy (bool, optional) – Use legacy vertex attributes (ie. GL_VERTEX_ARRAY,
GL_TEXTURE_COORD_ARRAY, etc.) for backwards compatibility.

Materials and Lighting

Tools for specifying the appearance of faces and shading. Note that these tools use the legacy OpenGL pipeline which
may not be available on your platform. Use fragment/vertex shaders instead for newer applications.

createMaterial([params, textures, face]) Create a new material.
useMaterial(material[, useTextures]) Use a material for proceeding vertex draws.
createLight([params]) Create a point light source.
useLights(lights[, setupOnly]) Use specified lights in successive rendering operations.
setAmbientLight(color) Set the global ambient lighting for the scene when light-

ing is enabled.

psychopy.tools.gltools.createMaterial

psychopy.tools.gltools.createMaterial(params=(), textures=(), face=1032)
Create a new material.

Parameters
• params (list of tuple, optional) – List of material modes and values. Each mode

is assigned a value as (mode, color). Modes can be GL_AMBIENT, GL_DIFFUSE,
GL_SPECULAR, GL_EMISSION, GL_SHININESS or GL_AMBIENT_AND_DIFFUSE.
Colors must be a tuple of 4 floats which specify reflectance values for each RGBA compo-
nent. The value of GL_SHININESS should be a single float. If no values are specified, an
empty material will be created.

• textures (list of tuple, optional) – List of texture units and TexImage2D descrip-
tors. These will be written to the ‘textures’ field of the returned descriptor. For example,
[(GL.GL_TEXTURE0, texDesc0), (GL.GL_TEXTURE1, texDesc1)]. The number of tex-
ture units per-material is GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS.

• face (int, optional) – Faces to apply material to. Values can be GL_FRONT_AND_BACK,
GL_FRONT and GL_BACK. The default is GL_FRONT_AND_BACK.

Returns
A descriptor with material properties.

Return type
Material

10.8. psychopy.tools - miscellaneous tools 698

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Creating a new material with given properties:

The values for the material below can be found at
http://devernay.free.fr/cours/opengl/materials.html

create a gold material
gold = createMaterial([

(GL.GL_AMBIENT, (0.24725, 0.19950, 0.07450, 1.0)),
(GL.GL_DIFFUSE, (0.75164, 0.60648, 0.22648, 1.0)),
(GL.GL_SPECULAR, (0.628281, 0.555802, 0.366065, 1.0)),
(GL.GL_SHININESS, 0.4 * 128.0)])

Use the material when drawing:

useMaterial(gold)
drawVAO(...) # all meshes will be gold
useMaterial(None) # turn off material when done

Create a red plastic material, but define reflectance and shine later:

red_plastic = createMaterial()

you need to convert values to ctypes!
red_plastic.values[GL_AMBIENT] = (GLfloat * 4)(0.0, 0.0, 0.0, 1.0)
red_plastic.values[GL_DIFFUSE] = (GLfloat * 4)(0.5, 0.0, 0.0, 1.0)
red_plastic.values[GL_SPECULAR] = (GLfloat * 4)(0.7, 0.6, 0.6, 1.0)
red_plastic.values[GL_SHININESS] = 0.25 * 128.0

set and draw
useMaterial(red_plastic)
drawVertexbuffers(...) # all meshes will be red plastic
useMaterial(None)

psychopy.tools.gltools.useMaterial

psychopy.tools.gltools.useMaterial(material, useTextures=True)
Use a material for proceeding vertex draws.

Parameters
• material (Material or None) – Material descriptor to use. Default material properties are

set if None is specified. This is equivalent to disabling materials.

• useTextures (bool) – Enable textures. Textures specified in a material descriptor’s ‘tex-
ture’ attribute will be bound and their respective texture units will be enabled. Note, when
disabling materials, the value of useTextures must match the previous call. If there are no
textures attached to the material, useTexture will be silently ignored.

Return type
None

10.8. psychopy.tools - miscellaneous tools 699

https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Notes

1. If a material mode has a value of None, a color with all components 0.0 will be assigned.

2. Material colors and shininess values are accessible from shader programs after calling ‘useMate-
rial’. Values can be accessed via built-in ‘gl_FrontMaterial’ and ‘gl_BackMaterial’ structures (e.g.
gl_FrontMaterial.diffuse).

Examples

Use a material when drawing:

useMaterial(metalMaterials.gold)
drawVAO(...) # all meshes drawn will be gold
useMaterial(None) # turn off material when done

psychopy.tools.gltools.createLight

psychopy.tools.gltools.createLight(params=())
Create a point light source.

psychopy.tools.gltools.useLights

psychopy.tools.gltools.useLights(lights, setupOnly=False)
Use specified lights in successive rendering operations. All lights will be transformed using the present mod-
elview matrix.

Parameters
• lights (List of Light or None) – Descriptor of a light source. If None, lighting is disabled.

• setupOnly (bool, optional) – Do not enable lighting or lights. Specify True if lighting is
being computed via fragment shaders.

psychopy.tools.gltools.setAmbientLight

psychopy.tools.gltools.setAmbientLight(color)
Set the global ambient lighting for the scene when lighting is enabled. This is equivalent to
GL.glLightModelfv(GL.GL_LIGHT_MODEL_AMBIENT, color) and does not contribute to the
GL_MAX_LIGHTS limit.

Parameters
color (tuple) – Ambient lighting RGBA intensity for the whole scene.

10.8. psychopy.tools - miscellaneous tools 700

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

Notes

If unset, the default value is (0.2, 0.2, 0.2, 1.0) when GL_LIGHTING is enabled.

Meshes

Tools for loading or procedurally generating meshes (3D models).

ObjMeshInfo([vertexPos, texCoords, normals, ...]) Descriptor for mesh data loaded from a Wavefront OBJ
file.

loadObjFile(objFile) Load a Wavefront OBJ file (*.obj).
loadMtlFile(mtllib[, texParams]) Load a material library file (*.mtl).
createUVSphere([radius, sectors, stacks, ...]) Create a UV sphere.
createPlane([size]) Create a plane.
createMeshGridFromArrays(xvals, yvals[, ...]) Create a mesh grid using coordinates from arrays.
createMeshGrid([size, subdiv, tessMode]) Create a grid mesh.
createBox([size, flipFaces]) Create a box mesh.
transformMeshPosOri(vertices, normals[, ...]) Transform a mesh.
calculateVertexNormals(vertices, faces[, ...]) Calculate vertex normals given vertices and triangle

faces.

psychopy.tools.gltools.ObjMeshInfo

class psychopy.tools.gltools.ObjMeshInfo(vertexPos=None, texCoords=None, normals=None,
faces=None, extents=None, mtlFile=None)

Descriptor for mesh data loaded from a Wavefront OBJ file.

__init__(vertexPos=None, texCoords=None, normals=None, faces=None, extents=None, mtlFile=None)

Methods

__init__([vertexPos, texCoords, normals, ...])

10.8. psychopy.tools - miscellaneous tools 701

PsychoPy - Psychology software for Python, Release 2023.2.3

Attributes

vertexPos

texCoords

normals

faces

extents

mtlFile

psychopy.tools.gltools.loadObjFile

psychopy.tools.gltools.loadObjFile(objFile)
Load a Wavefront OBJ file (*.obj).

Loads vertex, normals, and texture coordinates from the provided *.obj file into arrays. These arrays can be
processed then loaded into vertex buffer objects (VBOs) for rendering. The *.obj file must at least specify vertex
position data to be loaded successfully. Normals and texture coordinates are optional.

Faces can be either triangles or quads, but not both. Faces are grouped by their materials. Index arrays are
generated for each material present in the file.

Data from the returned ObjMeshInfo object can be used to create vertex buffer objects and arrays for rendering.
See Examples below for details on how to do this.

Parameters
objFile (str) – Path to the *.OBJ file to load.

Returns
Mesh data.

Return type
ObjMeshInfo

See also:

loadMtlFile
Load a *.mtl file.

Notes

1. This importer should work fine for most sanely generated files. Export your model with Blender for best
results, even if you used some other package to create it.

2. The mesh cannot contain both triangles and quads.

10.8. psychopy.tools - miscellaneous tools 702

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Loading a *.obj mode from file:

objModel = loadObjFile('/path/to/file.obj')
load the material (*.mtl) file, textures are also loaded
mtllib = loadMtl('/path/to/' + objModel.mtlFile)

Creating separate vertex buffer objects (VBOs) for each vertex attribute:

vertexPosVBO = createVBO(objModel.vertexPos)
texCoordVBO = createVBO(objModel.texCoords)
normalsVBO = createVBO(objModel.normals)

Create vertex array objects (VAOs) to draw the mesh. We create VAOs for each face material:

objVAOs = {} # dictionary for VAOs
for each material create a VAO
keys are material names, values are index buffers
for material, faces in objModel.faces.items():

convert index buffer to VAO
indexBuffer = gltools.createVBO(

faces.flatten(), # flatten face index for element array
target=GL.GL_ELEMENT_ARRAY_BUFFER,
dataType=GL.GL_UNSIGNED_INT)

see `setVertexAttribPointer` for more information about attribute
pointer indices
objVAOs[material] = gltools.createVAO(

{0: vertexPosVBO, # 0 = gl_Vertex
8: texCoordVBO, # 8 = gl_MultiTexCoord0
2: normalsVBO}, # 2 = gl_Normal
indexBuffer=indexBuffer)

if using legacy attribute pointers, do this instead ...
objVAOs[key] = createVAO({GL_VERTEX_ARRAY: vertexPosVBO,
GL_TEXTURE_COORD_ARRAY: texCoordVBO,
GL_NORMAL_ARRAY: normalsVBO},
indexBuffer=indexBuffer,
legacy=True) # this needs to be `True`

To render the VAOs using objVAOs created above, do the following:

for material, vao in objVAOs.items():
useMaterial(mtllib[material])
drawVAO(vao)

useMaterial(None) # disable materials when done

Optionally, you can create a single-storage, interleaved VBO by using numpy.hstack. On some GL implementa-
tions, using single-storage buffers offers better performance:

interleavedData = numpy.hstack(
(objModel.vertexPos, objModel.texCoords, objModel.normals))

(continues on next page)

10.8. psychopy.tools - miscellaneous tools 703

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

vertexData = createVBO(interleavedData)

Creating VAOs with interleaved, single-storage buffers require specifying additional information, such as size
and offset:

objVAOs = {}
for key, val in objModel.faces.items():

indexBuffer = gltools.createVBO(
faces.flatten(),
target=GL.GL_ELEMENT_ARRAY_BUFFER,
dataType=GL.GL_UNSIGNED_INT)

objVAOs[key] = createVAO({0: (vertexData, 3, 0), # size=3, offset=0
8: (vertexData, 2, 3), # size=2, offset=3
2: (vertexData, 3, 5), # size=3, offset=5
indexBuffer=val)

Drawing VAOs with interleaved buffers is exactly the same as shown before with separate buffers.

psychopy.tools.gltools.loadMtlFile

psychopy.tools.gltools.loadMtlFile(mtllib, texParams=None)
Load a material library file (*.mtl).

Parameters
• mtllib (str) – Path to the material library file.

• texParams (list or tuple) – Optional texture parameters for loaded textures. Texture
parameters are specified as a list of tuples. Each item specifies the option and parameter. For
instance, [(GL.GL_TEXTURE_MAG_FILTER, GL.GL_LINEAR), . . .]. By default, linear
filtering is used for both the minifying and magnification filter functions. This is adequate
for most uses.

Returns
Dictionary of materials. Where each key is the material name found in the file, and values are
Material namedtuple objects.

Return type
dict

See also:

loadObjFile
Load an *.OBJ file.

10.8. psychopy.tools - miscellaneous tools 704

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Load material associated with an *.OBJ file:

objModel = loadObjFile('/path/to/file.obj')
load the material (*.mtl) file, textures are also loaded
mtllib = loadMtl('/path/to/' + objModel.mtlFile)

Use a material when rendering vertex arrays:

useMaterial(mtllib[material])
drawVAO(vao)
useMaterial(None) # disable materials when done

psychopy.tools.gltools.createUVSphere

psychopy.tools.gltools.createUVSphere(radius=0.5, sectors=16, stacks=16, flipFaces=False)
Create a UV sphere.

Procedurally generate a UV sphere by specifying its radius, and number of stacks and sectors. The poles of the
resulting sphere will be aligned with the Z-axis.

Surface normals and texture coordinates are automatically generated. The returned normals are computed to
produce smooth shading.

Parameters
• radius (float, optional) – Radius of the sphere in scene units (usually meters). Default

is 0.5.

• sectors (int, optional) – Number of longitudinal and latitudinal sub-divisions. Default
is 16 for both.

• stacks (int, optional) – Number of longitudinal and latitudinal sub-divisions. Default
is 16 for both.

• flipFaces (bool, optional) – If True, normals and face windings will be set to point
inward towards the center of the sphere. Texture coordinates will remain the same. Default
is False.

Returns
Vertex attribute arrays (position, texture coordinates, and normals) and triangle indices.

Return type
tuple

Examples

Create a UV sphere and VAO to render it:

vertices, textureCoords, normals, faces = gltools.
→˓createUVSphere(sectors=32, stacks=32)

vertexVBO = gltools.createVBO(vertices)
texCoordVBO = gltools.createVBO(textureCoords)

(continues on next page)

10.8. psychopy.tools - miscellaneous tools 705

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

normalsVBO = gltools.createVBO(normals)
indexBuffer = gltools.createVBO(

faces.flatten(),
target=GL.GL_ELEMENT_ARRAY_BUFFER,
dataType=GL.GL_UNSIGNED_INT)

vao = gltools.createVAO({0: vertexVBO, 8: texCoordVBO, 2: normalsVBO},
indexBuffer=indexBuffer)

in the rendering loop
gltools.drawVAO(vao, GL.GL_TRIANGLES)

The color of the sphere can be changed by calling glColor*:

glColor4f(1.0, 0.0, 0.0, 1.0) # red
gltools.drawVAO(vao, GL.GL_TRIANGLES)

Raw coordinates can be transformed prior to uploading to VBOs. Here we can rotate vertex positions and normals
so the equator rests on Z-axis:

r = mt.rotationMatrix(90.0, (1.0, 0, 0.0)) # 90 degrees about +X axis
vertices = mt.applyMatrix(r, vertices)
normals = mt.applyMatrix(r, normals)

psychopy.tools.gltools.createPlane

psychopy.tools.gltools.createPlane(size=(1.0, 1.0))
Create a plane.

Procedurally generate a plane (or quad) mesh by specifying its size. Texture coordinates are computed automat-
ically, with origin at the bottom left of the plane. The generated plane is perpendicular to the +Z axis, origin of
the plane is at its center.

Parameters
size (tuple or float) – Dimensions of the plane. If a single value is specified, the plane will
be square. Provide a tuple of floats to specify the width and length of the plane (eg. size=(0.2,
1.3)).

Returns
Vertex attribute arrays (position, texture coordinates, and normals) and triangle indices.

Return type
tuple

10.8. psychopy.tools - miscellaneous tools 706

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Create a plane mesh and draw it:

vertices, textureCoords, normals, faces = gltools.createPlane()

vertexVBO = gltools.createVBO(vertices)
texCoordVBO = gltools.createVBO(textureCoords)
normalsVBO = gltools.createVBO(normals)
indexBuffer = gltools.createVBO(

faces.flatten(),
target=GL.GL_ELEMENT_ARRAY_BUFFER,
dataType=GL.GL_UNSIGNED_INT)

vao = gltools.createVAO({0: vertexVBO, 8: texCoordVBO, 2: normalsVBO},
indexBuffer=indexBuffer)

in the rendering loop
gltools.drawVAO(vao, GL.GL_TRIANGLES)

psychopy.tools.gltools.createMeshGridFromArrays

psychopy.tools.gltools.createMeshGridFromArrays(xvals, yvals, zvals=None, tessMode='diag',
computeNormals=True)

Create a mesh grid using coordinates from arrays.

Generates a mesh using data in provided in 2D arrays of vertex coordinates. Triangle faces are automatically
computed by this function by joining adjacent vertices at neighbouring indices in the array. Texture coordinates
are generated covering the whole mesh, with origin at the bottom left.

Parameters
• xvals (array_like) – NxM arrays of X and Y coordinates. Both arrays must have the

same shape. the resulting mesh will have a single vertex for each X and Y pair. Faces will
be generated to connect adjacent coordinates in the array.

• yvals (array_like) – NxM arrays of X and Y coordinates. Both arrays must have the
same shape. the resulting mesh will have a single vertex for each X and Y pair. Faces will
be generated to connect adjacent coordinates in the array.

• zvals (array_like, optional) – NxM array of Z coordinates for each X and Y. Must
have the same shape as X and Y. If not specified, the Z coordinates will be filled with zeros.

• tessMode (str, optional) – Tessellation mode. Specifies how faces are generated. Op-
tions are ‘center’, ‘radial’, and ‘diag’. Default is ‘diag’. Modes ‘radial’ and ‘center’ work
best with odd numbered array dimensions.

• computeNormals (bool, optional) – Compute normals for the generated mesh. If False,
all normals are set to face in the +Z direction. Presently, computing normals is a slow oper-
ation and may not be needed for some meshes.

Returns
Vertex attribute arrays (position, texture coordinates, and normals) and triangle indices.

Return type
tuple

10.8. psychopy.tools - miscellaneous tools 707

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Create a 3D sine grating mesh using 2D arrays:

x = np.linspace(0, 1.0, 32)
y = np.linspace(1.0, 0.0, 32)
xx, yy = np.meshgrid(x, y)
zz = np.tile(np.sin(np.linspace(0.0, 32., 32)) * 0.02, (32, 1))

vertices, textureCoords, normals, faces = gltools.
→˓createMeshGridFromArrays(xx, yy, zz)

psychopy.tools.gltools.createMeshGrid

psychopy.tools.gltools.createMeshGrid(size=(1.0, 1.0), subdiv=0, tessMode='diag')
Create a grid mesh.

Procedurally generate a grid mesh by specifying its size and number of sub-divisions. Texture coordinates are
computed automatically. The origin is at the center of the mesh. The generated grid is perpendicular to the +Z
axis, origin of the grid is at its center.

Parameters
• size (tuple or float) – Dimensions of the mesh. If a single value is specified, the plane

will be square. Provide a tuple of floats to specify the width and length of the plane (eg.
size=(0.2, 1.3)).

• subdiv (int, optional) – Number of subdivisions. Zero subdivisions are applied by
default, and the resulting mesh will only have vertices at the corners.

• tessMode (str, optional) – Tessellation mode. Specifies how faces are subdivided. Op-
tions are ‘center’, ‘radial’, and ‘diag’. Default is ‘diag’. Modes ‘radial’ and ‘center’ work best
with an odd number of subdivisions.

Returns
Vertex attribute arrays (position, texture coordinates, and normals) and triangle indices.

Return type
tuple

Examples

Create a grid mesh and draw it:

vertices, textureCoords, normals, faces = gltools.createPlane()

vertexVBO = gltools.createVBO(vertices)
texCoordVBO = gltools.createVBO(textureCoords)
normalsVBO = gltools.createVBO(normals)
indexBuffer = gltools.createVBO(

faces.flatten(),
target=GL.GL_ELEMENT_ARRAY_BUFFER,
dataType=GL.GL_UNSIGNED_INT)

(continues on next page)

10.8. psychopy.tools - miscellaneous tools 708

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

vao = gltools.createVAO({0: vertexVBO, 8: texCoordVBO, 2: normalsVBO},
indexBuffer=indexBuffer)

in the rendering loop
gltools.drawVAO(vao, GL.GL_TRIANGLES)

Randomly displace vertices off the plane of the grid by setting the Z value per vertex:

vertices, textureCoords, normals, faces = gltools.
→˓createMeshGrid(subdiv=11)

numVerts = vertices.shape[0]
vertices[:, 2] = np.random.uniform(-0.02, 0.02, (numVerts,))) # Z

you must recompute surface normals to get correct shading!
normals = gltools.calculateVertexNormals(vertices, faces)

create a VAO as shown in the previous example here to draw it ...

psychopy.tools.gltools.createBox

psychopy.tools.gltools.createBox(size=(1.0, 1.0, 1.0), flipFaces=False)
Create a box mesh.

Create a box mesh by specifying its size in three dimensions (x, y, z), or a single value (float) to create a cube.
The resulting box will be centered about the origin. Texture coordinates and normals are automatically generated
for each face.

Setting flipFaces=True will make faces and normals point inwards, this allows boxes to be viewed and lit correctly
from the inside.

Parameters
• size (tuple or float) – Dimensions of the mesh. If a single value is specified, the box

will be a cube. Provide a tuple of floats to specify the width, length, and height of the box
(eg. size=(0.2, 1.3, 2.1)).

• flipFaces (bool, optional) – If True, normals and face windings will be set to point
inward towards the center of the box. Texture coordinates will remain the same. Default is
False.

Returns
Vertex attribute arrays (position, texture coordinates, and normals) and triangle indices.

Return type
tuple

10.8. psychopy.tools - miscellaneous tools 709

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Create a box mesh and draw it:

vertices, textureCoords, normals, faces = gltools.createBox()

vertexVBO = gltools.createVBO(vertices)
texCoordVBO = gltools.createVBO(textureCoords)
normalsVBO = gltools.createVBO(normals)
indexBuffer = gltools.createVBO(

faces.flatten(),
target=GL.GL_ELEMENT_ARRAY_BUFFER,
dataType=GL.GL_UNSIGNED_INT)

vao = gltools.createVAO({0: vertexVBO, 8: texCoordVBO, 2: normalsVBO},
indexBuffer=indexBuffer)

in the rendering loop
gltools.drawVAO(vao, GL.GL_TRIANGLES)

psychopy.tools.gltools.transformMeshPosOri

psychopy.tools.gltools.transformMeshPosOri(vertices, normals, pos=(0.0, 0.0, 0.0), ori=(0.0, 0.0, 0.0,
1.0))

Transform a mesh.

Transform mesh vertices and normals to a new position and orientation using a position coordinate and rotation
quaternion. Values vertices and normals must be the same shape. This is intended to be used when editing raw
vertex data prior to rendering. Do not use this to change the configuration of an object while rendering.

Parameters
• vertices (array_like) – Nx3 array of vertices.

• normals (array_like) – Nx3 array of normals.

• pos (array_like, optional) – Position vector to transform mesh vertices. If Nx3, ver-
tices will be transformed by corresponding rows of pos.

• ori (array_like, optional) – Orientation quaternion in form [x, y, z, w]. If Nx4, ver-
tices and normals will be transformed by corresponding rows of ori.

Returns
Transformed vertices and normals.

Return type
tuple

10.8. psychopy.tools - miscellaneous tools 710

https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Create and re-orient a plane to face upwards:

vertices, textureCoords, normals, faces = createPlane()

rotation quaternion
qr = quatFromAxisAngle((1., 0., 0.), -90.0) # -90 degrees about +X axis

transform the normals and points
vertices, normals = transformMeshPosOri(vertices, normals, ori=qr)

Any create* primitive generating function can be used inplace of createPlane.

psychopy.tools.gltools.calculateVertexNormals

psychopy.tools.gltools.calculateVertexNormals(vertices, faces, shading='smooth')
Calculate vertex normals given vertices and triangle faces.

Finds all faces sharing a vertex index and sets its normal to either the face normal if shading=’flat’ or the average
normals of adjacent faces if shading=’smooth’. Flat shading only works correctly if each vertex belongs to
exactly one face.

The direction of the normals are determined by the winding order of triangles, assumed counter clock-wise
(OpenGL default). Most model editing software exports using this convention. If not, winding orders can be
reversed by calling:

faces = np.fliplr(faces)

In some case, creases may appear if vertices are at the same location, but do not share the same index.

Parameters
• vertices (array_like) – Nx3 vertex positions.

• faces (array_like) – Nx3 vertex indices.

• shading (str, optional) – Shading mode. Options are ‘smooth’ and ‘flat’. Flat only
works with meshes where no vertex index is shared across faces.

Returns
Vertex normals array with the shame shape as vertices. Computed normals are normalized.

Return type
ndarray

Examples

Recomputing vertex normals for a UV sphere:

create a sphere and discard normals
vertices, textureCoords, _, faces = gltools.createUVSphere()
normals = gltools.calculateVertexNormals(vertices, faces)

10.8. psychopy.tools - miscellaneous tools 711

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Miscellaneous

Miscellaneous tools for working with OpenGL.

getIntegerv(parName) Get a single integer parameter value, return it as a Python
integer.

getFloatv(parName) Get a single float parameter value, return it as a Python
float.

getString(parName) Get a single string parameter value, return it as a Python
UTF-8 string.

getOpenGLInfo() Get general information about the OpenGL implementa-
tion on this machine.

getModelViewMatrix() Get the present model matrix from the OpenGL matrix
stack.

getProjectionMatrix() Get the present projection matrix from the OpenGL ma-
trix stack.

psychopy.tools.gltools.getIntegerv

psychopy.tools.gltools.getIntegerv(parName)
Get a single integer parameter value, return it as a Python integer.

Parameters
pName (int) – OpenGL property enum to query (e.g. GL_MAJOR_VERSION).

Return type
int

psychopy.tools.gltools.getFloatv

psychopy.tools.gltools.getFloatv(parName)
Get a single float parameter value, return it as a Python float.

Parameters
pName (float) – OpenGL property enum to query.

Return type
float

psychopy.tools.gltools.getString

psychopy.tools.gltools.getString(parName)
Get a single string parameter value, return it as a Python UTF-8 string.

Parameters
pName (int) – OpenGL property enum to query (e.g. GL_VENDOR).

Return type
str

10.8. psychopy.tools - miscellaneous tools 712

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.gltools.getOpenGLInfo

psychopy.tools.gltools.getOpenGLInfo()

Get general information about the OpenGL implementation on this machine. This should provide a consistent
means of doing so regardless of the OpenGL interface we are using.

Returns are dictionary with the following fields:

vendor, renderer, version, majorVersion, minorVersion, doubleBuffer,
maxTextureSize, stereo, maxSamples, extensions

Supported extensions are returned as a list in the ‘extensions’ field. You can check if a platform supports an
extension by checking the membership of the extension name in that list.

Return type
OpenGLInfo

psychopy.tools.gltools.getModelViewMatrix

psychopy.tools.gltools.getModelViewMatrix()

Get the present model matrix from the OpenGL matrix stack.

Returns
4x4 model/view matrix.

Return type
ndarray

psychopy.tools.gltools.getProjectionMatrix

psychopy.tools.gltools.getProjectionMatrix()

Get the present projection matrix from the OpenGL matrix stack.

Returns
4x4 projection matrix.

Return type
ndarray

Examples

Working with Framebuffer Objects (FBOs):
Creating an empty framebuffer with no attachments:

fbo = createFBO() # invalid until attachments are added

Create a render target with multiple color texture attachments:

colorTex = createTexImage2D(1024,1024) # empty texture
depthRb = createRenderbuffer(800,600,internalFormat=GL.GL_DEPTH24_STENCIL8)

GL.glBindFramebuffer(GL.GL_FRAMEBUFFER, fbo.id)
(continues on next page)

10.8. psychopy.tools - miscellaneous tools 713

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

attach(GL.GL_COLOR_ATTACHMENT0, colorTex)
attach(GL.GL_DEPTH_ATTACHMENT, depthRb)
attach(GL.GL_STENCIL_ATTACHMENT, depthRb)
or attach(GL.GL_DEPTH_STENCIL_ATTACHMENT, depthRb)
GL.glBindFramebuffer(GL.GL_FRAMEBUFFER, 0)

Attach FBO images using a context. This automatically returns to the previous FBO binding state when complete. This
is useful if you don’t know the current binding state:

with useFBO(fbo):
attach(GL.GL_COLOR_ATTACHMENT0, colorTex)
attach(GL.GL_DEPTH_ATTACHMENT, depthRb)
attach(GL.GL_STENCIL_ATTACHMENT, depthRb)

How to set userData some custom function might access:

fbo.userData['flags'] = ['left_eye', 'clear_before_use']

Binding an FBO for drawing/reading:

GL.glBindFramebuffer(GL.GL_FRAMEBUFFER, fb.id)

Depth-only framebuffers are valid, sometimes need for generating shadows:

depthTex = createTexImage2D(800, 600,
internalFormat=GL.GL_DEPTH_COMPONENT24,
pixelFormat=GL.GL_DEPTH_COMPONENT)

fbo = createFBO([(GL.GL_DEPTH_ATTACHMENT, depthTex)])

Deleting a framebuffer when done with it. This invalidates the framebuffer’s ID and makes it available for use:

deleteFBO(fbo)

10.8.5 psychopy.tools.imagetools

Functions and classes related to image handling

array2image(a) Takes an array and returns an image object (PIL).
image2array(im) Takes an image object (PIL) and returns a numpy array.
makeImageAuto(inarray) Combines float_uint8 and image2array operations ie.

10.8. psychopy.tools - miscellaneous tools 714

PsychoPy - Psychology software for Python, Release 2023.2.3

Function details

psychopy.tools.imagetools.array2image(a)
Takes an array and returns an image object (PIL).

psychopy.tools.imagetools.image2array(im)

Takes an image object (PIL) and returns a numpy array.

psychopy.tools.imagetools.makeImageAuto(inarray)
Combines float_uint8 and image2array operations ie. scales a numeric array from -1:1 to 0:255 and converts to
PIL image format.

10.8.6 psychopy.tools.mathtools

Assorted math functions for working with vectors, matrices, and quaternions. These functions are intended to pro-
vide basic support for common mathematical operations associated with displaying stimuli (e.g. animation, posing,
rendering, etc.)

For tools related to view transformations, see viewtools.

Vectors

Tools for working with 2D and 3D vectors.

length (v[, squared, out, dtype]) Get the length of a vector.
normalize(v[, out, dtype]) Normalize a vector or quaternion.
orthogonalize(v, n[, out, dtype]) Orthogonalize a vector relative to a normal vector.
reflect(v, n[, out, dtype]) Reflection of a vector.
dot(v0, v1[, out, dtype]) Dot product of two vectors.
cross(v0, v1[, out, dtype]) Cross product of 3D vectors.
project(v0, v1[, out, dtype]) Project a vector onto another.
perp(v, n[, norm, out, dtype]) Project v to be a perpendicular axis of n.
lerp(v0, v1, t[, out, dtype]) Linear interpolation (LERP) between two vec-

tors/coordinates.
distance(v0, v1[, out, dtype]) Get the distance between vectors/coordinates.
angleTo(v, point[, degrees, out, dtype]) Get the relative angle to a point from a vector.
bisector(v0, v1[, norm, out, dtype]) Get the angle bisector.
surfaceNormal(tri[, norm, out, dtype]) Compute the surface normal of a given triangle.
surfaceBitangent(tri, uv[, norm, out, dtype]) Compute the bitangent vector of a given triangle.
surfaceTangent(tri, uv[, norm, out, dtype]) Compute the tangent vector of a given triangle.
vertexNormal(faceNorms[, norm, out, dtype]) Compute a vertex normal from shared triangles.
fixTangentHandedness(tangents, normals, ...) Ensure the handedness of tangent vectors are all the

same.
ortho3Dto2D(p, orig, normal, up[, right, dtype]) Get the planar coordinates of an orthogonal projection

of a 3D point onto a 2D plane.
transform(pos, ori, points[, out, dtype]) Transform points using a position and orientation.
scale(sf, points[, out, dtype]) Scale points by a factor.

10.8. psychopy.tools - miscellaneous tools 715

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.mathtools.length

psychopy.tools.mathtools.length(v, squared=False, out=None, dtype=None)
Get the length of a vector.

Parameters
• v (array_like) – Vector to normalize, can be Nx2, Nx3, or Nx4. If a 2D array is specified,

rows are treated as separate vectors.

• squared (bool, optional) – If True the squared length is returned. The default is False.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Length of vector v.

Return type
float or ndarray

psychopy.tools.mathtools.normalize

psychopy.tools.mathtools.normalize(v, out=None, dtype=None)
Normalize a vector or quaternion.

v
[array_like] Vector to normalize, can be Nx2, Nx3, or Nx4. If a 2D array is specified, rows are treated as
separate vectors. All vectors should have nonzero length.

out
[ndarray, optional] Optional output array. Must be same shape and dtype as the expected output if out was
not specified.

dtype
[dtype or str, optional] Data type for computations can either be ‘float32’ or ‘float64’. If out is specified,
the data type of out is used and this argument is ignored. If out is not provided, ‘float64’ is used by default.

Returns
Normalized vector v.

Return type
ndarray

10.8. psychopy.tools - miscellaneous tools 716

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

Notes

• If the vector has length is zero, a vector of all zeros is returned after normalization.

Examples

Normalize a vector:

v = [1., 2., 3., 4.]
vn = normalize(v)

The normalize function is vectorized. It’s considerably faster to normalize large arrays of vectors than to call
normalize separately for each one:

v = np.random.uniform(-1.0, 1.0, (1000, 4,)) # 1000 length 4 vectors
vn = np.zeros((1000, 4)) # place to write values
normalize(v, out=vn) # very fast!

don't do this!
for i in range(1000):

vn[i, :] = normalize(v[i, :])

psychopy.tools.mathtools.orthogonalize

psychopy.tools.mathtools.orthogonalize(v, n, out=None, dtype=None)
Orthogonalize a vector relative to a normal vector.

This function ensures that v is perpendicular (or orthogonal) to n.

Parameters
• v (array_like) – Vector to orthogonalize, can be Nx2, Nx3, or Nx4. If a 2D array is

specified, rows are treated as separate vectors.

• n (array_like) – Normal vector, must have same shape as v.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Orthogonalized vector v relative to normal vector n.

Return type
ndarray

Warning: If v and n are the same, the direction of the perpendicular vector is indeterminate. The resulting
vector is degenerate (all zeros).

10.8. psychopy.tools - miscellaneous tools 717

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.mathtools.reflect

psychopy.tools.mathtools.reflect(v, n, out=None, dtype=None)
Reflection of a vector.

Get the reflection of v relative to normal n.

Parameters
• v (array_like) – Vector to reflect, can be Nx2, Nx3, or Nx4. If a 2D array is specified,

rows are treated as separate vectors.

• n (array_like) – Normal vector, must have same shape as v.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Reflected vector v off normal n.

Return type
ndarray

psychopy.tools.mathtools.dot

psychopy.tools.mathtools.dot(v0, v1, out=None, dtype=None)
Dot product of two vectors.

The behaviour of this function depends on the format of the input arguments:

• If v0 and v1 are 1D, the dot product is returned as a scalar and out is ignored.

• If v0 and v1 are 2D, a 1D array of dot products between corresponding row vectors are returned.

• If either v0 and v1 are 1D and 2D, an array of dot products between each row of the 2D vector and the 1D
vector are returned.

Parameters
• v0 (array_like) – Vector(s) to compute dot products of (e.g. [x, y, z]). v0 must have equal

or fewer dimensions than v1.

• v1 (array_like) – Vector(s) to compute dot products of (e.g. [x, y, z]). v0 must have equal
or fewer dimensions than v1.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Dot product(s) of v0 and v1.

Return type
ndarray

10.8. psychopy.tools - miscellaneous tools 718

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.mathtools.cross

psychopy.tools.mathtools.cross(v0, v1, out=None, dtype=None)
Cross product of 3D vectors.

The behavior of this function depends on the dimensions of the inputs:

• If v0 and v1 are 1D, the cross product is returned as 1D vector.

• If v0 and v1 are 2D, a 2D array of cross products between corresponding row vectors are returned.

• If either v0 and v1 are 1D and 2D, an array of cross products between each row of the 2D vector and the
1D vector are returned.

Parameters
• v0 (array_like) – Vector(s) in form [x, y, z] or [x, y, z, 1].

• v1 (array_like) – Vector(s) in form [x, y, z] or [x, y, z, 1].

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Cross product of v0 and v1.

Return type
ndarray

Notes

• If input vectors are 4D, the last value of cross product vectors is always set to one.

• If input vectors v0 and v1 are Nx3 and out is Nx4, the cross product is computed and the last column of out
is filled with ones.

Examples

Find the cross product of two vectors:

a = normalize([1, 2, 3])
b = normalize([3, 2, 1])
c = cross(a, b)

If input arguments are 2D, the function returns the cross products of corresponding rows:

create two 6x3 arrays with random numbers
shape = (6, 3,)
a = normalize(np.random.uniform(-1.0, 1.0, shape))
b = normalize(np.random.uniform(-1.0, 1.0, shape))
cprod = np.zeros(shape) # output has the same shape as inputs
cross(a, b, out=cprod)

10.8. psychopy.tools - miscellaneous tools 719

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

If a 1D and 2D vector are specified, the cross product of each row of the 2D array and the 1D array is returned
as a 2D array:

a = normalize([1, 2, 3])
b = normalize(np.random.uniform(-1.0, 1.0, (6, 3,)))
cprod = np.zeros(a.shape)
cross(a, b, out=cprod)

psychopy.tools.mathtools.project

psychopy.tools.mathtools.project(v0, v1, out=None, dtype=None)
Project a vector onto another.

Parameters
• v0 (array_like) – Vector can be Nx2, Nx3, or Nx4. If a 2D array is specified, rows are

treated as separate vectors.

• v1 (array_like) – Vector to project onto v0.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Projection of vector v0 on v1.

Return type
ndarray or float

psychopy.tools.mathtools.perp

psychopy.tools.mathtools.perp(v, n, norm=True, out=None, dtype=None)
Project v to be a perpendicular axis of n.

Parameters
• v (array_like) – Vector to project [x, y, z], may be Nx3.

• n (array_like) – Normal vector [x, y, z], may be Nx3.

• norm (bool) – Normalize the resulting axis. Default is True.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Perpendicular axis of n from v.

Return type
ndarray

10.8. psychopy.tools - miscellaneous tools 720

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Determine the local up (y-axis) of a surface or plane given normal:

normal = [0., 0.70710678, 0.70710678]
up = [1., 0., 0.]

yaxis = perp(up, normal)

Do a cross product to get the x-axis perpendicular to both:

xaxis = cross(yaxis, normal)

psychopy.tools.mathtools.lerp

psychopy.tools.mathtools.lerp(v0, v1, t, out=None, dtype=None)
Linear interpolation (LERP) between two vectors/coordinates.

Parameters
• v0 (array_like) – Initial vector/coordinate. Can be 2D where each row is a point.

• v1 (array_like) – Final vector/coordinate. Must be the same shape as v0.

• t (float) – Interpolation weight factor [0, 1].

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Vector at t with same shape as v0 and v1.

Return type
ndarray

Examples

Find the coordinate of the midpoint between two vectors:

u = [0., 0., 0.]
v = [0., 0., 1.]
midpoint = lerp(u, v, 0.5) # 0.5 to interpolate half-way between points

10.8. psychopy.tools - miscellaneous tools 721

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.mathtools.distance

psychopy.tools.mathtools.distance(v0, v1, out=None, dtype=None)
Get the distance between vectors/coordinates.

The behaviour of this function depends on the format of the input arguments:

• If v0 and v1 are 1D, the distance is returned as a scalar and out is ignored.

• If v0 and v1 are 2D, an array of distances between corresponding row vectors are returned.

• If either v0 and v1 are 1D and 2D, an array of distances between each row of the 2D vector and the 1D
vector are returned.

Parameters
• v0 (array_like) – Vectors to compute the distance between.

• v1 (array_like) – Vectors to compute the distance between.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Distance between vectors v0 and v1.

Return type
ndarray

psychopy.tools.mathtools.angleTo

psychopy.tools.mathtools.angleTo(v, point, degrees=True, out=None, dtype=None)
Get the relative angle to a point from a vector.

The behaviour of this function depends on the format of the input arguments:

• If v0 and v1 are 1D, the angle is returned as a scalar and out is ignored.

• If v0 and v1 are 2D, an array of angles between corresponding row vectors are returned.

• If either v0 and v1 are 1D and 2D, an array of angles between each row of the 2D vector and the 1D vector
are returned.

Parameters
• v (array_like) – Direction vector [x, y, z].

• point (array_like) – Point(s) to compute angle to from vector v.

• degrees (bool, optional) – Return the resulting angles in degrees. If False, angles will
be returned in radians. Default is True.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

10.8. psychopy.tools - miscellaneous tools 722

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Returns
Distance between vectors v0 and v1.

Return type
ndarray

psychopy.tools.mathtools.bisector

psychopy.tools.mathtools.bisector(v0, v1, norm=False, out=None, dtype=None)
Get the angle bisector.

Computes a vector which bisects the angle between v0 and v1. Input vectors v0 and v1 must be non-zero.

Parameters
• v0 (array_like) – Vectors to bisect [x, y, z]. Must be non-zero in length and have the same

shape. Inputs can be Nx3 where the bisector for corresponding rows will be returned.

• v1 (array_like) – Vectors to bisect [x, y, z]. Must be non-zero in length and have the same
shape. Inputs can be Nx3 where the bisector for corresponding rows will be returned.

• norm (bool, optional) – Normalize the resulting bisector. Default is False.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Bisecting vector [x, y, z].

Return type
ndarray

psychopy.tools.mathtools.surfaceNormal

psychopy.tools.mathtools.surfaceNormal(tri, norm=True, out=None, dtype=None)
Compute the surface normal of a given triangle.

Parameters
• tri (array_like) – Triangle vertices as 2D (3x3) array [p0, p1, p2] where each vertex is a

length 3 array [vx, xy, vz]. The input array can be 3D (Nx3x3) to specify multiple triangles.

• norm (bool, optional) – Normalize computed surface normals if True, default is True.

• out (ndarray, optional) – Optional output array. Must have one fewer dimensions than
tri. The shape of the last dimension must be 3.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Surface normal of triangle tri.

Return type
ndarray

10.8. psychopy.tools - miscellaneous tools 723

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Compute the surface normal of a triangle:

vertices = [[-1., 0., 0.], [0., 1., 0.], [1, 0, 0]]
norm = surfaceNormal(vertices)

Find the normals for multiple triangles, and put results in a pre-allocated array:

vertices = [[[-1., 0., 0.], [0., 1., 0.], [1, 0, 0]], # 2x3x3
[[1., 0., 0.], [0., 1., 0.], [-1, 0, 0]]]

normals = np.zeros((2, 3)) # normals from two triangles triangles
surfaceNormal(vertices, out=normals)

psychopy.tools.mathtools.surfaceBitangent

psychopy.tools.mathtools.surfaceBitangent(tri, uv, norm=True, out=None, dtype=None)
Compute the bitangent vector of a given triangle.

This function can be used to generate bitangent vertex attributes for normal mapping. After computing bitangents,
one may orthogonalize them with vertex normals using the orthogonalize() function, or within the fragment
shader. Uses texture coordinates at each triangle vertex to determine the direction of the vector.

Parameters
• tri (array_like) – Triangle vertices as 2D (3x3) array [p0, p1, p2] where each vertex is a

length 3 array [vx, xy, vz]. The input array can be 3D (Nx3x3) to specify multiple triangles.

• uv (array_like) – Texture coordinates associated with each face vertex as a 2D array (3x2)
where each texture coordinate is length 2 array [u, v]. The input array can be 3D (Nx3x2) to
specify multiple texture coordinates if multiple triangles are specified.

• norm (bool, optional) – Normalize computed bitangents if True, default is True.

• out (ndarray, optional) – Optional output array. Must have one fewer dimensions than
tri. The shape of the last dimension must be 3.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Surface bitangent of triangle tri.

Return type
ndarray

10.8. psychopy.tools - miscellaneous tools 724

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Computing the bitangents for two triangles from vertex and texture coordinates (UVs):

array of triangle vertices (2x3x3)
tri = np.asarray([

[(-1.0, 1.0, 0.0), (-1.0, -1.0, 0.0), (1.0, -1.0, 0.0)], # 1
[(-1.0, 1.0, 0.0), (-1.0, -1.0, 0.0), (1.0, -1.0, 0.0)]]) # 2

array of triangle texture coordinates (2x3x2)
uv = np.asarray([

[(0.0, 1.0), (0.0, 0.0), (1.0, 0.0)], # 1
[(0.0, 1.0), (0.0, 0.0), (1.0, 0.0)]]) # 2

bitangents = surfaceBitangent(tri, uv, norm=True) # bitangets (2x3)

psychopy.tools.mathtools.surfaceTangent

psychopy.tools.mathtools.surfaceTangent(tri, uv, norm=True, out=None, dtype=None)
Compute the tangent vector of a given triangle.

This function can be used to generate tangent vertex attributes for normal mapping. After computing tangents,
one may orthogonalize them with vertex normals using the orthogonalize() function, or within the fragment
shader. Uses texture coordinates at each triangle vertex to determine the direction of the vector.

Parameters
• tri (array_like) – Triangle vertices as 2D (3x3) array [p0, p1, p2] where each vertex is a

length 3 array [vx, xy, vz]. The input array can be 3D (Nx3x3) to specify multiple triangles.

• uv (array_like) – Texture coordinates associated with each face vertex as a 2D array (3x2)
where each texture coordinate is length 2 array [u, v]. The input array can be 3D (Nx3x2) to
specify multiple texture coordinates if multiple triangles are specified. If so N must be the
same size as the first dimension of tri.

• norm (bool, optional) – Normalize computed tangents if True, default is True.

• out (ndarray, optional) – Optional output array. Must have one fewer dimensions than
tri. The shape of the last dimension must be 3.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Surface normal of triangle tri.

Return type
ndarray

10.8. psychopy.tools - miscellaneous tools 725

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Compute surface normals, tangents, and bitangents for a list of triangles:

triangle vertices (2x3x3)
vertices = [[[-1., 0., 0.], [0., 1., 0.], [1, 0, 0]],

[[1., 0., 0.], [0., 1., 0.], [-1, 0, 0]]]

array of triangle texture coordinates (2x3x2)
uv = np.asarray([

[(0.0, 1.0), (0.0, 0.0), (1.0, 0.0)], # 1
[(0.0, 1.0), (0.0, 0.0), (1.0, 0.0)]]) # 2

normals = surfaceNormal(vertices)
tangents = surfaceTangent(vertices, uv)
bitangents = cross(normals, tangents) # or use `surfaceBitangent`

Orthogonalize a surface tangent with a vertex normal vector to get the vertex tangent and bitangent vectors:

vertexTangent = orthogonalize(faceTangent, vertexNormal)
vertexBitangent = cross(vertexTangent, vertexNormal)

Ensure computed vectors have the same handedness, if not, flip the tangent vector (important for applications
like normal mapping):

tangent, bitangent, and normal are 2D
tangent[dot(cross(normal, tangent), bitangent) < 0.0, :] *= -1.0

psychopy.tools.mathtools.vertexNormal

psychopy.tools.mathtools.vertexNormal(faceNorms, norm=True, out=None, dtype=None)
Compute a vertex normal from shared triangles.

This function computes a vertex normal by averaging the surface normals of the triangles it belongs to. If model
has no vertex normals, first use surfaceNormal() to compute them, then run vertexNormal() to compute
vertex normal attributes.

While this function is mainly used to compute vertex normals, it can also be supplied triangle tangents and
bitangents.

Parameters
• faceNorms (array_like) – An array (Nx3) of surface normals.

• norm (bool, optional) – Normalize computed normals if True, default is True.

• out (ndarray, optional) – Optional output array.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Vertex normal.

Return type
ndarray

10.8. psychopy.tools - miscellaneous tools 726

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Compute a vertex normal from the face normals of the triangles it belongs to:

normals = [[1., 0., 0.], [0., 1., 0.]] # adjacent face normals
vertexNorm = vertexNormal(normals)

psychopy.tools.mathtools.fixTangentHandedness

psychopy.tools.mathtools.fixTangentHandedness(tangents, normals, bitangents, out=None, dtype=None)
Ensure the handedness of tangent vectors are all the same.

Often 3D computed tangents may not have the same handedness due to how texture coordinates are specified.
This function takes input surface vectors are ensures that tangents have the same handedness. Use this function if
you notice that normal mapping shading appears reversed with respect to the incident light direction. The output
array of corrected tangents can be used inplace of the original.

Parameters
• tangents (array_like) – Input Nx3 arrays of triangle tangents, normals and bitangents.

All arrays must have the same size.

• normals (array_like) – Input Nx3 arrays of triangle tangents, normals and bitangents.
All arrays must have the same size.

• bitangents (array_like) – Input Nx3 arrays of triangle tangents, normals and bitangents.
All arrays must have the same size.

• out (ndarray, optional) – Optional output array for tangents. If not specified, a new
array of tangents will be allocated.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Array of tangents with handedness corrected.

Return type
ndarray

psychopy.tools.mathtools.ortho3Dto2D

psychopy.tools.mathtools.ortho3Dto2D(p, orig, normal, up, right=None, dtype=None)
Get the planar coordinates of an orthogonal projection of a 3D point onto a 2D plane.

This function gets the nearest point on the plane which a 3D point falls on the plane.

Parameters
• p (array_like) – Point to be projected on the plane.

• orig (array_like) – Origin of the plane to test [x, y, z].

• normal (array_like) – Normal vector of the plane [x, y, z], must be normalized.

• up (array_like) – Normalized up (+Y) direction of the plane’s coordinate system. Must
be perpendicular to normal.

10.8. psychopy.tools - miscellaneous tools 727

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

• right (array_like, optional) – Perpendicular right (+X) axis. If not provided, the axis
will be computed via the cross product between normal and up.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Coordinates on the plane [X, Y] where the 3D point projects towards perpendicularly.

Return type
ndarray

Examples

This function can be used with intersectRayPlane() to find the location on the plane the ray intersects:

plane information
planeOrigin = [0, 0, 0]
planeNormal = [0, 0, 1] # must be normalized
planeUpAxis = perp([0, 1, 0], planeNormal) # must also be normalized

ray
rayDir = [0, 0, -1]
rayOrigin = [0, 0, 5]

get the intersect in 3D world space
pnt = intersectRayPlane(rayOrigin, rayDir, planeOrigin, planeNormal)

get the 2D coordinates on the plane the intersect occurred
planeX, planeY = ortho3Dto2D(pnt, planeOrigin, planeNormal, planeUpAxis)

psychopy.tools.mathtools.transform

psychopy.tools.mathtools.transform(pos, ori, points, out=None, dtype=None)
Transform points using a position and orientation. Points are rotated then translated.

Parameters
• pos (array_like) – Position vector in form [x, y, z] or [x, y, z, 1].

• ori (array_like) – Orientation quaternion in form [x, y, z, w] where w is real and x, y, z
are imaginary components.

• points (array_like) – Point(s) [x, y, z] to transform.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Transformed points.

10.8. psychopy.tools - miscellaneous tools 728

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Return type
ndarray

Examples

Transform points by a position coordinate and orientation quaternion:

rigid body pose
ori = quatFromAxisAngle([0., 0., -1.], 90.0, degrees=True)
pos = [0., 1.5, -3.]
points to transform
points = np.array([[0., 1., 0., 1.], [-1., 0., 0., 1.]]) # [x, y, z, 1]
outPoints = np.zeros_like(points) # output array
transform(pos, ori, points, out=outPoints) # do the transformation

You can get the same results as the previous example using a matrix by doing the following:

R = rotationMatrix(90., [0., 0., -1])
T = translationMatrix([0., 1.5, -3.])
M = concatenate([R, T])
applyMatrix(M, points, out=outPoints)

If you are defining transformations with quaternions and coordinates, you can skip the costly matrix creation
process by using transform.

Notes

• In performance tests, applyMatrix is noticeably faster than transform for very large arrays, however this is
only true if you are applying the same transformation to all points.

• If the input arrays for points or pos is Nx4, the last column is ignored.

psychopy.tools.mathtools.scale

psychopy.tools.mathtools.scale(sf, points, out=None, dtype=None)
Scale points by a factor.

This is useful for converting points between units, and to stretch or compress points along a given axis. Scaling
can be uniform which the same factor is applied along all axes, or anisotropic along specific axes.

Parameters
• sf (array_like or float) – Scaling factor. If scalar, all points will be scaled uniformly

by that factor. If a vector, scaling will be anisotropic along an axis.

• points (array_like) – Point(s) [x, y, z] to scale.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Scaled points.

10.8. psychopy.tools - miscellaneous tools 729

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Return type
ndarray

Examples

Apply uniform scaling to points, here we scale to convert points in centimeters to meters:

CM_TO_METERS = 1.0 / 100.0
pointsCM = [[1, 2, 3], [4, 5, 6], [-1, 1, 0]]
pointsM = scale(CM_TO_METERS, pointsCM)

Anisotropic scaling along the X and Y axis:

pointsM = scale((SCALE_FACTOR_X, SCALE_FACTOR_Y), pointsCM)

Scale only on the X axis:

pointsM = scale((SCALE_FACTOR_X,), pointsCM)

Apply scaling on the Z axis only:

pointsM = scale((1.0, 1.0, SCALE_FACTOR_Z), pointsCM)

Quaternions

Tools for working with quaternions. Quaternions are used primarily here to represent rotations in 3D space.

articulate(boneVecs, boneOris[, dtype]) Articulate an armature.
slerp(q0, q1, t[, shortest, out, dtype]) Spherical linear interpolation (SLERP) between two

quaternions.
quatToAxisAngle(q[, degrees, dtype]) Convert a quaternion to axis and angle representation.
quatFromAxisAngle(axis, angle[, degrees, dtype]) Create a quaternion to represent a rotation about axis

vector by angle.
quatYawPitchRoll(q[, degrees, out, dtype]) Get the yaw, pitch, and roll of a quaternion's orientation

relative to the world -Z axis.
alignTo(v, t[, out, dtype]) Compute a quaternion which rotates one vector to align

with another.
quatMagnitude(q[, squared, out, dtype]) Get the magnitude of a quaternion.
multQuat(q0, q1[, out, dtype]) Multiply quaternion q0 and q1.
accumQuat(qlist[, out, dtype]) Accumulate quaternion rotations.
invertQuat(q[, out, dtype]) Get the multiplicative inverse of a quaternion.
applyQuat(q, points[, out, dtype]) Rotate points/coordinates using a quaternion.
quatToMatrix(q[, out, dtype]) Create a 4x4 rotation matrix from a quaternion.

10.8. psychopy.tools - miscellaneous tools 730

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.mathtools.articulate

psychopy.tools.mathtools.articulate(boneVecs, boneOris, dtype=None)
Articulate an armature.

This function is used for forward kinematics and posing by specifying a list of ‘bones’. A bone has a length and
orientation, where sequential bones are linked end-to-end. Returns the transformed origins of the bones in scene
coordinates and their orientations.

There are many applications for forward kinematics such as posing armatures and stimuli for display (eg. mocap
data). Another application is for getting the location of the end effector of coordinate measuring hardware, where
encoders measure the joint angles and the length of linking members are known. This can be used for computing
pose from “Sword of Damocles”1 like hardware or some other haptic input devices which the participant wears
(eg. a glove that measures joint angles in the hand). The computed pose of the joints can be used to interact with
virtual stimuli.

Parameters
• boneVecs (array_like) – Bone lengths [x, y, z] as an Nx3 array.

• boneOris (array_like) – Orientation of the bones as quaternions in form [x, y, z, w],
relative to the previous bone.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Array of bone origins and orientations. The first origin is root position which is always at [0,
0, 0]. Use transform() to reposition the armature, or create a transformation matrix and use
applyMatrix to translate and rotate the whole armature into position.

Return type
tuple

References

Examples

Compute the orientations and origins of segments of an arm:

bone lengths
boneLengths = [[0., 1., 0.], [0., 1., 0.], [0., 1., 0.]]

create quaternions for joints
shoulder = mt.quatFromAxisAngle('-y', 45.0)
elbow = mt.quatFromAxisAngle('+z', 45.0)
wrist = mt.quatFromAxisAngle('+z', 45.0)

articulate the parts of the arm
boxPos, boxOri = mt.articulate(pos, [shoulder, elbow, wrist])

assign positions and orientations to 3D objects
shoulderModel.thePose.posOri = (boxPos[0, :], boxOri[0, :])

(continues on next page)

1 Sutherland, I. E. (1968). “A head-mounted three dimensional display”. Proceedings of AFIPS 68, pp. 757-764

10.8. psychopy.tools - miscellaneous tools 731

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

elbowModel.thePose.posOri = (boxPos[1, :], boxOri[1, :])
wristModel.thePose.posOri = (boxPos[2, :], boxOri[2, :])

psychopy.tools.mathtools.slerp

psychopy.tools.mathtools.slerp(q0, q1, t, shortest=True, out=None, dtype=None)
Spherical linear interpolation (SLERP) between two quaternions.

The behaviour of this function depends on the types of arguments:

• If q0 and q1 are both 1-D and t is scalar, the interpolation at t is returned.

• If q0 and q1 are both 2-D Nx4 arrays and t is scalar, an Nx4 array is returned with each row containing the
interpolation at t for each quaternion pair at matching row indices in q0 and q1.

Parameters
• q0 (array_like) – Initial quaternion in form [x, y, z, w] where w is real and x, y, z are

imaginary components.

• q1 (array_like) – Final quaternion in form [x, y, z, w] where w is real and x, y, z are
imaginary components.

• t (float) – Interpolation weight factor within interval 0.0 and 1.0.

• shortest (bool, optional) – Ensure interpolation occurs along the shortest arc along
the 4-D hypersphere (default is True).

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Quaternion [x, y, z, w] at t.

Return type
ndarray

Examples

Interpolate between two orientations:

q0 = quatFromAxisAngle(90.0, degrees=True)
q1 = quatFromAxisAngle(-90.0, degrees=True)
halfway between 90 and -90 is 0.0 or quaternion [0. 0. 0. 1.]
qr = slerp(q0, q1, 0.5)

Example of smooth rotation of an object with fixed angular velocity:

degPerSec = 10.0 # rotate a stimulus at 10 degrees per second

initial orientation, axis rotates in the Z direction
(continues on next page)

10.8. psychopy.tools - miscellaneous tools 732

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

qr = quatFromAxisAngle([0., 0., -1.], 0.0, degrees=True)
amount to rotate every second
qv = quatFromAxisAngle([0., 0., -1.], degPerSec, degrees=True)

---- within main experiment loop ----
`frameTime` is the time elapsed in seconds from last `slerp`.
qr = multQuat(qr, slerp((0., 0., 0., 1.), qv, degPerSec * frameTime))
_, angle = quatToAxisAngle(qr) # discard axis, only need angle

myStim is a GratingStim or anything with an 'ori' argument which
accepts angle in degrees
myStim.ori = angle
myStim.draw()

psychopy.tools.mathtools.quatToAxisAngle

psychopy.tools.mathtools.quatToAxisAngle(q, degrees=True, dtype=None)
Convert a quaternion to axis and angle representation.

This allows you to use quaternions to set the orientation of stimuli that have an ori property.

Parameters
• q (tuple, list or ndarray of float) – Quaternion in form [x, y, z, w] where w is

real and x, y, z are imaginary components.

• degrees (bool, optional) – Indicate angle is to be returned in degrees, otherwise angle
will be returned in radians.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Axis and angle of quaternion in form ([ax, ay, az], angle). If degrees is True, the angle returned
is in degrees, radians if False.

Return type
tuple

Examples

Using a quaternion to rotate a stimulus a fixed angle each frame:

initial orientation, axis rotates in the Z direction
qr = quatFromAxisAngle([0., 0., -1.], 0.0, degrees=True)
rotation per-frame, here it's 0.1 degrees per frame
qf = quatFromAxisAngle([0., 0., -1.], 0.1, degrees=True)

---- within main experiment loop ----
myStim is a GratingStim or anything with an 'ori' argument which
accepts angle in degrees
qr = multQuat(qr, qf) # cumulative rotation

(continues on next page)

10.8. psychopy.tools - miscellaneous tools 733

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

_, angle = quatToAxisAngle(qr) # discard axis, only need angle
myStim.ori = angle
myStim.draw()

psychopy.tools.mathtools.quatFromAxisAngle

psychopy.tools.mathtools.quatFromAxisAngle(axis, angle, degrees=True, dtype=None)
Create a quaternion to represent a rotation about axis vector by angle.

Parameters
• axis (tuple, list, ndarray or str) – Axis vector components or axis name. If a

vector, input must be length 3 [x, y, z]. A string can be specified for rotations about world
axes (eg. ‘+x’, ‘-z’, ‘+y’, etc.)

• angle (float) – Rotation angle in radians (or degrees if degrees is True. Rotations are
right-handed about the specified axis.

• degrees (bool, optional) – Indicate angle is in degrees, otherwise angle will be treated
as radians.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Quaternion [x, y, z, w].

Return type
ndarray

Examples

Create a quaternion from specified axis and angle:

axis = [0., 0., -1.] # rotate about -Z axis
angle = 90.0 # angle in degrees
ori = quatFromAxisAngle(axis, angle, degrees=True) # using degrees!

psychopy.tools.mathtools.quatYawPitchRoll

psychopy.tools.mathtools.quatYawPitchRoll(q, degrees=True, out=None, dtype=None)
Get the yaw, pitch, and roll of a quaternion’s orientation relative to the world -Z axis.

You can multiply the quaternion by the inverse of some other one to make the returned values referenced to a
local coordinate system.

Parameters
• q (tuple, list or ndarray of float) – Quaternion in form [x, y, z, w] where w is

real and x, y, z are imaginary components.

• degrees (bool, optional) – Indicate angles are to be returned in degrees, otherwise they
will be returned in radians.

10.8. psychopy.tools - miscellaneous tools 734

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

• out (ndarray) – Optional output array. Must have same shape and dtype as what is expected
to be returned by this function of out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Yaw, pitch and roll [yaw, pitch, roll] of quaternion q.

Return type
ndarray

psychopy.tools.mathtools.alignTo

psychopy.tools.mathtools.alignTo(v, t, out=None, dtype=None)
Compute a quaternion which rotates one vector to align with another.

Parameters
• v (array_like) – Vector [x, y, z] to rotate. Can be Nx3, but must have the same shape as t.

• t (array_like) – Target [x, y, z] vector to align to. Can be Nx3, but must have the same
shape as v.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Quaternion which rotates v to t.

Return type
ndarray

Examples

Rotate some vectors to align with other vectors, inputs should be normalized:

vec = [[1, 0, 0], [0, 1, 0], [1, 0, 0]]
targets = [[0, 1, 0], [0, -1, 0], [-1, 0, 0]]

qr = alignTo(vec, targets)
vecRotated = applyQuat(qr, vec)

numpy.allclose(vecRotated, targets) # True

Get matrix which orients vertices towards a point:

point = [5, 6, 7]
vec = [0, 0, -1] # initial facing is -Z (forward in GL)

targetVec = normalize(point - vec)
(continues on next page)

10.8. psychopy.tools - miscellaneous tools 735

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

qr = alignTo(vec, targetVec) # get rotation to align

M = quatToMatrix(qr) # 4x4 transformation matrix

psychopy.tools.mathtools.quatMagnitude

psychopy.tools.mathtools.quatMagnitude(q, squared=False, out=None, dtype=None)
Get the magnitude of a quaternion.

A quaternion is normalized if its magnitude is 1.

Parameters
• q (array_like) – Quaternion(s) in form [x, y, z, w] where w is real and x, y, z are imaginary

components.

• squared (bool, optional) – If True return the squared magnitude. If you are just check-
ing if a quaternion is normalized, the squared magnitude will suffice to avoid the square root
operation.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Magnitude of quaternion q.

Return type
float or ndarray

psychopy.tools.mathtools.multQuat

psychopy.tools.mathtools.multQuat(q0, q1, out=None, dtype=None)
Multiply quaternion q0 and q1.

The orientation of the returned quaternion is the combination of the input quaternions.

Parameters
• q0 (array_like) – Quaternions to multiply in form [x, y, z, w] where w is real and x, y,

z are imaginary components. If 2D (Nx4) arrays are specified, quaternions are multiplied
row-wise between each array.

• q1 (array_like) – Quaternions to multiply in form [x, y, z, w] where w is real and x, y,
z are imaginary components. If 2D (Nx4) arrays are specified, quaternions are multiplied
row-wise between each array.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

10.8. psychopy.tools - miscellaneous tools 736

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Returns
Combined orientations of q0 amd q1.

Return type
ndarray

Notes

• Quaternions are normalized prior to multiplication.

Examples

Combine the orientations of two quaternions:

a = quatFromAxisAngle([0, 0, -1], 45.0, degrees=True)
b = quatFromAxisAngle([0, 0, -1], 90.0, degrees=True)
c = multQuat(a, b) # rotates 135 degrees about -Z axis

psychopy.tools.mathtools.accumQuat

psychopy.tools.mathtools.accumQuat(qlist, out=None, dtype=None)
Accumulate quaternion rotations.

Chain multiplies an Nx4 array of quaternions, accumulating their rotations. This function can be used for com-
puting the orientation of joints in an armature for forward kinematics. The first quaternion is treated as the ‘root’
and the last is the orientation of the end effector.

Parameters
• q (array_like) – Nx4 array of quaternions to accumulate, where each row is a quaternion.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified. In this case, the same shape as qlist.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Nx4 array of quaternions.

Return type
ndarray

Examples

Get the orientation of joints in an armature if we know their relative angles:

shoulder = quatFromAxisAngle('-x', 45.0) # rotate shoulder down 45 deg
elbow = quatFromAxisAngle('+x', 45.0) # rotate elbow up 45 deg
wrist = quatFromAxisAngle('-x', 45.0) # rotate wrist down 45 deg
finger = quatFromAxisAngle('+x', 0.0) # keep finger in-line with wrist

armRotations = accumQuat([shoulder, elbow, wrist, finger])

10.8. psychopy.tools - miscellaneous tools 737

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.mathtools.invertQuat

psychopy.tools.mathtools.invertQuat(q, out=None, dtype=None)
Get the multiplicative inverse of a quaternion.

This gives a quaternion which rotates in the opposite direction with equal magnitude. Multiplying a quaternion
by its inverse returns an identity quaternion as both orientations cancel out.

Parameters
• q (ndarray, list, or tuple of float) – Quaternion to invert in form [x, y, z, w]

where w is real and x, y, z are imaginary components. If q is 2D (Nx4), each row is treated
as a separate quaternion and inverted.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Inverse of quaternion q.

Return type
ndarray

Examples

Show that multiplying a quaternion by its inverse returns an identity quaternion where [x=0, y=0, z=0, w=1]:

angle = 90.0
axis = [0., 0., -1.]
q = quatFromAxisAngle(axis, angle, degrees=True)
qinv = invertQuat(q)
qr = multQuat(q, qinv)
qi = np.array([0., 0., 0., 1.]) # identity quaternion
print(np.allclose(qi, qr)) # True

Notes

• Quaternions are normalized prior to inverting.

psychopy.tools.mathtools.applyQuat

psychopy.tools.mathtools.applyQuat(q, points, out=None, dtype=None)
Rotate points/coordinates using a quaternion.

This is similar to using applyMatrix with a rotation matrix. However, it is computationally less intensive to use
applyQuat if one only wishes to rotate points.

Parameters
• q (array_like) – Quaternion to invert in form [x, y, z, w] where w is real and x, y, z are

imaginary components.

10.8. psychopy.tools - miscellaneous tools 738

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

• points (array_like) – 2D array of vectors or points to transform, where each row is a
single point. Only the x, y, and z components (the first three columns) are rotated. Additional
columns are copied.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Transformed points.

Return type
ndarray

Examples

Rotate points using a quaternion:

points = [[1., 0., 0.], [0., -1., 0.]]
quat = quatFromAxisAngle(-90.0, [0., 0., -1.], degrees=True)
pointsRotated = applyQuat(quat, points)
[[0. 1. 0.]
[1. 0. 0.]]

Show that you get the same result as a rotation matrix:

axis = [0., 0., -1.]
angle = -90.0
rotMat = rotationMatrix(axis, angle)[:3, :3] # rotation sub-matrix only
rotQuat = quatFromAxisAngle(angle, axis, degrees=True)
points = [[1., 0., 0.], [0., -1., 0.]]
isClose = np.allclose(applyMatrix(rotMat, points), # True

applyQuat(rotQuat, points))

Specifying an array to q where each row is a quaternion transforms points in corresponding rows of points:

points = [[1., 0., 0.], [0., -1., 0.]]
quats = [quatFromAxisAngle(-90.0, [0., 0., -1.], degrees=True),

quatFromAxisAngle(45.0, [0., 0., -1.], degrees=True)]
applyQuat(quats, points)

psychopy.tools.mathtools.quatToMatrix

psychopy.tools.mathtools.quatToMatrix(q, out=None, dtype=None)
Create a 4x4 rotation matrix from a quaternion.

Parameters
• q (tuple, list or ndarray of float) – Quaternion to convert in form [x, y, z, w]

where w is real and x, y, z are imaginary components.

• out (ndarray or None) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

10.8. psychopy.tools - miscellaneous tools 739

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
4x4 rotation matrix in row-major order.

Return type
ndarray or None

Examples

Convert a quaternion to a rotation matrix:

point = [0., 1., 0., 1.] # 4-vector form [x, y, z, 1.0]
ori = [0., 0., 0., 1.]
rotMat = quatToMatrix(ori)
rotate 'point' using matrix multiplication
newPoint = np.matmul(rotMat.T, point) # returns [-1., 0., 0., 1.]

Rotate all points in an array (each row is a coordinate):

points = np.asarray([[0., 0., 0., 1.],
[0., 1., 0., 1.],
[1., 1., 0., 1.]])

newPoints = points.dot(rotMat)

Notes

• Quaternions are normalized prior to conversion.

Matrices

Tools to creating and using affine transformation matrices.

10.8. psychopy.tools - miscellaneous tools 740

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

matrixToQuat(m[, out, dtype]) Convert a rotation matrix to a quaternion.
matrixFromEulerAngles(rx, ry, rz[, degrees, ...]) Construct a 4x4 rotation matrix from Euler angles.
scaleMatrix(s[, out, dtype]) Create a scaling matrix.
rotationMatrix(angle[, axis, out, dtype]) Create a rotation matrix.
translationMatrix(t[, out, dtype]) Create a translation matrix.
invertMatrix(m[, out, dtype]) Invert a square matrix.
isOrthogonal(m) Check if a square matrix is orthogonal.
isAffine(m) Check if a 4x4 square matrix describes an affine trans-

formation.
multMatrix(matrices[, reverse, out, dtype]) Chain multiplication of two or more matrices.
concatenate(matrices[, out, dtype]) Concatenate matrix transformations.
normalMatrix(modelMatrix[, out, dtype]) Get the normal matrix from a model matrix.
forwardProject(objPos, modelView, proj[, ...]) Project a point in a scene to a window coordinate.
reverseProject(winPos, modelView, proj[, ...]) Unproject window coordinates into object or scene co-

ordinates.
applyMatrix(m, points[, out, dtype]) Apply a matrix over a 2D array of points.
posOriToMatrix(pos, ori[, out, dtype]) Convert a rigid body pose to a 4x4 transformation ma-

trix.

psychopy.tools.mathtools.matrixToQuat

psychopy.tools.mathtools.matrixToQuat(m, out=None, dtype=None)
Convert a rotation matrix to a quaternion.

Parameters
• m (array_like) – 3x3 rotation matrix (row-major). A 4x4 affine transformation matrix may

be provided, assuming the top-left 3x3 sub-matrix is orthonormal and is a rotation group.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Rotation quaternion.

Return type
ndarray

Notes

• Depending on the input, returned quaternions may not be exactly the same as the one used to construct the
rotation matrix (i.e. by calling quatToMatrix), typically when a large rotation angle is used. However, the
returned quaternion should result in the same rotation when applied to points.

10.8. psychopy.tools - miscellaneous tools 741

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Converting a rotation matrix from the OpenGL matrix stack to a quaternion:

glRotatef(45., -1, 0, 0)

m = np.zeros((4, 4), dtype='float32') # store the matrix
GL.glGetFloatv(

GL.GL_MODELVIEW_MATRIX,
m.ctypes.data_as(ctypes.POINTER(ctypes.c_float)))

qr = matrixToQuat(m.T) # must be transposed

Interpolation between two 4x4 transformation matrices:

interpWeight = 0.5

posStart = mStart[:3, 3]
oriStart = matrixToQuat(mStart)

posEnd = mEnd[:3, 3]
oriEnd = matrixToQuat(mEnd)

oriInterp = slerp(qStart, qEnd, interpWeight)
posInterp = lerp(posStart, posEnd, interpWeight)

mInterp = posOriToMatrix(posInterp, oriInterp)

psychopy.tools.mathtools.matrixFromEulerAngles

psychopy.tools.mathtools.matrixFromEulerAngles(rx, ry, rz, degrees=True, out=None, dtype=None)
Construct a 4x4 rotation matrix from Euler angles.

Rotations are combined by first rotating about the X axis, then Y, and finally Z.

Parameters
• rx (float) – Rotation angles (pitch, yaw, and roll).

• ry (float) – Rotation angles (pitch, yaw, and roll).

• rz (float) – Rotation angles (pitch, yaw, and roll).

• degrees (bool, optional) – Rotation angles are specified in degrees. If False, they will
be assumed as radians. Default is True.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
4x4 rotation matrix.

Return type
ndarray

10.8. psychopy.tools - miscellaneous tools 742

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Demonstration of how a combination of axis-angle rotations is equivalent to a single call of matrixFromEulerAn-
gles:

m1 = matrixFromEulerAngles(90., 45., 135.))

construct rotation matrix from 3 orthogonal rotations
rx = rotationMatrix(90., (1, 0, 0)) # x-axis
ry = rotationMatrix(45., (0, 1, 0)) # y-axis
rz = rotationMatrix(135., (0, 0, 1)) # z-axis
m2 = concatenate([rz, ry, rx]) # note the order

print(numpy.allclose(m1, m2)) # True

Not only does matrixFromEulerAngles require less code, it also is considerably more efficient than constructing
and multiplying multiple matrices.

psychopy.tools.mathtools.scaleMatrix

psychopy.tools.mathtools.scaleMatrix(s, out=None, dtype=None)
Create a scaling matrix.

The resulting matrix is the same as a generated by a glScale call.

Parameters
• s (array_like, float or int) – Scaling factor(s). If s is scalar (float), scaling will be

uniform. Providing a vector of scaling values [sx, sy, sz] will result in an anisotropic scaling
matrix if any of the values differ.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
4x4 scaling matrix in row-major order.

Return type
ndarray

psychopy.tools.mathtools.rotationMatrix

psychopy.tools.mathtools.rotationMatrix(angle, axis=(0.0, 0.0, -1.0), out=None, dtype=None)
Create a rotation matrix.

The resulting matrix will rotate points about axis by angle. The resulting matrix is similar to that produced by a
glRotate call.

Parameters
• angle (float) – Rotation angle in degrees.

10.8. psychopy.tools - miscellaneous tools 743

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

• axis (array_like or str) – Axis vector components or axis name. If a vector, input
must be length 3. A string can be specified for rotations about world axes (eg. ‘+x’, ‘-z’,
‘+y’, etc.)

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
4x4 scaling matrix in row-major order. Will be the same array as out if specified, if not, a new
array will be allocated.

Return type
ndarray

Notes

• Vector axis is normalized before creating the matrix.

psychopy.tools.mathtools.translationMatrix

psychopy.tools.mathtools.translationMatrix(t, out=None, dtype=None)
Create a translation matrix.

The resulting matrix is the same as generated by a glTranslate call.

Parameters
• t (ndarray, tuple, or list of float) – Translation vector [tx, ty, tz].

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
4x4 translation matrix in row-major order. Will be the same array as out if specified, if not, a
new array will be allocated.

Return type
ndarray

psychopy.tools.mathtools.invertMatrix

psychopy.tools.mathtools.invertMatrix(m, out=None, dtype=None)
Invert a square matrix.

Parameters
• m (array_like) – Square matrix to invert. Inputs can be 4x4, 3x3 or 2x2.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

10.8. psychopy.tools - miscellaneous tools 744

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Matrix which is the inverse of m

Return type
ndarray

psychopy.tools.mathtools.isOrthogonal

psychopy.tools.mathtools.isOrthogonal(m)

Check if a square matrix is orthogonal.

If a matrix is orthogonal, its columns form an orthonormal basis and is non-singular. An orthogonal matrix is
invertible by simply taking the transpose of the matrix.

Parameters
m (array_like) – Square matrix, either 2x2, 3x3 or 4x4.

Returns
True if the matrix is orthogonal.

Return type
bool

psychopy.tools.mathtools.isAffine

psychopy.tools.mathtools.isAffine(m)

Check if a 4x4 square matrix describes an affine transformation.

Parameters
m (array_like) – 4x4 transformation matrix.

Returns
True if the matrix is affine.

Return type
bool

psychopy.tools.mathtools.multMatrix

psychopy.tools.mathtools.multMatrix(matrices, reverse=False, out=None, dtype=None)
Chain multiplication of two or more matrices.

Multiply a sequence of matrices together, reducing to a single product matrix. For instance, specifying matrices
the sequence of matrices (A, B, C, D) will return the product (((AB)C)D). If reverse=True, the product will be
(A(B(CD))).

Alternatively, a 3D array can be specified to matrices as a stack, where an index along axis 0 references a 2D slice
storing matrix values. The product of the matrices along the axis will be returned. This is a bit more efficient
than specifying separate matrices in a sequence, but the difference is negligible when only a few matrices are
being multiplied.

Parameters

10.8. psychopy.tools - miscellaneous tools 745

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

• matrices (list, tuple or ndarray) – Sequence or stack of matrices to multiply. All
matrices must have the same dimensions.

• reverse (bool, optional) – Multiply matrices right-to-left. This is useful when dealing
with transformation matrices, where the order of operations for transforms will appear the
same as the order the matrices are specified. Default is ‘False’. When True, this function
behaves similarly to concatenate().

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Matrix product.

Return type
ndarray

Notes

• You may use numpy.matmul when dealing with only two matrices instead of multMatrix.

• If a single matrix is specified, the returned product will have the same values.

Examples

Chain multiplication of SRT matrices:

translate = translationMatrix((0.035, 0, -0.5))
rotate = rotationMatrix(90.0, (0, 1, 0))
scale = scaleMatrix(2.0)

SRT = multMatrix((translate, rotate, scale))

Same as above, but matrices are in a 3x4x4 array:

matStack = np.array((translate, rotate, scale))

or ...
matStack = np.zeros((3, 4, 4))
matStack[0, :, :] = translate
matStack[1, :, :] = rotate
matStack[2, :, :] = scale

SRT = multMatrix(matStack)

Using reverse=True allows you to specify transformation matrices in the order which they will be applied:

SRT = multMatrix(np.array((scale, rotate, translate)), reverse=True)

10.8. psychopy.tools - miscellaneous tools 746

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.mathtools.concatenate

psychopy.tools.mathtools.concatenate(matrices, out=None, dtype=None)
Concatenate matrix transformations.

Chain multiply matrices describing transform operations into a single matrix product, that when applied, trans-
forms points and vectors with each operation in the order they’re specified.

Parameters
• matrices (list or tuple) – List of matrices to concatenate. All matrices must all have

the same size, usually 4x4 or 3x3.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Matrix product.

Return type
ndarray

See also:

• multMatrix : Chain multiplication of matrices.

Notes

• This function should only be used for combining transformation matrices. Use multMatrix for general
matrix chain multiplication.

Examples

Create an SRT (scale, rotate, and translate) matrix to convert model-space coordinates to world-space:

S = scaleMatrix([2.0, 2.0, 2.0]) # scale model 2x
R = rotationMatrix(-90., [0., 0., -1]) # rotate -90 about -Z axis
T = translationMatrix([0., 0., -5.]) # translate point 5 units away

product matrix when applied to points will scale, rotate and transform
in that order.
SRT = concatenate([S, R, T])

transform a point in model-space coordinates to world-space
pointModel = np.array([0., 1., 0., 1.])
pointWorld = np.matmul(SRT, pointModel.T) # point in WCS
... or ...
pointWorld = matrixApply(SRT, pointModel)

Create a model-view matrix from a world-space pose represented by an orientation (quaternion) and position
(vector). The resulting matrix will transform model-space coordinates to eye-space:

10.8. psychopy.tools - miscellaneous tools 747

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

eye pose as quaternion and vector
stimOri = quatFromAxisAngle([0., 0., -1.], -45.0)
stimPos = [0., 1.5, -5.]

create model matrix
R = quatToMatrix(stimOri)
T = translationMatrix(stimPos)
M = concatenate(R, T) # model matrix

create a view matrix, can also be represented as 'pos' and 'ori'
eyePos = [0., 1.5, 0.]
eyeFwd = [0., 0., -1.]
eyeUp = [0., 1., 0.]
V = lookAt(eyePos, eyeFwd, eyeUp) # from viewtools

modelview matrix
MV = concatenate([M, V])

You can put the created matrix in the OpenGL matrix stack as shown below. Note that the matrix must have a
32-bit floating-point data type and needs to be loaded transposed since OpenGL takes matrices in column-major
order:

GL.glMatrixMode(GL.GL_MODELVIEW)

pyglet
MV = np.asarray(MV, dtype='float32') # must be 32-bit float!
ptrMV = MV.ctypes.data_as(ctypes.POINTER(ctypes.c_float))
GL.glLoadTransposeMatrixf(ptrMV)

PyOpenGL
MV = np.asarray(MV, dtype='float32')
GL.glLoadTransposeMatrixf(MV)

Furthermore, you can convert a point from model-space to homogeneous clip-space by concatenating the pro-
jection, view, and model matrices:

compute projection matrix, functions here are from 'viewtools'
screenWidth = 0.52
screenAspect = w / h
scrDistance = 0.55
frustum = computeFrustum(screenWidth, screenAspect, scrDistance)
P = perspectiveProjectionMatrix(*frustum)

multiply model-space points by MVP to convert them to clip-space
MVP = concatenate([M, V, P])
pointModel = np.array([0., 1., 0., 1.])
pointClipSpace = np.matmul(MVP, pointModel.T)

10.8. psychopy.tools - miscellaneous tools 748

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.mathtools.normalMatrix

psychopy.tools.mathtools.normalMatrix(modelMatrix, out=None, dtype=None)
Get the normal matrix from a model matrix.

Parameters
• modelMatrix (array_like) – 4x4 homogeneous model matrix.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Normal matrix.

Return type
ndarray

psychopy.tools.mathtools.forwardProject

psychopy.tools.mathtools.forwardProject(objPos, modelView, proj, viewport=None, out=None,
dtype=None)

Project a point in a scene to a window coordinate.

This function is similar to gluProject and can be used to find the window coordinate which a point projects to.

Parameters
• objPos (array_like) – Object coordinates (x, y, z). If an Nx3 array of coordinates is

specified, where each row contains a window coordinate this function will return an array of
projected coordinates with the same size.

• modelView (array_like) – 4x4 combined model and view matrix for returned value to be
object coordinates. Specify only the view matrix for a coordinate in the scene.

• proj (array_like) – 4x4 projection matrix used for rendering.

• viewport (array_like) – Viewport rectangle for the window [x, y, w, h]. If not specified,
the returned values will be in normalized device coordinates.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Normalized device or viewport coordinates [x, y, z] of the point. The z component is similar to
the depth buffer value for the object point.

Return type
ndarray

10.8. psychopy.tools - miscellaneous tools 749

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.mathtools.reverseProject

psychopy.tools.mathtools.reverseProject(winPos, modelView, proj, viewport=None, out=None,
dtype=None)

Unproject window coordinates into object or scene coordinates.

This function works like gluUnProject and can be used to find to an object or scene coordinate at the point on-
screen (mouse coordinate or pixel). The coordinate can then be used to create a direction vector from the viewer’s
eye location. Another use of this function is to convert depth buffer samples to object or scene coordinates. This
is the inverse operation of forwardProject().

Parameters
• winPos (array_like) – Window coordinates (x, y, z). If viewport is not specified, these

should be normalized device coordinates. If an Nx3 array of coordinates is specified, where
each row contains a window coordinate this function will return an array of unprojected
coordinates with the same size. Usually, you only need to specify the x and y coordinate,
leaving z as zero. However, you can specify z if sampling from a depth map or buffer to
convert a depth sample to an actual location.

• modelView (array_like) – 4x4 combined model and view matrix for returned value to be
object coordinates. Specify only the view matrix for a coordinate in the scene.

• proj (array_like) – 4x4 projection matrix used for rendering.

• viewport (array_like) – Viewport rectangle for the window [x, y, w, h]. Do not specify
one if winPos is in already in normalized device coordinates.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Object or scene coordinates.

Return type
ndarray

psychopy.tools.mathtools.applyMatrix

psychopy.tools.mathtools.applyMatrix(m, points, out=None, dtype=None)
Apply a matrix over a 2D array of points.

This function behaves similarly to the following Numpy statement:

points[:, :] = points.dot(m.T)

Transformation matrices specified to m must have dimensions 4x4, 3x4, 3x3 or 2x2. With the exception of 4x4
matrices, input points must have the same number of columns as the matrix has rows. 4x4 matrices can be used
to transform both Nx4 and Nx3 arrays.

Parameters
• m (array_like) – Matrix with dimensions 2x2, 3x3, 3x4 or 4x4.

10.8. psychopy.tools - miscellaneous tools 750

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

• points (array_like) – 2D array of points/coordinates to transform. Each row should have
length appropriate for the matrix being used.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Transformed coordinates.

Return type
ndarray

Notes

• Input (points) and output (out) arrays cannot be the same instance for this function.

• In the case of 4x4 input matrices, this function performs optimizations based on whether the input matrix
is affine, greatly improving performance when working with Nx3 arrays.

Examples

Construct a matrix and transform a point:

identity 3x3 matrix for this example
M = [[1.0, 0.0, 0.0],

[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]]

pnt = [1.0, 0.0, 0.0]

pntNew = applyMatrix(M, pnt)

Construct an SRT matrix (scale, rotate, transform) and transform an array of points:

S = scaleMatrix([5.0, 5.0, 5.0]) # scale 5x
R = rotationMatrix(180., [0., 0., -1]) # rotate 180 degrees
T = translationMatrix([0., 1.5, -3.]) # translate point up and away
M = concatenate([S, R, T]) # create transform matrix

points to transform
points = np.array([[0., 1., 0., 1.], [-1., 0., 0., 1.]]) # [x, y, z, w]
newPoints = applyMatrix(M, points) # apply the transformation

Convert CIE-XYZ colors to sRGB:

sRGBMatrix = [[3.2404542, -1.5371385, -0.4985314],
[-0.969266, 1.8760108, 0.041556],
[0.0556434, -0.2040259, 1.0572252]]

colorsRGB = applyMatrix(sRGBMatrix, colorsXYZ)

10.8. psychopy.tools - miscellaneous tools 751

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.mathtools.posOriToMatrix

psychopy.tools.mathtools.posOriToMatrix(pos, ori, out=None, dtype=None)
Convert a rigid body pose to a 4x4 transformation matrix.

A pose is represented by a position coordinate pos and orientation quaternion ori.

Parameters
• pos (ndarray, tuple, or list of float) – Position vector [x, y, z].

• ori (tuple, list or ndarray of float) – Orientation quaternion in form [x, y, z, w]
where w is real and x, y, z are imaginary components.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
4x4 transformation matrix.

Return type
ndarray

Collisions

Tools for determining whether a vector intersects a solid or bounding volume.

fitBBox(points[, dtype]) Fit an axis-aligned bounding box around points.
computeBBoxCorners(extents[, dtype]) Get the corners of an axis-aligned bounding box.
intersectRayPlane(rayOrig, rayDir, ...[, dtype]) Get the point which a ray intersects a plane.
intersectRaySphere(rayOrig, rayDir[, ...]) Calculate the points which a ray/line intersects a sphere

(if any).
intersectRayAABB(rayOrig, rayDir, ...[, dtype]) Find the point a ray intersects an axis-aligned bounding

box (AABB).
intersectRayOBB(rayOrig, rayDir, ...[, dtype]) Find the point a ray intersects an oriented bounding box

(OBB).
intersectRayTriangle(rayOrig, rayDir, tri[, ...]) Get the intersection of a ray and triangle(s).

psychopy.tools.mathtools.fitBBox

psychopy.tools.mathtools.fitBBox(points, dtype=None)
Fit an axis-aligned bounding box around points.

This computes the minimum and maximum extents for a bounding box to completely enclose points. Keep in
mind the the output in bounds are axis-aligned and may not optimally fits the points (i.e. fits the points with the
minimum required volume). However, this should work well enough for applications such as visibility testing
(see ~psychopy.tools.viewtools.volumeVisible for more information..

Parameters
• points (array_like) – Nx3 or Nx4 array of points to fit the bounding box to.

10.8. psychopy.tools - miscellaneous tools 752

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Extents (mins, maxs) as a 2x3 array.

Return type
ndarray

See also:

computeBBoxCorners
Convert bounding box extents to corners.

psychopy.tools.mathtools.computeBBoxCorners

psychopy.tools.mathtools.computeBBoxCorners(extents, dtype=None)
Get the corners of an axis-aligned bounding box.

Parameters
• extents (array_like) – 2x3 array indicating the minimum and maximum extents of the

bounding box.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
8x4 array of points defining the corners of the bounding box.

Return type
ndarray

Examples

Compute the corner points of a bounding box:

minExtent = [-1, -1, -1]
maxExtent = [1, 1, 1]
corners = computeBBoxCorners([minExtent, maxExtent])

[[1. 1. 1. 1.]
[-1. 1. 1. 1.]
[1. -1. 1. 1.]
[-1. -1. 1. 1.]
[1. 1. -1. 1.]
[-1. 1. -1. 1.]
[1. -1. -1. 1.]
[-1. -1. -1. 1.]]

10.8. psychopy.tools - miscellaneous tools 753

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.mathtools.intersectRayPlane

psychopy.tools.mathtools.intersectRayPlane(rayOrig, rayDir, planeOrig, planeNormal, dtype=None)
Get the point which a ray intersects a plane.

Parameters
• rayOrig (array_like) – Origin of the line in space [x, y, z].

• rayDir (array_like) – Direction vector of the line [x, y, z].

• planeOrig (array_like) – Origin of the plane to test [x, y, z].

• planeNormal (array_like) – Normal vector of the plane [x, y, z].

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Position (ndarray) in space which the line intersects the plane and the distance the intersect occurs
from the origin (float). None is returned if the line does not intersect the plane at a single point
or at all.

Return type
tuple or None

Examples

Find the point in the scene a ray intersects the plane:

plane information
planeOrigin = [0, 0, 0]
planeNormal = [0, 0, 1]
planeUpAxis = perp([0, 1, 0], planeNormal)

ray
rayDir = [0, 0, -1]
rayOrigin = [0, 0, 5]

get the intersect and distance in 3D world space
pnt, dist = intersectRayPlane(rayOrigin, rayDir, planeOrigin, planeNormal)

psychopy.tools.mathtools.intersectRaySphere

psychopy.tools.mathtools.intersectRaySphere(rayOrig, rayDir, sphereOrig=(0.0, 0.0, 0.0),
sphereRadius=1.0, dtype=None)

Calculate the points which a ray/line intersects a sphere (if any).

Get the 3D coordinate of the point which the ray intersects the sphere and the distance to the point from orig.
The nearest point is returned if the line intersects the sphere at multiple locations. All coordinates should be in
world/scene units.

Parameters
• rayOrig (array_like) – Origin of the ray in space [x, y, z].

10.8. psychopy.tools - miscellaneous tools 754

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

• rayDir (array_like) – Direction vector of the ray [x, y, z], should be normalized.

• sphereOrig (array_like) – Origin of the sphere to test [x, y, z].

• sphereRadius (float) – Sphere radius to test in scene units.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Coordinate in world space of the intersection and distance in scene units from orig. Returns None
if there is no intersection.

Return type
tuple

psychopy.tools.mathtools.intersectRayAABB

psychopy.tools.mathtools.intersectRayAABB(rayOrig, rayDir, boundsOffset, boundsExtents, dtype=None)
Find the point a ray intersects an axis-aligned bounding box (AABB).

Parameters
• rayOrig (array_like) – Origin of the ray in space [x, y, z].

• rayDir (array_like) – Direction vector of the ray [x, y, z], should be normalized.

• boundsOffset (array_like) – Offset of the bounding box in the scene [x, y, z].

• boundsExtents (array_like) – Minimum and maximum extents of the bounding box.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Coordinate in world space of the intersection and distance in scene units from rayOrig. Returns
None if there is no intersection.

Return type
tuple

Examples

Get the point on an axis-aligned bounding box that the cursor is over and place a 3D stimulus there. The eye
location is defined by RigidBodyPose object camera:

get the mouse position on-screen
mx, my = mouse.getPos()

find the point which the ray intersects on the box
result = intersectRayAABB(

camera.pos,
camera.transformNormal(win.coordToRay((mx, my))),
myStim.pos,
myStim.thePose.bounds.extents)

(continues on next page)

10.8. psychopy.tools - miscellaneous tools 755

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

if the ray intersects, set the position of the cursor object to it
if result is not None:

cursorModel.thePose.pos = result[0]
cursorModel.draw() # don't draw anything if there is no intersect

Note that if the model is rotated, the bounding box may not be aligned anymore with the axes. Use intersectRay-
OBB if your model rotates.

psychopy.tools.mathtools.intersectRayOBB

psychopy.tools.mathtools.intersectRayOBB(rayOrig, rayDir, modelMatrix, boundsExtents, dtype=None)
Find the point a ray intersects an oriented bounding box (OBB).

Parameters
• rayOrig (array_like) – Origin of the ray in space [x, y, z].

• rayDir (array_like) – Direction vector of the ray [x, y, z], should be normalized.

• modelMatrix (array_like) – 4x4 model matrix of the object and bounding box.

• boundsExtents (array_like) – Minimum and maximum extents of the bounding box.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Coordinate in world space of the intersection and distance in scene units from rayOrig. Returns
None if there is no intersection.

Return type
tuple

Examples

Get the point on an oriented bounding box that the cursor is over and place a 3D stimulus there. The eye location
is defined by RigidBodyPose object camera:

get the mouse position on-screen
mx, my = mouse.getPos()

find the point which the ray intersects on the box
result = intersectRayOBB(

camera.pos,
camera.transformNormal(win.coordToRay((mx, my))),
myStim.thePose.getModelMatrix(),
myStim.thePose.bounds.extents)

if the ray intersects, set the position of the cursor object to it
if result is not None:

cursorModel.thePose.pos = result[0]
cursorModel.draw() # don't draw anything if there is no intersect

10.8. psychopy.tools - miscellaneous tools 756

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.mathtools.intersectRayTriangle

psychopy.tools.mathtools.intersectRayTriangle(rayOrig, rayDir, tri, dtype=None)
Get the intersection of a ray and triangle(s).

This function can be used to achieve ‘pixel-perfect’ ray picking/casting on meshes defined with triangles. How-
ever, high-poly meshes may lead to performance issues.

Parameters
• rayOrig (array_like) – Origin of the ray in space [x, y, z].

• rayDir (array_like) – Direction vector of the ray [x, y, z], should be normalized.

• tri (array_like) – Triangle vertices as 2D (3x3) array [p0, p1, p2] where each vertex is a
length 3 array [vx, xy, vz]. The input array can be 3D (Nx3x3) to specify multiple triangles.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Coordinate in world space of the intersection, distance in scene units from rayOrig, and the
barycentric coordinates on the triangle [x, y]. Returns None if there is no intersection.

Return type
tuple

Distortion

Functions for generating barrel/pincushion distortion meshes to correct image distortion. Such distortion is usually
introduced by lenses in the optical path between the viewer and the display.

lensCorrection(xys[, coefK, distCenter, ...]) Lens correction (or distortion) using the division model
with even polynomial terms.

lensCorrectionSpherical(xys[, coefK, ...]) Simple lens correction.

psychopy.tools.mathtools.lensCorrection

psychopy.tools.mathtools.lensCorrection(xys, coefK=(1.0,), distCenter=(0.0, 0.0), out=None,
dtype=None)

Lens correction (or distortion) using the division model with even polynomial terms.

Calculate new vertex positions or texture coordinates to apply radial warping, such as ‘pincushion’ and ‘barrel’
distortion. This is to compensate for optical distortion introduced by lenses placed in the optical path of the
viewer and the display (such as in an HMD).

See references[1]_ for implementation details.

Parameters
• xys (array_like) – Nx2 list of vertex positions or texture coordinates to distort. Works

correctly only if input values range between -1.0 and 1.0.

10.8. psychopy.tools - miscellaneous tools 757

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

• coefK (array_like or float) – Distortion coefficients K_n. Specifying multiple values
will add more polynomial terms to the distortion formula. Positive values will produce ‘bar-
rel’ distortion, whereas negative will produce ‘pincushion’ distortion. In most cases, two or
three coefficients are adequate, depending on the degree of distortion.

• distCenter (array_like, optional) – X and Y coordinate of the distortion center (eg.
(0.2, -0.4)).

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Array of distorted vertices.

Return type
ndarray

Notes

• At this time tangential distortion (i.e. due to a slant in the display) cannot be corrected for.

References

Examples

Creating a lens correction mesh with barrel distortion (eg. for HMDs):

vertices, textureCoords, normals, faces = gltools.createMeshGrid(
subdiv=11, tessMode='center')

recompute vertex positions
vertices[:, :2] = mt.lensCorrection(vertices[:, :2], coefK=(5., 5.))

psychopy.tools.mathtools.lensCorrectionSpherical

psychopy.tools.mathtools.lensCorrectionSpherical(xys, coefK=1.0, aspect=1.0, out=None,
dtype=None)

Simple lens correction.

Lens correction for a spherical lenses with distortion centered at the middle of the display. See references[1]_
for implementation details.

Parameters
• xys (array_like) – Nx2 list of vertex positions or texture coordinates to distort. Assumes

the output will be rendered to normalized device coordinates where points range from -1.0
to 1.0.

• coefK (float) – Distortion coefficient. Use positive numbers for pincushion distortion and
negative for barrel distortion.

• aspect (float) – Aspect ratio of the target window or buffer (width / height).

10.8. psychopy.tools - miscellaneous tools 758

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for computations can either be ‘float32’
or ‘float64’. If out is specified, the data type of out is used and this argument is ignored. If
out is not provided, ‘float64’ is used by default.

Returns
Array of distorted vertices.

Return type
ndarray

References

Examples

Creating a lens correction mesh with barrel distortion (eg. for HMDs):

vertices, textureCoords, normals, faces = gltools.createMeshGrid(
subdiv=11, tessMode='center')

recompute vertex positions
vertices[:, :2] = mt.lensCorrection2(vertices[:, :2], coefK=2.0)

Miscellaneous

Miscellaneous and helper functions.

zeroFix(a[, inplace, threshold]) Fix zeros in an array.

psychopy.tools.mathtools.zeroFix

psychopy.tools.mathtools.zeroFix(a, inplace=False, threshold=None)
Fix zeros in an array.

This function truncates very small numbers in an array to zero and removes any negative zeros.

Parameters
• a (ndarray) – Input array, must be a Numpy array.

• inplace (bool) – Fix an array inplace. If True, the input array will be modified, otherwise
a new array will be returned with same dtype and shape with the fixed values.

• threshold (float or None) – Threshold for truncation. If None, the machine epsilon
value for the input array dtype will be used. You can specify a custom threshold as a float.

Returns
Output array with zeros fixed.

Return type
ndarray

10.8. psychopy.tools - miscellaneous tools 759

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

Performance and Optimization

Most functions listed here are very fast, however they are optimized to work on arrays of values (vectorization). Calling
functions repeatedly (for instance within a loop), should be avoided as the CPU overhead associated with each function
call (not to mention the loop itself) can be considerable.

For example, one may want to normalize a bunch of randomly generated vectors by calling normalize() on each row:

v = np.random.uniform(-1.0, 1.0, (1000, 4,)) # 1000 length 4 vectors
vn = np.zeros((1000, 4)) # place to write values

don't do this!
for i in range(1000):

vn[i, :] = normalize(v[i, :])

The same operation is completed in considerably less time by passing the whole array to the function like so:

normalize(v, out=vn) # very fast!
vn = normalize(v) # also fast if `out` is not provided

Specifying an output array to out will improve performance by reducing overhead associated with allocating memory
to store the result (functions do this automatically if out is not provided). However, out should only be provided if the
output array is reused multiple times. Furthermore, the function still returns a value if out is provided, but the returned
value is a reference to out, not a copy of it. If out is not provided, the function will return the result with a freshly
allocated array.

Data Types

Sub-routines used by the functions here will perform arithmetic using 64-bit floating-point precision unless otherwise
specified via the dtype argument. This functionality is helpful in certain applications where input and output arrays
demand a specific type (eg. when working with data passed to and from OpenGL functions).

If a dtype is specified, input arguments will be coerced to match that type and all floating-point arithmetic will use the
precision of the type. If input arrays have the same type as dtype, they will automatically pass-through without being
recast as a different type. As a performance consideration, all input arguments should have matching types and dtype
set accordingly.

Most functions have an out argument, where one can specify an array to write values to. The value of dtype is ignored
if out is provided, and all input arrays will be converted to match the dtype of out (if not already). This ensures that the
type of the destination array is used for all arithmetic.

10.8.7 psychopy.tools.monitorunittools

Functions and classes related to unit conversion respective to a particular monitor

10.8. psychopy.tools - miscellaneous tools 760

PsychoPy - Psychology software for Python, Release 2023.2.3

convertToPix(vertices, pos, units, win) Takes vertices and position, combines and converts to
pixels from any unit

cm2deg(cm, monitor[, correctFlat]) Convert size in cm to size in degrees for a given Monitor
object

cm2pix(cm, monitor) Convert size in cm to size in pixels for a given Monitor
object.

deg2cm(degrees, monitor[, correctFlat]) Convert size in degrees to size in pixels for a given Mon-
itor object.

deg2pix(degrees, monitor[, correctFlat]) Convert size in degrees to size in pixels for a given Mon-
itor object

pix2cm(pixels, monitor) Convert size in pixels to size in cm for a given Monitor
object

pix2deg(pixels, monitor[, correctFlat]) Convert size in pixels to size in degrees for a given Mon-
itor object

Function details

psychopy.tools.monitorunittools.convertToPix(vertices, pos, units, win)
Takes vertices and position, combines and converts to pixels from any unit

The reason that pos and vertices are provided separately is that it allows the conversion from deg to apply flat-
screen correction to each separately.

The reason that these use function args rather than relying on self.pos is that some stimuli use other terms (e.g.
ElementArrayStim uses fieldPos).

psychopy.tools.monitorunittools.cm2deg(cm, monitor, correctFlat=False)
Convert size in cm to size in degrees for a given Monitor object

psychopy.tools.monitorunittools.cm2pix(cm, monitor)
Convert size in cm to size in pixels for a given Monitor object.

psychopy.tools.monitorunittools.deg2cm(degrees, monitor, correctFlat=False)
Convert size in degrees to size in pixels for a given Monitor object.

If correctFlat == False then the screen will be treated as if all points are equal distance from the eye. This means
that each “degree” will be the same size irrespective of its position.

If correctFlat == True then the degrees argument must be an Nx2 matrix for X and Y values (the two cannot be
calculated separately in this case).

With correctFlat == True the positions may look strange because more eccentric vertices will be spaced further
apart.

psychopy.tools.monitorunittools.deg2pix(degrees, monitor, correctFlat=False)
Convert size in degrees to size in pixels for a given Monitor object

psychopy.tools.monitorunittools.pix2cm(pixels, monitor)
Convert size in pixels to size in cm for a given Monitor object

psychopy.tools.monitorunittools.pix2deg(pixels, monitor, correctFlat=False)
Convert size in pixels to size in degrees for a given Monitor object

10.8. psychopy.tools - miscellaneous tools 761

PsychoPy - Psychology software for Python, Release 2023.2.3

10.8.8 psychopy.tools.movietools

Classes and functions for working with movies in PsychoPy.

Overview

MovieFileWriter(filename, size, fps[, ...]) Create movies from a sequence of images.
MovieFileWriter.filename The name (path) of the movie file (str).
MovieFileWriter.fps Output frames per second (float).
MovieFileWriter.size The size (w, h) of the movie in pixels (tuple or str).
MovieFileWriter.codec The codec to use for encoding the movie (str).
MovieFileWriter.pixelFormat Pixel format for frames being added to the movie (str).
MovieFileWriter.encoderLib The library to use for writing the movie (str).
MovieFileWriter.encoderOpts Encoder options (dict).
MovieFileWriter.frameRate Output frames per second (float).
MovieFileWriter.frameSize The size (w, h) of the movie in pixels (tuple).
MovieFileWriter.lastVideoFile The name of the last video file written to disk (str or

None).
MovieFileWriter.isOpen Whether the movie file is open (bool).
MovieFileWriter.framesOut Total number of frames written to the movie file (int).
MovieFileWriter.bytesOut Total number of bytes (int) saved to the movie file.
MovieFileWriter.framesWaiting The number of frames waiting to be written to disk (int).
MovieFileWriter.totalFrames The total number of frames that will be written to the

movie file (int).
MovieFileWriter.frameInterval The time interval between frames (float).
MovieFileWriter.duration The duration of the movie in seconds (float).
MovieFileWriter.open() Open the movie file for writing.
MovieFileWriter.flush () Flush waiting frames to the movie file.
MovieFileWriter.close() Close the movie file.
MovieFileWriter.addFrame(image[, pts]) Add a frame to the movie.
closeAllMovieWriters() Signal all movie writers to close.
addAudioToMovie(outputFile, videoFile, audioFile) Add an audio track to a video file.

Details

class psychopy.tools.movietools.MovieFileWriter(filename, size, fps, codec=None, pixelFormat='rgb24',
encoderLib='ffpyplayer', encoderOpts=None)

Create movies from a sequence of images.

This class allows for the creation of movies from a sequence of images using FFMPEG (via the ffpyplayer or cv2
libraries). Writing movies to disk is a slow process, so this class uses a separate thread to write the movie in the
background. This means that you can continue to add images to the movie while frames are still being written
to disk. Movie writers are closed automatically when the main thread exits. Any remaining frames are flushed
to the file before the file is finalized.

Writing audio tracks is not supported. If you need to add audio to your movie, create the file with the video
content first, then add the audio track to the file. The addAudioToMovie() function can be used to do this after
the video and audio files have been saved to disk.

Parameters

10.8. psychopy.tools - miscellaneous tools 762

PsychoPy - Psychology software for Python, Release 2023.2.3

• filename (str) – The name (or path) of the file to write the movie to. The file extension
determines the movie format if codec is None for some backends. Otherwise it must be
explicitly specified.

• size (tuple or str) – The size of the movie in pixels (width, height). If a string is passed,
it should be one of the keys in the VIDEO_RESOLUTIONS dictionary.

• fps (float) – The number of frames per second.

• codec (str or None) – The codec to use for encoding the movie. This may be a codec
identifier (e.g., ‘libx264’) or a FourCC code. The value depends of the encoderLib in use.
If None, the writer will select the codec based on the file extension of filename (if supported
by the backend).

• pixelFormat (str) – Pixel format for frames being added to the movie. This should be
either ‘rgb24’ or ‘rgba32’. The default is ‘rgb24’. When passing frames to addFrame() as a
numpy array, the array should be in the format specified here.

• encoderLib (str) – The library to use to handle encoding and writing the movie to disk.
The default is ‘ffpyplayer’.

• encoderOpts (dict or None) – A dictionary of options to pass to the encoder. These
option can be used to control the quality of the movie, for example. The options depend on
the encoderLib in use. If None, the writer will use the default options for the backend.

Examples

Create a movie from a sequence of generated noise images:

import psychopy.tools.movietools as movietools
import numpy as np

create a movie writer
writer = movietools.MovieFileWriter(

filename='myMovie.mp4',
size=(640, 480),
fps=30)

open the movie for writing
writer.open()

add some frames to the movie
for i in range(5 * writer.fps): # 5 seconds of video

create a frame, just some random noise
frame = np.random.randint(0, 255, (640, 480, 3), dtype=np.uint8)
add the frame to the movie
writer.addFrame(frame)

close the movie, this completes the writing process
writer.close()

Setting additional options for the movie encoder requires passing a dictionary of options to the encoderOpts
parameter. The options depend on the encoder library in use. For example, to set the quality of the movie when
using the ffpyplayer library, you can do the following:

10.8. psychopy.tools - miscellaneous tools 763

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

ffmpegOpts = {'preset': 'medium', 'crf': 16} # medium quality, crf=16
writer = movietools.MovieFileWriter(

filename='myMovie.mp4',
size='720p',
fps=30,
encoderLib='ffpyplayer',
encoderOpts=ffmpegOpts)

The OpenCV backend specifies options differently. To set the quality of the movie when using the OpenCV
library with a codec that support variable quality, you can do the following:

cvOpts = {'quality': 80} # set the quality to 80 (0-100)
writer = movietools.MovieFileWriter(

filename='myMovie.mp4',
size='720p',
fps=30,
encoderLib='opencv',
encoderOpts=cvOpts)

PIXEL_FORMAT_RGB24 = 'rgb24'

PIXEL_FORMAT_RGBA32 = 'rgb32'

_convertImage(image)
Convert an image to a pixel format appropriate for the encoder.

This is used internally to convert an image (i.e. frame) to the native frame format which the encoder library
can work with. At the very least, this function should accept a numpy.array as a valid type for image no
matter what encoder library is being used.

Parameters
image (Any) – The image to convert.

Returns
The converted image. Resulting object type depends on the encoder library being used.

Return type
Any

_openFFPyPlayer()

Open a movie writer using FFPyPlayer.

This is called by open() if encoderLib is ‘ffpyplayer’. It will create a background thread to write the movie
file. This method is not intended to be called directly.

_openOpenCV()

Open a movie writer using OpenCV.

This is called by open() if encoderLib is ‘opencv’. It will create a background thread to write the movie
file. This method is not intended to be called directly.

addFrame(image, pts=None)
Add a frame to the movie.

This adds a frame to the movie. The frame will be added to a queue and written to disk by a background
thread. This method will block until the frame is added to the queue.

Any color space conversion or resizing will be performed in the caller’s thread. This may be threaded too
in the future.

10.8. psychopy.tools - miscellaneous tools 764

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
• image (numpy.ndarray or ffpyplayer.pic.Image) – The image to add to the movie.

The image must be in RGB format and have the same size as the movie. If the image is an
Image instance, it must have the same size as the movie.

• pts (float or None) – The presentation timestamp for the frame. This is the time at
which the frame should be displayed. The presentation timestamp is in seconds and should
be monotonically increasing. If None, the presentation timestamp will be automatically
generated based on the chosen frame rate for the output video. Not all encoder libraries
support presentation timestamps, so this parameter may be ignored.

Returns
Presentation timestamp assigned to the frame. Should match the value passed in as pts if
provided, otherwise it will be the computed presentation timestamp.

Return type
float

property bytesOut

Total number of bytes (int) saved to the movie file.

Use this to monitor how much disk space is occupied by the frames that have been written so far. This
value is updated asynchronously, so it may not be accurate if you are adding frames to the movie file very
quickly.

This value is retained after the movie file is closed. It is cleared when a new movie file is opened.

close()

Close the movie file.

This shuts down the background thread and finalizes the movie file. Any frames still waiting in the queue
will be written to disk before the movie file is closed. This will block the program until all frames are
written, therefore, it is recommended for close() to be called outside any time-critical code.

property codec

The codec to use for encoding the movie (str).

This may be a codec identifier (e.g., ‘libx264’), or a FourCC code (e.g. ‘MPV4’). The value depends of
the encoderLib in use. If None, the a codec determined by the file extension will be used.

property duration

The duration of the movie in seconds (float).

This is the total duration of the movie in seconds based on the number of frames that have been added to
the movie and the frame rate. This does not represent the actual duration of the movie file on disk, which
may be longer if frames are still being written to disk.

property encoderLib

The library to use for writing the movie (str).

Can only be set before the movie file is opened. The default is ‘ffpyplayer’.

property encoderOpts

Encoder options (dict).

These are passed directly to the encoder library. The default is an empty dictionary.

property filename

The name (path) of the movie file (str).

This cannot be changed after the writer has been opened.

10.8. psychopy.tools - miscellaneous tools 765

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

flush()

Flush waiting frames to the movie file.

This will cause all frames waiting in the queue to be written to disk before continuing the program i.e.
the thread that called this method. This is useful for ensuring that all frames are written to disk before the
program exits.

property fps

Output frames per second (float).

This is the number of frames per second that will be written to the movie file. The default is 30.

property frameInterval

The time interval between frames (float).

This is the time interval between frames in seconds. This is the reciprocal of the frame rate.

property frameRate

Output frames per second (float).

This is an alias for fps to synchronize naming with other video classes around PsychoPy.

property frameSize

The size (w, h) of the movie in pixels (tuple).

This is an alias for size to synchronize naming with other video classes around PsychoPy.

property framesOut

Total number of frames written to the movie file (int).

Use this to monitor the progress of the movie file writing. This value is updated asynchronously, so it may
not be accurate if you are adding frames to the movie file very quickly.

This value is retained after the movie file is closed. It is cleared when a new movie file is opened.

property framesWaiting

The number of frames waiting to be written to disk (int).

This value increases when you call addFrame() and decreases when the frame is written to disk. This
number can be reduced to zero by calling flush().

property isOpen

Whether the movie file is open (bool).

If True, the movie file is open and frames can be added to it. If False, the movie file is closed and no more
frames can be added to it.

property lastVideoFile

The name of the last video file written to disk (str or None).

This is None if no video file has been written to disk yet. Only valid after the movie file has been closed
(i.e. after calling close().)

open()

Open the movie file for writing.

This creates a new thread that will write the movie file to disk in the background.

After calling this method, you can add frames to the movie using addFrame(). When you are done adding
frames, call close() to finalize the movie file.

10.8. psychopy.tools - miscellaneous tools 766

PsychoPy - Psychology software for Python, Release 2023.2.3

property pixelFormat

Pixel format for frames being added to the movie (str).

This should be either ‘rgb24’ or ‘rgba32’. The default is ‘rgb24’. When passing frames to addFrame() as
a numpy array, the array should be in the format specified here.

property size

The size (w, h) of the movie in pixels (tuple or str).

If a string is passed, it should be one of the keys in the VIDEO_RESOLUTIONS dictionary.

This can not be changed after the writer has been opened.

property totalFrames

The total number of frames that will be written to the movie file (int).

This incudes frames that have already been written to disk and frames that are waiting to be written to disk.

psychopy.tools.movietools.closeAllMovieWriters()

Signal all movie writers to close.

This function should only be called once at the end of the program. This can be registered atexit to ensure that
all movie writers are closed when the program exits. If there are open file writers with frames still queued, this
function will block until all frames remaining are written to disk.

Use caution when calling this function when file writers are being used in a multi-threaded environment. Threads
that are writing movie frames must be stopped prior to calling this function. If not, the thread may continue to
write frames to the queue during the flush operation and never exit.

psychopy.tools.movietools.addAudioToMovie(outputFile, videoFile, audioFile, useThreads=True,
removeFiles=False, writerOpts=None)

Add an audio track to a video file.

This function will add an audio track to a video file. If the video file already has an audio track, it will be replaced
with the audio file provided. If no audio file is provided, the audio track will be removed from the video file.

The audio track should be exactly the same length as the video track.

Parameters
• outputFile (str) – Path to the output video file where audio and video will be merged.

• videoFile (str) – Path to the input video file.

• audioFile (str or None) – Path to the audio file to add to the video file.

• codec (str) – The name of the audio codec to use. This should be a valid codec name for
the encoder library being used. If None, the default codec for the encoder library will be
used.

• useThreads (bool) – If True, the audio will be added in a separate thread. This allows
the audio to be added in the background while the program continues to run. If False, the
audio will be added in the main thread and the program will block until the audio is added.
Defaults to True.

• removeFiles (bool) – If True, the input video (videoFile) and audio (audioFile) files will
be removed (i.e. deleted from disk) after the audio has been added to the video. Defaults to
False.

• writerOpts (dict or None) – Options to pass to the movie writer. This should be
a dictionary of keyword arguments to pass to the movie writer. If None, the default
options for the movie writer will be used. Defaults to None. See documentation for
moviepy.video.io.VideoFileClip.write_videofile for possible values.

10.8. psychopy.tools - miscellaneous tools 767

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Combine a video file and an audio file into a single video file:

from psychopy.tools.movietools import addAudioToMovie
addAudioToMovie('output.mp4', 'video.mp4', 'audio.mp3')

10.8.9 psychopy.tools.pkgtools

Functions and classes related to image handling

Details

10.8.10 psychopy.tools.plottools

Functions and classes related to plotting

psychopy.tools.plottools.plotFrameIntervals(intervals)
Plot a histogram of the frame intervals.

Where intervals is either a filename to a file, saved by Window.saveFrameIntervals, or simply a list (or array) of
frame intervals

10.8.11 psychopy.tools.rifttools

Various tools for working with the Rift class. The documentation for classes in on this page originate from PsychXR
and may make references to functions and objects not included with .

Overview

Classes

These classes are included with PsychXR to use with the LibOVR interface. They can be accessed from this module to
avoid needing to explicitly import PsychXR. If PsychXR is not available on the system, these classes will have values
None.

LibOVRPose

LibOVRPoseState

LibOVRHapticsBuffer

LibOVRBounds

10.8. psychopy.tools - miscellaneous tools 768

PsychoPy - Psychology software for Python, Release 2023.2.3

Functions

These functions can be called without first starting a VR session (initializing a Rift instance) to check if the
drivers/services are running on this computer or if an HMD is connected.

isHmdConnected([timeout]) Check if an HMD is connected.
isOculusServiceRunning([timeout]) Check if the Oculus(tm) service is currently running.

Details

psychopy.tools.rifttools.LibOVRPose

alias of None

psychopy.tools.rifttools.LibOVRPoseState

alias of None

psychopy.tools.rifttools.LibOVRBounds

alias of None

psychopy.tools.rifttools.LibOVRHapticsBuffer

alias of None

psychopy.tools.rifttools.isHmdConnected(timeout=0)
Check if an HMD is connected.

Parameters
timeout (int) – Timeout in milliseconds.

Returns
True if an HMD is connected.

Return type
bool

psychopy.tools.rifttools.isOculusServiceRunning(timeout=0)
Check if the Oculus(tm) service is currently running.

Parameters
timeout (int) – Timeout in milliseconds.

Returns
True if the service is loaded and running.

Return type
bool

10.8. psychopy.tools - miscellaneous tools 769

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

10.8.12 psychopy.tools.systemtools

Tools for interacting with the system PsychoPy is installed on. This involves things such as getting information about
installed devices and software.

Overview

getAudioDevices() Get all audio devices.
getAudioCaptureDevices() Get audio capture devices (i.e.
getAudioPlaybackDevices() Get audio playback devices (i.e.
getCameras() Get information about installed cameras and their for-

mats on this system.
getKeyboards() Get information about attached keyboards.
getSerialPorts() Get serial ports attached to this system.
systemProfilerMacOS([dataTypes, ...]) Call the MacOS system profiler and return data in a

JSON format.

Details

psychopy.tools.systemtools.getAudioDevices()

Get all audio devices.

This function gets all audio devices attached to the system, either playback or capture. Uses the psychtoolbox
library to obtain the relevant information.

This command is supported on Windows, MacOSX and Linux. On Windows, WASAPI devices are preferred to
achieve precise timing and will be returned by default. To get all audio devices (including non-WASAPI ones),
set the preference audioForceWASAPI to False.

Returns
Dictionary where the keys are devices names and values are mappings whose fields contain in-
formation about the device.

Return type
dict

Examples

Get audio devices installed on this system:

allDevs = getAudioDevices()

The following dictionary is returned by the above command when called on an Apple MacBook Pro (2022):

{
'MacBook Pro Microphone': { # audio capture device

'index': 0,
'name': 'MacBook Pro Microphone',
'hostAPI': 'Core Audio',
'outputChannels': 0,
'outputLatency': (0.01, 0.1),

(continues on next page)

10.8. psychopy.tools - miscellaneous tools 770

https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

'inputChannels': 1,
'inputLatency': (0.0326984126984127, 0.04285714285714286),
'defaultSampleRate': 44100.0,
'audioLib': 'ptb'

},
'MacBook Pro Speakers': { # audio playback device

'index': 1,
'name': 'MacBook Pro Speakers',
'hostAPI': 'Core Audio',
'outputChannels': 2,
'outputLatency': (0.008480725623582767, 0.018639455782312925),
'inputChannels': 0,
'inputLatency': (0.01, 0.1),
'defaultSampleRate': 44100.0,
'audioLib': 'ptb'

}
}

To determine whether something is a playback or capture device, check the number of output and input channels,
respectively:

determine if a device is for audio capture
isCapture = allDevs['MacBook Pro Microphone']['inputChannels'] > 0

determine if a device is for audio playback
isPlayback = allDevs['MacBook Pro Microphone']['outputChannels'] > 0

You may also call getAudioCaptureDevices() and getAudioPlaybackDevices() to get just audio capture
and playback devices.

psychopy.tools.systemtools.getAudioCaptureDevices()

Get audio capture devices (i.e. microphones) installed on the system.

This command is supported on Windows, MacOSX and Linux. On Windows, WASAPI devices are preferred to
achieve precise timing and will be returned by default. To get all audio capture devices (including non-WASAPI
ones), set the preference audioForceWASAPI to False.

Uses the psychtoolbox library to obtain the relevant information.

Returns
Dictionary where the keys are devices names and values are mappings whose fields contain in-
formation about the capture device. See getAudioDevices() examples to see the format of the
output.

Return type
dict

psychopy.tools.systemtools.getAudioPlaybackDevices()

Get audio playback devices (i.e. speakers) installed on the system.

This command is supported on Windows, MacOSX and Linux. On Windows, WASAPI devices are preferred to
achieve precise timing and will be returned by default. To get all audio playback devices (including non-WASAPI
ones), set the preference audioForceWASAPI to False.

Uses the psychtoolbox library to obtain the relevant information.

10.8. psychopy.tools - miscellaneous tools 771

https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

Returns
Dictionary where the keys are devices names and values are mappings whose fields contain in-
formation about the playback device. See getAudioDevices() examples to see the format of
the output.

Return type
dict

psychopy.tools.systemtools.getCameras()

Get information about installed cameras and their formats on this system.

The command presently only works on Window and MacOSX. Linux support for cameras is not available yet.

Returns
Mapping where camera names (str) are keys and values are and array of CameraInfo objects.

Return type
dict

psychopy.tools.systemtools.getKeyboards()

Get information about attached keyboards.

This command works on Windows, MacOSX and Linux.

Returns
Dictionary where the keys are device names and values are mappings whose fields contain infor-
mation about that device. See the Examples section for field names.

Return type
dict

Notes

• Keyboard names are generated (taking the form of “Generic Keyboard n”) if the OS does not report the
name.

Examples

Get keyboards attached to this system:

installedKeyboards = getKeyboards()

Running the previous command on an Apple MacBook Pro (2022) returns the following dictionary:

{
'TouchBarUserDevice': {

'usagePageValue': 1,
'usageValue': 6,
'usageName': 'Keyboard',
'index': 4,
'transport': '',
'vendorID': 1452,
'productID': 34304,
'version': 0.0,
'manufacturer': '',
'product': 'TouchBarUserDevice',

(continues on next page)

10.8. psychopy.tools - miscellaneous tools 772

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

'serialNumber': '',
'locationID': 0,
'interfaceID': -1,
'totalElements': 1046,
'features': 0,
'inputs': 1046,
'outputs': 0,
'collections': 1,
'axes': 0,
'buttons': 0,
'hats': 0,
'sliders': 0,
'dials': 0,
'wheels': 0,
'touchDeviceType': -1,
'maxTouchpoints': -1},

'Generic Keyboard 0': {
'usagePageValue': 1,
'usageValue': 6,
'usageName': 'Keyboard',
'index': 13,
snip ...
'dials': 0,
'wheels': 0,
'touchDeviceType': -1,
'maxTouchpoints': -1

}
}

psychopy.tools.systemtools.getSerialPorts()

Get serial ports attached to this system.

Serial ports are used for inter-device communication using the RS-232/432 protocol. This function gets a list of
available ports and their default configurations as specified by the OS. Ports that are in use by another process
are not returned.

This command is supported on Windows, MacOSX and Linux. On Windows, all available ports are returned
regardless if anything is connected to them, so long as they aren’t in use. On Unix(-likes) such as MacOSX
and Linux, port are only returned if there is a device attached and is not being accessed by some other process.
MacOSX and Linux also have no guarantee port names are persistent, where a physical port may not always be
assigned the same name or enum index when a device is connected or after a system reboot.

Returns
Mapping (dict) where keys are serial port names (str) and values are mappings of the default
settings of the port (dict). See Examples below for the format of the returned data.

Return type
dict

10.8. psychopy.tools - miscellaneous tools 773

https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Getting available serial ports:

allPorts = getSerialPorts()

On a MacBook Pro (2022) with an Arduino Mega (2560) connected to the USB-C port, the following dictionary
is returned:

{
'/dev/cu.Bluetooth-Incoming-Port': {

'index': 0,
'port': '/dev/cu.Bluetooth-Incoming-Port',
'baudrate': 9600,
'bytesize': 8,
'parity': 'N',
'stopbits': 1,
'xonxoff': False,
'rtscts': False,
'dsrdtr': False

},
'/dev/cu.usbmodem11101': {

'index': 1,
... snip ...
'dsrdtr': False

},
'/dev/tty.Bluetooth-Incoming-Port': {

'index': 2,
... snip ...

},
'/dev/tty.usbmodem11101': {

'index': 3,
... snip ...

}
}

psychopy.tools.systemtools.systemProfilerMacOS(dataTypes=None, detailLevel='basic', timeout=180)
Call the MacOS system profiler and return data in a JSON format.

Parameters
• dataTypes (str, list or None) – Identifier(s) for the data to retrieve. All data

types available will be returned if None. See output of shell command system_profiler -
listDataTypes for all possible values. Specifying data types also speeds up the time it takes
for this function to return as superfluous information is not queried.

• detailLevel (int or str) – Level of detail for the report. Possible values are ‘mini’,
‘basic’, or ‘full’. Note that increasing the level of detail will expose personally identifying
information in the resulting report. Best practice is to use the lowest level of detail needed
to obtain the desired information, or use dataTypes to limit what information is returned.

• timeout (float or int) – Amount of time to spend gathering data in seconds. Default
is 180 seconds, while specifying 0 means no timeout.

Returns
Result of the system_profiler call as a JSON formatted string. You can pass the string to a JSON
library to parse out what information is desired.

10.8. psychopy.tools - miscellaneous tools 774

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Return type
str

Examples

Get details about cameras attached to this system:

dataTypes = "SPCameraDataType" # data to query
systemReportJSON = systemProfilerMacOS(dataTypes, detailLevel='basic')
>>> print(systemReportJSON)
{
"SPCameraDataType" : [
...
]
}

Parse the result using a JSON library:

import json
systemReportJSON = systemProfilerMacOS(

"SPCameraDataType", detailLevel='mini')
cameraInfo = json.loads(systemReportJSON)
>>> print(cameraInfo)
{'SPCameraDataType': [{'_name': 'Live! Cam Sync 1080p',
'spcamera_model-id': 'UVC Camera VendorID_1054 ProductID_16541',
'spcamera_unique-id': '0x2200000041e409d'}]

10.8.13 psychopy.tools.typetools

Functions and classes related to variable type conversion

psychopy.tools.typetools.float_uint8(inarray)
Converts arrays, lists, tuples and floats ranging -1:1 into an array of Uint8s ranging 0:255

>>> float_uint8(-1)
0
>>> float_uint8(0)
128

psychopy.tools.typetools.uint8_float(inarray)
Converts arrays, lists, tuples and UINTs ranging 0:255 into an array of floats ranging -1:1

>>> uint8_float(0)
-1.0
>>> uint8_float(128)
0.0

psychopy.tools.typetools.float_uint16(inarray)
Converts arrays, lists, tuples and floats ranging -1:1 into an array of Uint16s ranging 0:2^16

10.8. psychopy.tools - miscellaneous tools 775

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

>>> float_uint16(-1)
0
>>> float_uint16(0)
32768

10.8.14 psychopy.tools.unittools

Functions and classes related to unit conversion

psychopy.tools.unittools.radians(x, /, out=None, *, where=True, casting='same_kind', order='K',
dtype=None, subok=True[, signature, extobj])

Convert angles from degrees to radians.

Parameters
• x (array_like) – Input array in degrees.

• out (ndarray, None, or tuple of ndarray and None, optional) – A location
into which the result is stored. If provided, it must have a shape that the inputs broadcast
to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

• where (array_like, optional) – This condition is broadcast over the input. At locations
where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out
array will retain its original value. Note that if an uninitialized out array is created via the
default out=None, locations within it where the condition is False will remain uninitialized.

• **kwargs – For other keyword-only arguments, see the ufunc docs.

Returns
y – The corresponding radian values. This is a scalar if x is a scalar.

Return type
ndarray

See also:

deg2rad
equivalent function

Examples

Convert a degree array to radians

>>> deg = np.arange(12.) * 30.
>>> np.radians(deg)
array([0. , 0.52359878, 1.04719755, 1.57079633, 2.0943951 ,

2.61799388, 3.14159265, 3.66519143, 4.1887902 , 4.71238898,
5.23598776, 5.75958653])

>>> out = np.zeros((deg.shape))
>>> ret = np.radians(deg, out)
>>> ret is out
True

10.8. psychopy.tools - miscellaneous tools 776

https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.unittools.degrees(x, /, out=None, *, where=True, casting='same_kind', order='K',
dtype=None, subok=True[, signature, extobj])

Convert angles from radians to degrees.

Parameters
• x (array_like) – Input array in radians.

• out (ndarray, None, or tuple of ndarray and None, optional) – A location
into which the result is stored. If provided, it must have a shape that the inputs broadcast
to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

• where (array_like, optional) – This condition is broadcast over the input. At locations
where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out
array will retain its original value. Note that if an uninitialized out array is created via the
default out=None, locations within it where the condition is False will remain uninitialized.

• **kwargs – For other keyword-only arguments, see the ufunc docs.

Returns
y – The corresponding degree values; if out was supplied this is a reference to it. This is a scalar
if x is a scalar.

Return type
ndarray of floats

See also:

rad2deg
equivalent function

Examples

Convert a radian array to degrees

>>> rad = np.arange(12.)*np.pi/6
>>> np.degrees(rad)
array([0., 30., 60., 90., 120., 150., 180., 210., 240.,

270., 300., 330.])

>>> out = np.zeros((rad.shape))
>>> r = np.degrees(rad, out)
>>> np.all(r == out)
True

10.8. psychopy.tools - miscellaneous tools 777

https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

PsychoPy - Psychology software for Python, Release 2023.2.3

10.8.15 psychopy.tools.viewtools

Math functions for working with view transformations and performing visibility testing (see also mathtools).

Tools for working with view projections for 2- and 3-D rendering.

Overview

visualAngle(size, distance[, degrees, out, ...]) Get the visual angle for an object of size at distance.
computeFrustum(scrWidth, scrAspect, scrDist) Calculate frustum parameters.
computeFrustumFOV(scrFOV, scrAspect, scrDist) Compute a frustum for a given field-of-view (FOV).
projectFrustum(frustum, dist[, dtype]) Project a frustum on a fronto-parallel plane and get the

width and height of the required drawing area.
projectFrustumToPlane(frustum, planeOrig[, ...]) Project a frustum on a fronto-parallel plane and get the

coordinates of the corners in physical space.
generalizedPerspectiveProjection(...[, ...]) Generalized derivation of projection and view matrices

based on the physical configuration of the display sys-
tem.

orthoProjectionMatrix(left, right, bottom, top) Compute an orthographic projection matrix with pro-
vided frustum parameters.

perspectiveProjectionMatrix(left, right, ...) Compute an perspective projection matrix with provided
frustum parameters.

lookAt(eyePos, centerPos[, upVec, out, dtype]) Create a transformation matrix to orient a view towards
some point.

pointToNdc(wcsPos, viewMatrix, projectionMatrix) Map the position of a point in world space to normalized
device coordinates/space.

cursorToRay(cursorX, cursorY, winSize, ...) Convert a 2D mouse coordinate to a 3D ray.
visible(points, mvp[, mode, dtype]) Test if points are visible.
visibleBBox(extents, mvp[, dtype]) Check if a bounding box is visible.

Details

psychopy.tools.viewtools.visualAngle(size, distance, degrees=True, out=None, dtype=None)
Get the visual angle for an object of size at distance. Object is assumed to be fronto-parallel with the viewer.

This function supports vector inputs. Values for size and distance can be arrays or single values. If both inputs
are arrays, they must have the same size.

Parameters
• size (float or array_like) – Size of the object in meters.

• distance (float or array_like) – Distance to the object in meters.

• degrees (bool) – Return result in degrees, if False result will be in radians.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for arrays, can either be ‘float32’ or
‘float64’. If None is specified, the data type is inferred by out. If out is not provided, the
default is ‘float64’.

Returns
Visual angle.

10.8. psychopy.tools - miscellaneous tools 778

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Return type
float

Examples

Calculating the visual angle (vertical FOV) of a monitor screen:

monDist = 0.5 # monitor distance, 50cm
monHeight = 0.45 # monitor height, 45cm

vertFOV = visualAngle(monHeight, monDist)

Compute visual angle at multiple distances for objects with the same size:

va = visualAngle(0.20, [1.0, 2.0, 3.0]) # returns
[11.42118627 5.72481045 3.81830487]

psychopy.tools.viewtools.computeFrustum(scrWidth, scrAspect, scrDist, convergeOffset=0.0,
eyeOffset=0.0, nearClip=0.01, farClip=100.0, dtype=None)

Calculate frustum parameters. If an eye offset is provided, an asymmetric frustum is returned which can be used
for stereoscopic rendering.

Parameters
• scrWidth (float) – The display’s width in meters.

• scrAspect (float) – Aspect ratio of the display (width / height).

• scrDist (float) – Distance to the screen from the view in meters. Measured from the
center of their eyes.

• convergeOffset (float) – Offset of the convergence plane from the screen. Objects
falling on this plane will have zero disparity. For best results, the convergence plane should
be set to the same distance as the screen (0.0 by default).

• eyeOffset (float) – Half the inter-ocular separation (i.e. the horizontal distance between
the nose and center of the pupil) in meters. If eyeOffset is 0.0, a symmetric frustum is
returned.

• nearClip (float) – Distance to the near clipping plane in meters from the viewer. Should
be at least less than scrDist.

• farClip (float) – Distance to the far clipping plane from the viewer in meters. Must be
>nearClip.

• dtype (dtype or str, optional) – Data type for arrays, can either be ‘float32’ or
‘float64’. If None is specified, the data type is inferred by out. If out is not provided, the
default is ‘float64’.

Returns
Array of frustum parameters. Can be directly passed to glFrustum (e.g. glFrustum(*f)).

Return type
ndarray

10.8. psychopy.tools - miscellaneous tools 779

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Notes

• The view point must be transformed for objects to appear correctly. Offsets in the X-direction must be
applied +/- eyeOffset to account for inter-ocular separation. A transformation in the Z-direction must be
applied to account for screen distance. These offsets MUST be applied to the GL_MODELVIEW matrix,
not the GL_PROJECTION matrix! Doing so may break lighting calculations.

Examples

Creating a frustum and setting a window’s projection matrix:

scrWidth = 0.5 # screen width in meters
scrAspect = win.size[0] / win.size[1]
scrDist = win.scrDistCM * 100.0 # monitor setting, can be anything
frustum = viewtools.computeFrustum(scrWidth, scrAspect, scrDist)

Accessing frustum parameters:

left, right, bottom, top, nearVal, farVal = frustum
... or ...
left = frustum.left

Off-axis frustums for stereo rendering:

compute view matrix for each eye, these value usually don't change
eyeOffset = (-0.035, 0.035) # +/- IOD / 2.0
scrDist = 0.50 # 50cm
scrWidth = 0.53 # 53cm
scrAspect = 1.778
leftFrustum = viewtools.computeFrustum(

scrWidth, scrAspect, scrDist, eyeOffset[0])
rightFrustum = viewtools.computeFrustum(

scrWidth, scrAspect, scrDist, eyeOffset[1])
make sure your view matrix accounts for the screen distance and eye
offsets!

Using computed view frustums with a window:

win.projectionMatrix = viewtools.perspectiveProjectionMatrix(*frustum)
generate a view matrix looking ahead with correct viewing distance,
origin is at the center of the screen. Assumes eye is centered with
the screen.
eyePos = [0.0, 0.0, scrDist]
screenPos = [0.0, 0.0, 0.0] # look at screen center
eyeUp = [0.0, 1.0, 0.0]
win.viewMatrix = viewtools.lookAt(eyePos, screenPos, eyeUp)
win.applyViewTransform() # call before drawing

psychopy.tools.viewtools.computeFrustumFOV(scrFOV, scrAspect, scrDist, convergeOffset=0.0,
eyeOffset=0.0, nearClip=0.01, farClip=100.0, dtype=None)

Compute a frustum for a given field-of-view (FOV).

Similar to computeFrustum, but computes a frustum based on FOV rather than screen dimensions.

10.8. psychopy.tools - miscellaneous tools 780

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
• scrFOV (float) – Vertical FOV in degrees (fovY).

• scrAspect (float) – Aspect between the horizontal and vertical FOV (ie. fovX / fovY).

• scrDist (float) – Distance to the screen from the view in meters. Measured from the
center of the viewer’s eye(s).

• convergeOffset (float) – Offset of the convergence plane from the screen. Objects
falling on this plane will have zero disparity. For best results, the convergence plane should
be set to the same distance as the screen (0.0 by default).

• eyeOffset (float) – Half the inter-ocular separation (i.e. the horizontal distance between
the nose and center of the pupil) in meters. If eyeOffset is 0.0, a symmetric frustum is
returned.

• nearClip (float) – Distance to the near clipping plane in meters from the viewer. Should
be at least less than scrDist. Never should be 0.

• farClip (float) – Distance to the far clipping plane from the viewer in meters. Must be
>nearClip.

• dtype (dtype or str, optional) – Data type for arrays, can either be ‘float32’ or
‘float64’. If None is specified, the data type is inferred by out. If out is not provided, the
default is ‘float64’.

Examples

Equivalent to gluPerspective:

frustum = computeFrustumFOV(45.0, 1.0, 0.5)
projectionMatrix = perspectiveProjectionMatrix(*frustum)

psychopy.tools.viewtools.projectFrustum(frustum, dist, dtype=None)
Project a frustum on a fronto-parallel plane and get the width and height of the required drawing area.

This function can be used to determine the size of the drawing area required for a given frustum on a screen.
This is useful for cases where the observer is viewing the screen through a physical aperture that limits the FOV
to a sub-region of the display. You must convert the size in meters to units of your screen and apply any offsets.

Parameters
• frustum (array_like) – Frustum parameters (left, right, bottom, top, near, far), you can

exclude far since it is not used in this calculation. However, the function will still succeed if
given.

• dist (float) – Distance to project points to in meters.

• dtype (dtype or str, optional) – Data type for arrays, can either be ‘float32’ or
‘float64’. If None is specified, the data type is inferred by out. If out is not provided, the
default is ‘float64’.

Returns
Width and height (w, h) of the area intersected by the given frustum at dist.

Return type
ndarray

10.8. psychopy.tools - miscellaneous tools 781

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Compute the viewport required to draw in the area where the frustum intersects the screen:

needed information
scrWidthM = 0.52
scrDistM = 0.72
scrWidthPIX = 1920
scrHeightPIX = 1080
scrAspect = scrWidthPIX / float(scrHeightPIX)
pixPerMeter = scrWidthPIX / scrWidthM

Compute a frustum for 20 degree vertical FOV at distance of the
screen.
frustum = computeFrustumFOV(20., scrAspect, scrDistM)

get the dimensions of the frustum
w, h = projectFrustum(frustum, scrDistM) * pixPerMeter

get the origin of the viewport, relative to center of screen.
x = (scrWidthPIX - w) / 2.
y = (scrHeightPIX - h) / 2.

if there is an eye offset ...
x = (scrWidthPIX - w + eyeOffsetM * pixPerMeter) / 2.

viewport rectangle
rect = np.asarray((x, y, w, h), dtype=int)

You can then set the viewport/scissor rectangle of the buffer to restrict drawing to rect.

psychopy.tools.viewtools.projectFrustumToPlane(frustum, planeOrig, dtype=None)
Project a frustum on a fronto-parallel plane and get the coordinates of the corners in physical space.

Parameters
• frustum (array_like) – Frustum parameters (left, right, bottom, top, near, far), you can

exclude far since it is not used in this calculation. However, the function will still succeed if
given.

• planeOrig (float) – Distance of plane to project points on in meters.

• dtype (dtype or str, optional) – Data type for arrays, can either be ‘float32’ or
‘float64’. If None is specified, the data type is inferred by out. If out is not provided, the
default is ‘float64’.

Returns
4x3 array of coordinates in the physical reference frame with origin at the eye.

Return type
ndarray

psychopy.tools.viewtools.generalizedPerspectiveProjection(posBottomLeft, posBottomRight,
posTopLeft, eyePos, nearClip=0.01,
farClip=100.0, dtype=None)

Generalized derivation of projection and view matrices based on the physical configuration of the display system.

10.8. psychopy.tools - miscellaneous tools 782

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

This implementation is based on Robert Kooima’s ‘Generalized Perspective Projection’ method1.

Parameters
• posBottomLeft (list of float or ndarray) – Bottom-left 3D coordinate of the

screen in meters.

• posBottomRight (list of float or ndarray) – Bottom-right 3D coordinate of the
screen in meters.

• posTopLeft (list of float or ndarray) – Top-left 3D coordinate of the screen in
meters.

• eyePos (list of float or ndarray) – Coordinate of the eye in meters.

• nearClip (float) – Near clipping plane distance from viewer in meters.

• farClip (float) – Far clipping plane distance from viewer in meters.

• dtype (dtype or str, optional) – Data type for arrays, can either be ‘float32’ or
‘float64’. If None is specified, the data type is inferred by out. If out is not provided, the
default is ‘float64’.

Returns
The 4x4 projection and view matrix.

Return type
tuple

See also:

computeFrustum
Compute frustum parameters.

Notes

• The resulting projection frustums are off-axis relative to the center of the display.

• The returned matrices are row-major. Values are floats with 32-bits of precision stored as a contiguous
(C-order) array.

References

Examples

Computing a projection and view matrices for a window:

projMatrix, viewMatrix = viewtools.generalizedPerspectiveProjection(
posBottomLeft, posBottomRight, posTopLeft, eyePos)

set the window matrices
win.projectionMatrix = projMatrix
win.viewMatrix = viewMatrix
before rendering
win.applyEyeTransform()

Stereo-pair rendering example from Kooima (2009):
1 Kooima, R. (2009). Generalized perspective projection. J. Sch. Electron. Eng. Comput. Sci.

10.8. psychopy.tools - miscellaneous tools 783

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

configuration of screen and eyes
posBottomLeft = [-1.5, -0.75, -18.0]
posBottomRight = [1.5, -0.75, -18.0]
posTopLeft = [-1.5, 0.75, -18.0]
posLeftEye = [-1.25, 0.0, 0.0]
posRightEye = [1.25, 0.0, 0.0]
create projection and view matrices
leftProjMatrix, leftViewMatrix = generalizedPerspectiveProjection(

posBottomLeft, posBottomRight, posTopLeft, posLeftEye)
rightProjMatrix, rightViewMatrix = generalizedPerspectiveProjection(

posBottomLeft, posBottomRight, posTopLeft, posRightEye)

psychopy.tools.viewtools.orthoProjectionMatrix(left, right, bottom, top, nearClip=0.01, farClip=100.0,
out=None, dtype=None)

Compute an orthographic projection matrix with provided frustum parameters.

Parameters
• left (float) – Left clipping plane coordinate.

• right (float) – Right clipping plane coordinate.

• bottom (float) – Bottom clipping plane coordinate.

• top (float) – Top clipping plane coordinate.

• nearClip (float) – Near clipping plane distance from viewer.

• farClip (float) – Far clipping plane distance from viewer.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for arrays, can either be ‘float32’ or
‘float64’. If None is specified, the data type is inferred by out. If out is not provided, the
default is ‘float64’.

Returns
4x4 projection matrix

Return type
ndarray

See also:

perspectiveProjectionMatrix
Compute a perspective projection matrix.

Notes

• The returned matrix is row-major. Values are floats with 32-bits of precision stored as a contiguous (C-
order) array.

psychopy.tools.viewtools.perspectiveProjectionMatrix(left, right, bottom, top, nearClip=0.01,
farClip=100.0, out=None, dtype=None)

Compute an perspective projection matrix with provided frustum parameters. The frustum can be asymmetric.

Parameters

10.8. psychopy.tools - miscellaneous tools 784

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

• left (float) – Left clipping plane coordinate.

• right (float) – Right clipping plane coordinate.

• bottom (float) – Bottom clipping plane coordinate.

• top (float) – Top clipping plane coordinate.

• nearClip (float) – Near clipping plane distance from viewer.

• farClip (float) – Far clipping plane distance from viewer.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for arrays, can either be ‘float32’ or
‘float64’. If None is specified, the data type is inferred by out. If out is not provided, the
default is ‘float64’.

Returns
4x4 projection matrix

Return type
ndarray

See also:

orthoProjectionMatrix
Compute a orthographic projection matrix.

Notes

• The returned matrix is row-major. Values are floats with 32-bits of precision stored as a contiguous (C-
order) array.

psychopy.tools.viewtools.lookAt(eyePos, centerPos, upVec=(0.0, 1.0, 0.0), out=None, dtype=None)
Create a transformation matrix to orient a view towards some point. Based on the same algorithm as ‘gluLookAt’.
This does not generate a projection matrix, but rather the matrix to transform the observer’s view in the scene.

For more information see: https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluLookAt.xml

Parameters
• eyePos (list of float or ndarray) – Eye position in the scene.

• centerPos (list of float or ndarray) – Position of the object center in the scene.

• upVec (list of float or ndarray, optional) – Vector defining the up vector. De-
fault is +Y is up.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for arrays, can either be ‘float32’ or
‘float64’. If None is specified, the data type is inferred by out. If out is not provided, the
default is ‘float64’.

Returns
4x4 view matrix

Return type
ndarray

10.8. psychopy.tools - miscellaneous tools 785

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluLookAt.xml
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Notes

• The returned matrix is row-major. Values are floats with 32-bits of precision stored as a contiguous (C-
order) array.

psychopy.tools.viewtools.pointToNdc(wcsPos, viewMatrix, projectionMatrix, out=None, dtype=None)
Map the position of a point in world space to normalized device coordinates/space.

Parameters
• wcsPos (tuple, list or ndarray) – Nx3 position vector(s) (xyz) in world space coor-

dinates.

• viewMatrix (ndarray) – 4x4 view matrix.

• projectionMatrix (ndarray) – 4x4 projection matrix.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for arrays, can either be ‘float32’ or
‘float64’. If None is specified, the data type is inferred by out. If out is not provided, the
default is ‘float64’.

Returns
3x1 vector of normalized device coordinates with type ‘float32’

Return type
ndarray

Notes

• The point is not visible, falling outside of the viewing frustum, if the returned coordinates fall outside of
-1 and 1 along any dimension.

• In the rare instance the point falls directly on the eye in world space where the frustum converges to a point
(singularity), the divisor will be zero during perspective division. To avoid this, the divisor is ‘bumped’ to
1e-5.

• This function assumes the display area is rectilinear. Any distortion or warping applied in normalized
device or viewport space is not considered.

Examples

Determine if a point is visible:

point = (0.0, 0.0, 10.0) # behind the observer
ndc = pointToNdc(point, win.viewMatrix, win.projectionMatrix)
isVisible = not np.any((ndc > 1.0) | (ndc < -1.0))

Convert NDC to viewport (or pixel) coordinates:

scrRes = (1920, 1200)
point = (0.0, 0.0, -5.0) # forward -5.0 from eye
x, y, z = pointToNdc(point, win.viewMatrix, win.projectionMatrix)
pixelX = ((x + 1.0) / 2.0) * scrRes[0])

(continues on next page)

10.8. psychopy.tools - miscellaneous tools 786

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

pixelY = ((y + 1.0) / 2.0) * scrRes[1])
object at point will appear at (pixelX, pixelY)

psychopy.tools.viewtools.cursorToRay(cursorX, cursorY, winSize, viewport, projectionMatrix,
normalize=True, out=None, dtype=None)

Convert a 2D mouse coordinate to a 3D ray.

Takes a 2D window/mouse coordinate and transforms it to a 3D direction vector from the viewpoint in eye space
(vector origin is [0, 0, 0]). The center of the screen projects to vector [0, 0, -1].

Parameters
• cursorX (float or int) – Window coordinates. These need to be scaled if you are using

a framebuffer that does not have 1:1 pixel mapping (i.e. retina display).

• cursorY (float or int) – Window coordinates. These need to be scaled if you are using
a framebuffer that does not have 1:1 pixel mapping (i.e. retina display).

• winSize (array_like) – Size of the window client area [w, h].

• viewport (array_like) – Viewport rectangle [x, y, w, h] being used.

• projectionMatrix (ndarray) – 4x4 projection matrix being used.

• normalize (bool) – Normalize the resulting vector.

• out (ndarray, optional) – Optional output array. Must be same shape and dtype as the
expected output if out was not specified.

• dtype (dtype or str, optional) – Data type for arrays, can either be ‘float32’ or
‘float64’. If None is specified, the data type is inferred by out. If out is not provided, the
default is ‘float64’.

Returns
Direction vector (x, y, z).

Return type
ndarray

Examples

Place a 3D stim at the mouse location 5.0 scene units (meters) away:

define camera
camera = RigidBodyPose((-3.0, 5.0, 3.5))
camera.alignTo((0, 0, 0))

in the render loop

dist = 5.0
mouseRay = vt.cursorToRay(x, y, win.size, win.viewport, win.projectionMatrix)
mouseRay *= dist # scale the vector

set the sphere position by transforming vector to world space
sphere.thePose.pos = camera.transform(mouseRay)

10.8. psychopy.tools - miscellaneous tools 787

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.tools.viewtools.visible(points, mvp, mode='discrete', dtype=None)
Test if points are visible.

This function is useful for visibility culling, where objects are only drawn if a portion of them are visible. This
test can avoid costly drawing calls and OpenGL state changes if the object is not visible.

Parameters
• points (array_like) – Point(s) or bounding box to test. Input array must be Nx3 or Nx4,

where each row is a point. It is recommended that the input be Nx4 since the w component
will be appended if the input is Nx3 which adds overhead.

• mvp (array_like) – 4x4 MVP matrix.

• mode (str) – Test mode. If ‘discrete’, rows of points are treated as individual points. This
function will return an array of boolean values with length equal to the number of rows in
points, where the value at each index corresponds to the visibility test results for points at the
matching row index of points. If ‘group’ a single boolean value is returned, which is False
if all points fall to one side of the frustum.

• dtype (dtype or str, optional) – Data type for arrays, can either be ‘float32’ or
‘float64’. If None is specified, the data type is inferred by out. If out is not provided, the
default is ‘float64’.

Returns
Test results. The type returned depends on mode.

Return type
bool or ndarray

Examples

Visibility culling, only a draw line connecting two points if visible:

linePoints = [[-1.0, -1.0, -1.0, 1.0],
[1.0, 1.0, 1.0, 1.0]]

mvp = np.matmul(win.projectionMatrix, win.viewMatrix)
if visible(linePoints, mvp, mode='group'):

drawing commands here ...

psychopy.tools.viewtools.visibleBBox(extents, mvp, dtype=None)
Check if a bounding box is visible.

This function checks if a bonding box intersects a frustum defined by the current projection matrix, after being
transformed by the model-view matrix.

Parameters
• extents (array_like) – Bounding box minimum and maximum extents as a 2x3 array.

The first row if the minimum extents along each axis, and the second row the maximum
extents (eg. [[minX, minY, minZ], [maxX, maxY, maxZ]]).

• mvp (array_like) – 4x4 MVP matrix.

• dtype (dtype or str, optional) – Data type for arrays, can either be ‘float32’ or
‘float64’. If None is specified, the data type is inferred by out. If out is not provided, the
default is ‘float64’.

10.8. psychopy.tools - miscellaneous tools 788

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

Returns
Visibility test results.

Return type
ndarray or bool

10.9 psychopy.app - the application suite

This module contains everything needed to run and manage the wxPython GUI application suite (e.g., Coder, Builder
and Runner).

The functions presented here provide a simple interface to the application instance and any frames associated with it.
This interface is intended for unit testing the GUI and for developers wishing to extend it.

10.10 Overview

startApp([showSplash, testMode, safeMode]) Start the PsychoPy GUI.
quitApp() Quit the running PsychoPy application instance.
isAppStarted() Check if the GUI portion of PsychoPy is running.
getAppInstance() Get a reference to the PsychoPyApp object.
getAppFrame(frameName) Get the reference to one of PsychoPy's application

frames.

10.11 Details

psychopy.app.startApp(showSplash=True, testMode=False, safeMode=False)
Start the PsychoPy GUI.

This function is idempotent, where additional calls after the app starts will have no effect unless quitApp() was
previously called. After this function returns, you can get the handle to the created PsychoPyApp instance by
calling getAppInstance() (returns None otherwise).

Errors raised during initialization due to unhandled exceptions with respect to the GUI application are usually
fatal. You can examine ‘last_app_load.log’ inside the ‘psychopy3’ user directory (specified by preference ‘user-
PrefsDir’) to see the traceback. After startup, unhandled exceptions will appear in a special dialog box that shows
the error traceback and provides some means to recover their work. Regular logging messages will appear in the
log file or GUI. We use a separate error dialog here is delineate errors occurring in the user’s experiment scripts
and those of the application itself.

Parameters
• showSplash (bool) – Show the splash screen on start.

• testMode (bool) – Must be True if creating an instance for unit testing.

• safeMode (bool) – Start PsychoPy in safe-mode. If True, the GUI application will launch
with without loading plugins.

psychopy.app.quitApp()

Quit the running PsychoPy application instance.

Will have no effect if startApp() has not been called previously.

10.9. psychopy.app - the application suite 789

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.app.isAppStarted()

Check if the GUI portion of PsychoPy is running.

Returns
True if the GUI is started else False.

Return type
bool

psychopy.app.getAppInstance()

Get a reference to the PsychoPyApp object.

This function will return None if PsychoPy has been imported as a library or the app has not been fully realized.

Returns
Handle to the application instance. Returns None if the app has not been started yet or the Psy-
choPy is being used without a GUI.

Return type
PsychoPyApp or None

Examples

Get the coder frame (if any):

import psychopy.app as app
coder = app.getAppInstance().coder

psychopy.app.getAppFrame(frameName)
Get the reference to one of PsychoPy’s application frames. Returns None if the specified frame has not been fully
realized yet or PsychoPy is not in GUI mode.

Parameters
frameName (str) – Identifier for the frame to get a reference to. Valid names are ‘coder’,
‘builder’ or ‘runner’.

Returns
Reference to the frame instance (i.e. CoderFrame, BuilderFrame or RunnerFrame). None is
returned if the frame has not been created or the app is not running. May return a list if more
than one window is opened.

Return type
object or None

10.12 psychopy.colors - For working with colors

Classes and functions for working with colors.

10.12. psychopy.colors - For working with colors 790

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

PsychoPy - Psychology software for Python, Release 2023.2.3

10.12.1 Overview

Color([color, space, contrast, conematrix]) A class to store color details, knows what colour space
it's in and can supply colours in any space.

isValidColor(color[, space]) Depreciated as of 2021.0
hex2rgb255(hexColor) Depreciated as of 2021.0

10.12.2 Details

class psychopy.colors.Color(color=None, space=None, contrast=None, conematrix=None)
A class to store color details, knows what colour space it’s in and can supply colours in any space.

Parameters
• color (ArrayLike or None) – Color values (coordinates). Value must be in a format

applicable to the specified space.

• space (str or None) – Colorspace to interpret the value of color as being within.

• contrast (int or float) – Factor to modulate the contrast of the color.

• conematrix (ArrayLike or None) – Cone matrix for colorspaces which require it. Must
be a 3x3 array.

property alpha

How opaque (1) or transparent (0) this color is. Synonymous with opacity.

property contrast

copy()

Return a duplicate of this colour

property dkl

Color value expressed as a DKL triplet.

property dklCart

Color value expressed as a cartesian DKL triplet.

property dkla

Color value expressed as a DKL triplet, with alpha value (0 to 1).

property dklaCart

Color value expressed as a cartesian DKL triplet, with alpha value (0 to 1).

getReadable(contrast=0.21428571428571427)
Get a color which will stand out and be easily readable against this one. Useful for choosing text colors
based on background color.

Parameters
contrast (float) – Desired perceived contrast between the two colors, between 0 (the same
color) and 1 (as opposite as possible). Default is the w3c recommended minimum of 4.5/21
(dividing by 21 to adjust for sRGB units).

Returns
A contrasting color to this color.

10.12. psychopy.colors - For working with colors 791

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

Return type
colors.Color

property hex

Color value expressed as a hex string. Can be a ‘#’ followed by 6 values from 0 to F (e.g. #F2545B).

property hsv

Color value expressed as an HSV triplet.

property hsva

Color value expressed as an HSV triplet, with alpha value (0 to 1).

property lms

Color value expressed as an LMS triplet.

property lmsa

Color value expressed as an LMS triplet, with alpha value (0 to 1).

property named

The name of this color, if it has one (str).

property opacity

How opaque (1) or transparent (0) this color is (float). Synonymous with alpha.

render(space='rgb')
Apply contrast to the base color value and return the adjusted color value.

property rgb

Color value expressed as an RGB triplet from -1 to 1.

property rgb1

Color value expressed as an RGB triplet from 0 to 1.

property rgb255

Color value expressed as an RGB triplet from 0 to 255.

property rgba

Color value expressed as an RGB triplet from -1 to 1, with alpha values (0 to 1).

property rgba1

Color value expressed as an RGB triplet from 0 to 1, with alpha value (0 to 1).

property rgba255

Color value expressed as an RGB triplet from 0 to 255, with alpha value (0 to 1).

set(color=None, space=None)
Set the colour of this object - essentially the same as what happens on creation, but without having to
initialise a new object.

property srgb

Color value expressed as an sRGB triplet

validate(color, space=None)
Check that a color value is valid in the given space, or all spaces if space==None.

psychopy.colors.isValidColor(color, space='rgb')
Depreciated as of 2021.0

10.12. psychopy.colors - For working with colors 792

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.colors.hex2rgb255(hexColor)
Depreciated as of 2021.0

Converts a hex color string (e.g. “#05ff66”) into an rgb triplet ranging from 0:255

10.13 psychopy.data - functions for storing/saving/analysing data

Contents:

• ExperimentHandler - to combine multiple loops in one study

• TrialHandler - basic predefined trial matrix

• TrialHandler2 - similar to TrialHandler but with ability to update mid-run

• TrialHandlerExt - similar to TrialHandler but with ability to run oddball designs

• StairHandler - for basic up-down (fixed step) staircases

• QuestHandler - for traditional QUEST algorithm

• QuestPlusHandler - for the updated QUEST+ algorithm (Watson, 2017)

• PsiHandler - the Psi staircase of Kontsevich & Tyler (1999)

• MultiStairHandler - a wrapper to combine interleaved staircases of any sort

Utility functions:

• importConditions() - to load a list of dicts from a csv/excel file

• functionFromStaircase()- to convert a staircase into its psychopmetric function

• bootStraps() - generate a set of bootstrap resamples from a dataset

• getDateStr() - provide a date string (in format suitable for filenames)

Curve Fitting:

• FitWeibull

• FitLogistic

• FitNakaRushton

• FitCumNormal

10.13.1 ExperimentHandler

class psychopy.data.ExperimentHandler(name='', version='', extraInfo=None, runtimeInfo=None,
originPath=None, savePickle=True, saveWideText=True,
sortColumns=False, dataFileName='', autoLog=True,
appendFiles=False)

A container class for keeping track of multiple loops/handlers

Useful for generating a single data file from an experiment with many different loops (e.g. interleaved staircases
or loops within loops

Usage
exp = data.ExperimentHandler(name=”Face Preference”,version=’0.1.0’)

10.13. psychopy.data - functions for storing/saving/analysing data 793

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
name

[a string or unicode] As a useful identifier later

version
[usually a string (e.g. ‘1.1.0’)] To keep track of which version of the experiment was run

extraInfo
[a dictionary] Containing useful information about this run (e.g. {‘partici-
pant’:’jwp’,’gender’:’m’,’orientation’:90})

runtimeInfo
[psychopy.info.RunTimeInfo] Containing information about the system as detected at
runtime

originPath
[string or unicode] The path and filename of the originating script/experiment If not provided
this will be determined as the path of the calling script.

dataFileName
[string] This is defined in advance and the file will be saved at any point that the handler is
removed or discarded (unless .abort() had been called in advance). The handler will attempt
to populate the file even in the event of a (not too serious) crash!

savePickle : True (default) or False

saveWideText : True (default) or False

sortColumns
[str or bool] How (if at all) to sort columns in the data file, if none is given to saveAsWide-
Text. Can be: - “alphabetical”, “alpha”, “a” or True: Sort alphabetically by header name -
“priority”, “pr” or “p”: Sort according to priority - other: Do not sort, columns remain in
order they were added

autoLog : True (default) or False

_getAllParamNames()

Returns the attribute names of loop parameters (trialN etc) that the current set of loops contain, ready to
build a wide-format data file.

_getExtraInfo()

Get the names and vals from the extraInfo dict (if it exists)

_getLoopInfo(loop)
Returns the attribute names and values for the current trial of a particular loop. Does not return data inputs
from the subject, only info relating to the trial execution.

_guessPriority(name)
Get a best guess at the priority of a column based on its name

Parameters
name (str) – Name of the column

Returns
One of the following: - HIGH (19): Important columns which are near the front of the data
file - MEDIUM (9): Possibly important columns which are around the middle of the data file
- LOW (-1): Columns unlikely to be important which are at the end of the data file

10.13. psychopy.data - functions for storing/saving/analysing data 794

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

NOTE: Values returned from this function are 1 less than values in constants.priority,
columns whose priority was guessed are behind equivalently prioritised columns whose pri-
ority was specified.

Return type
int

abort()

Inform the ExperimentHandler that the run was aborted.

Experiment handler will attempt automatically to save data (even in the event of a crash if possible). So if
you quit your script early you may want to tell the Handler not to save out the data files for this run. This is
the method that allows you to do that.

addAnnotation(value)
Add an annotation at the current point in the experiment

Parameters
value (str) – Value of the annotation

addData(name, value, row=None, priority=None)
Add the data with a given name to the current experiment.

Typically the user does not need to use this function; if you added your data to the loop and had already
added the loop to the experiment then the loop will automatically inform the experiment that it has received
data.

Multiple data name/value pairs can be added to any given entry of the data file and is considered part of the
same entry until the nextEntry() call is made.

e.g.:

add some data for this trial
exp.addData('resp.rt', 0.8)
exp.addData('resp.key', 'k')
end of trial - move to next line in data output
exp.nextEntry()

Parameters
• name (str) – Name of the column to add data as.

• value (any) – Value to add

• row (int or None) – Row in which to add this data. Leave as None to add to the current
entry.

• priority (int) – Priority value to set the column to - higher priority columns appear
nearer to the start of the data file. Use values from constants.priority as landmark values:
- CRITICAL: Always at the start of the data file, generally reserved for Routine start times
- HIGH: Important columns which are near the front of the data file - MEDIUM: Possibly
important columns which are around the middle of the data file - LOW: Columns unlikely
to be important which are at the end of the data file - EXCLUDE: Always at the end of the
data file, actively marked as unimportant

addLoop(loopHandler)
Add a loop such as a TrialHandler or StairHandler Data from this loop will be included in the resulting
data files.

10.13. psychopy.data - functions for storing/saving/analysing data 795

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

close()

property currentLoop

Return the loop which we are currently in, this will either be a handle to a loop, such as a TrialHandler
or StairHandler, or the handle of the ExperimentHandler itself if we are not in a loop.

getAllEntries()

Fetches a copy of all the entries including a final (orphan) entry if that exists. This allows entries to be
saved even if nextEntry() is not yet called.

Returns
copy (not pointer) to entries

getJSON(priorityThreshold=-9)
Get the experiment data as a JSON string.

Parameters
priorityThreshold (int) – Output will only include columns whose priority is greater
than or equal to this value. Use values in psychopy.constants.priority as a guideline for priority
levels. Default is -9 (constants.priority.EXCLUDE + 1)

Returns
JSON string with the following fields: - ‘type’: Indicates that this is data from an Experimen-
tHandler (will always be “trials_data”) - ‘trials’: list of dict`s representing requested trials
data - ‘priority’: `dict of column names

Return type
str

getPriority(name)
Get the priority value for a given column. If no priority value is stored, returns best guess based on column
name.

Parameters
name (str) – Column name

Returns
The priority value stored/guessed for this column, most likely a value from constants.priority,
one of: - CRITICAL (30): Always at the start of the data file, generally reserved for Rou-
tine start times - HIGH (20): Important columns which are near the front of the data file -
MEDIUM (10): Possibly important columns which are around the middle of the data file -
LOW (0): Columns unlikely to be important which are at the end of the data file - EXCLUDE
(-10): Always at the end of the data file, actively marked as unimportant

Return type
int

loopEnded(loopHandler)
Informs the experiment handler that the loop is finished and not to include its values in further entries of
the experiment.

This method is called by the loop itself if it ends its iterations, so is not typically needed by the user.

nextEntry()

Calling nextEntry indicates to the ExperimentHandler that the current trial has ended and so further ad-
dData() calls correspond to the next trial.

pause()

Set status to be PAUSED.

10.13. psychopy.data - functions for storing/saving/analysing data 796

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

resume()

Set status to be STARTED.

saveAsPickle(fileName, fileCollisionMethod='rename')
Basically just saves a copy of self (with data) to a pickle file.

This can be reloaded if necessary and further analyses carried out.

Parameters
fileCollisionMethod: Collision method passed to handleFileCollision()

saveAsWideText(fileName, delim='auto', matrixOnly=False, appendFile=None, encoding='utf-8-sig',
fileCollisionMethod='rename', sortColumns=None)

Saves a long, wide-format text file, with one line representing the attributes and data for a single trial.
Suitable for analysis in R and SPSS.

If appendFile=True then the data will be added to the bottom of an existing file. Otherwise, if the file exists
already it will be kept and a new file will be created with a slightly different name. If you want to overwrite
the old file, pass ‘overwrite’ to fileCollisionMethod.

If matrixOnly=True then the file will not contain a header row, which can be handy if you want to append
data to an existing file of the same format.

Parameters
fileName:

if extension is not specified, ‘.csv’ will be appended if the delimiter is ‘,’, else ‘.tsv’ will be
appended. Can include path info.

delim:
allows the user to use a delimiter other than the default tab (“,” is popular with file extension
“.csv”)

matrixOnly:
outputs the data with no header row.

appendFile:
will add this output to the end of the specified file if it already exists.

encoding:
The encoding to use when saving a the file. Defaults to utf-8-sig.

fileCollisionMethod:
Collision method passed to handleFileCollision()

sortColumns
[str or bool] How (if at all) to sort columns in the data file. Can be: - “alphabetical”,
“alpha”, “a” or True: Sort alphabetically by header name - “priority”, “pr” or “p”: Sort
according to priority - other: Do not sort, columns remain in order they were added

setPriority(name, value=20)
Set the priority of a column in the data file.

Parameters
• name (str) – Name of the column, e.g. text.started

• value (int) – Priority value to set the column to - higher priority columns appear nearer
to the start of the data file. Use values from constants.priority as landmark values: - CRIT-
ICAL (30): Always at the start of the data file, generally reserved for Routine start times
- HIGH (20): Important columns which are near the front of the data file - MEDIUM
(10): Possibly important columns which are around the middle of the data file - LOW (0):

10.13. psychopy.data - functions for storing/saving/analysing data 797

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PsychoPy - Psychology software for Python, Release 2023.2.3

Columns unlikely to be important which are at the end of the data file - EXCLUDE (-10):
Always at the end of the data file, actively marked as unimportant

property status

stop()

Set status to be FINISHED.

timestampOnFlip(win, name)
Add a timestamp (in the future) to the current row

Parameters
• win (psychopy.visual.Window) – The window object that we’ll base the timestamp flip

on

• name (str) – The name of the column in the datafile being written, such as ‘myS-
tim.stopped’

10.13.2 TrialHandler

class psychopy.data.TrialHandler(trialList, nReps, method='random', dataTypes=None, extraInfo=None,
seed=None, originPath=None, name='', autoLog=True)

Class to handle trial sequencing and data storage.

Calls to .next() will fetch the next trial object given to this handler, according to the method specified (random,
sequential, fullRandom). Calls will raise a StopIteration error if trials have finished.

See demo_trialHandler.py

The psydat file format is literally just a pickled copy of the TrialHandler object that saved it. You can open it
with:

from psychopy.tools.filetools import fromFile
dat = fromFile(path)

Then you’ll find that dat has the following attributes that

Parameters
trialList: a simple list (or flat array) of dictionaries

specifying conditions. This can be imported from an excel/csv file using
importConditions()

nReps: number of repeats for all conditions

method: ‘random’, ‘sequential’, or ‘fullRandom’
‘sequential’ obviously presents the conditions in the order they appear in the list. ‘random’
will result in a shuffle of the conditions on each repeat, but all conditions occur once before
the second repeat etc. ‘fullRandom’ fully randomises the trials across repeats as well, which
means you could potentially run all trials of one condition before any trial of another.

dataTypes: (optional) list of names for data storage.
e.g. [‘corr’,’rt’,’resp’]. If not provided then these will be created as needed during calls to
addData()

extraInfo: A dictionary
This will be stored alongside the data and usually describes the experiment and subject ID,
date etc.

10.13. psychopy.data - functions for storing/saving/analysing data 798

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

seed: an integer
If provided then this fixes the random number generator to use the same pattern of trials, by
seeding its startpoint

originPath: a string describing the location of the
script / experiment file path. The psydat file format will store a copy of the experiment if
possible. If originPath==None is provided here then the TrialHandler will still store a copy
of the script where it was created. If OriginPath==-1 then nothing will be stored.

Attributes (after creation)
.data - a dictionary (or more strictly, a DataHandler sub-

class of a dictionary) of numpy arrays, one for each data type stored

.trialList - the original list of dicts, specifying the conditions

.thisIndex - the index of the current trial in the original
conditions list

.nTotal - the total number of trials that will be run

.nRemaining - the total number of trials remaining

.thisN - total trials completed so far

.thisRepN - which repeat you are currently on

.thisTrialN - which trial number within that repeat

.thisTrial - a dictionary giving the parameters of the current
trial

.finished - True/False for have we finished yet

.extraInfo - the dictionary of extra info as given at beginning

.origin - the contents of the script or builder experiment that
created the handler

_createOutputArray(stimOut, dataOut, delim=None, matrixOnly=False)
Does the leg-work for saveAsText and saveAsExcel. Combines stimOut with ._parseDataOutput()

_createOutputArrayData(dataOut)
This just creates the dataOut part of the output matrix. It is called by _createOutputArray() which creates
the header line and adds the stimOut columns

_createSequence()

Pre-generates the sequence of trial presentations (for non-adaptive methods). This is called automatically
when the TrialHandler is initialised so doesn’t need an explicit call from the user.

The returned sequence has form indices[stimN][repN] Example: sequential with 6 trialtypes (rows), 5 reps
(cols), returns:

[[0 0 0 0 0]
[1 1 1 1 1]
[2 2 2 2 2]
[3 3 3 3 3]
[4 4 4 4 4]
[5 5 5 5 5]]

These 30 trials will be returned by .next() in the order:
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5

10.13. psychopy.data - functions for storing/saving/analysing data 799

PsychoPy - Psychology software for Python, Release 2023.2.3

To add a new type of sequence (as of v1.65.02): - add the sequence generation code here - adjust “if
self.method in [. . .]:” in both __init__ and .next() - adjust allowedVals in experiment.py -> shows up in
DlgLoopProperties Note that users can make any sequence whatsoever outside of PsychoPy, and specify
sequential order; any order is possible this way.

_makeIndices(inputArray)
Creates an array of tuples the same shape as the input array where each tuple contains the indices to itself
in the array.

Useful for shuffling and then using as a reference.

_terminate()

Remove references to ourself in experiments and terminate the loop

addData(thisType, value, position=None)
Add data for the current trial

getCurrentTrial()

Returns the condition for the current trial, without advancing the trials.

getEarlierTrial(n=-1)
Returns the condition information from n trials previously. Useful for comparisons in n-back tasks. Returns
‘None’ if trying to access a trial prior to the first.

getExp()

Return the ExperimentHandler that this handler is attached to, if any. Returns None if not attached

getFutureTrial(n=1)
Returns the condition for n trials into the future, without advancing the trials. A negative n returns a previous
(past) trial. Returns ‘None’ if attempting to go beyond the last trial.

getOriginPathAndFile(originPath=None)
Attempts to determine the path of the script that created this data file and returns both the path to that script
and its contents. Useful to store the entire experiment with the data.

If originPath is provided (e.g. from Builder) then this is used otherwise the calling script is the originPath
(fine from a standard python script).

next()

Advances to next trial and returns it. Updates attributes; thisTrial, thisTrialN and thisIndex If the trials have
ended this method will raise a StopIteration error. This can be handled with code such as:

trials = data.TrialHandler(.......)
for eachTrial in trials: # automatically stops when done

do stuff

or:

trials = data.TrialHandler(.......)
while True: # ie forever

try:
thisTrial = trials.next()

except StopIteration: # we got a StopIteration error
break #break out of the forever loop

do stuff here for the trial

10.13. psychopy.data - functions for storing/saving/analysing data 800

PsychoPy - Psychology software for Python, Release 2023.2.3

printAsText(stimOut=None, dataOut=('all_mean', 'all_std', 'all_raw'), delim='\t', matrixOnly=False)
Exactly like saveAsText() except that the output goes to the screen instead of a file

saveAsExcel(fileName, sheetName='rawData', stimOut=None, dataOut=('n', 'all_mean', 'all_std', 'all_raw'),
matrixOnly=False, appendFile=True, fileCollisionMethod='rename')

Save a summary data file in Excel OpenXML format workbook (xlsx) for processing in most spreadsheet
packages. This format is compatible with versions of Excel (2007 or greater) and and with OpenOffice
(>=3.0).

It has the advantage over the simpler text files (see TrialHandler.saveAsText()) that data can be stored
in multiple named sheets within the file. So you could have a single file named after your experiment and
then have one worksheet for each participant. Or you could have one file for each participant and then
multiple sheets for repeated sessions etc.

The file extension .xlsx will be added if not given already.

Parameters
fileName: string

the name of the file to create or append. Can include relative or absolute path

sheetName: string
the name of the worksheet within the file

stimOut: list of strings
the attributes of the trial characteristics to be output. To use this you need to have provided
a list of dictionaries specifying to trialList parameter of the TrialHandler and give here the
names of strings specifying entries in that dictionary

dataOut: list of strings
specifying the dataType and the analysis to be performed, in the form dataType_analysis.
The data can be any of the types that you added using trialHandler.data.add() and
the analysis can be either ‘raw’ or most things in the numpy library, including
‘mean’,’std’,’median’,’max’,’min’. e.g. rt_max will give a column of max reaction times
across the trials assuming that rt values have been stored. The default values will output
the raw, mean and std of all datatypes found.

appendFile: True or False
If False any existing file with this name will be kept and a new file will be created
with a slightly different name. If you want to overwrite the old file, pass ‘overwrite’ to
fileCollisionMethod. If True then a new worksheet will be appended. If a worksheet
already exists with that name a number will be added to make it unique.

fileCollisionMethod: string
Collision method (rename,``overwrite``, fail) passed to handleFileCollision() This
is ignored if append is True.

saveAsJson(fileName=None, encoding='utf-8', fileCollisionMethod='rename')
Serialize the object to the JSON format.

Parameters
• fileName (string, or None) – the name of the file to create or append. Can include a

relative or absolute path. If None, will not write to a file, but return an in-memory JSON
object.

• encoding (string, optional) – The encoding to use when writing the file.

• fileCollisionMethod (string) – Collision method passed to
handleFileCollision(). Can be either of ‘rename’, ‘overwrite’, or ‘fail’.

10.13. psychopy.data - functions for storing/saving/analysing data 801

PsychoPy - Psychology software for Python, Release 2023.2.3

Notes

Currently, a copy of the object is created, and the copy’s .origin attribute is set to an empty string before
serializing because loading the created JSON file would sometimes fail otherwise.

saveAsPickle(fileName, fileCollisionMethod='rename')
Basically just saves a copy of the handler (with data) to a pickle file.

This can be reloaded if necessary and further analyses carried out.

Parameters
fileCollisionMethod: Collision method passed to handleFileCollision()

saveAsText(fileName, stimOut=None, dataOut=('n', 'all_mean', 'all_std', 'all_raw'), delim=None,
matrixOnly=False, appendFile=True, summarised=True, fileCollisionMethod='rename',
encoding='utf-8-sig')

Write a text file with the data and various chosen stimulus attributes

Parameters

fileName:
will have .tsv appended and can include path info.

stimOut:
the stimulus attributes to be output. To use this you need to use a list of dictionaries and give here the
names of dictionary keys that you want as strings

dataOut:
a list of strings specifying the dataType and the analysis to be performed,in the form dataType_analysis.
The data can be any of the types that you added using trialHandler.data.add() and the analysis can be
either ‘raw’ or most things in the numpy library, including; ‘mean’,’std’,’median’,’max’,’min’. . . The
default values will output the raw, mean and std of all datatypes found

delim:
allows the user to use a delimiter other than tab (“,” is popular with file extension “.csv”)

matrixOnly:
outputs the data with no header row or extraInfo attached

appendFile:
will add this output to the end of the specified file if it already exists

fileCollisionMethod:
Collision method passed to handleFileCollision()

encoding:
The encoding to use when saving a the file. Defaults to utf-8-sig.

saveAsWideText(fileName, delim=None, matrixOnly=False, appendFile=True, encoding='utf-8-sig',
fileCollisionMethod='rename')

Write a text file with the session, stimulus, and data values from each trial in chronological order. Also,
return a pandas DataFrame containing same information as the file.

That is, unlike ‘saveAsText’ and ‘saveAsExcel’:
• each row comprises information from only a single trial.

• no summarizing is done (such as collapsing to produce mean and standard deviation values across
trials).

10.13. psychopy.data - functions for storing/saving/analysing data 802

PsychoPy - Psychology software for Python, Release 2023.2.3

This ‘wide’ format, as expected by R for creating dataframes, and various other analysis programs, means
that some information must be repeated on every row.

In particular, if the trialHandler’s ‘extraInfo’ exists, then each entry in there occurs in every row. In builder,
this will include any entries in the ‘Experiment info’ field of the ‘Experiment settings’ dialog. In Coder,
this information can be set using something like:

myTrialHandler.extraInfo = {'SubjID': 'Joan Smith',
'Group': 'Control'}

Parameters
fileName:

if extension is not specified, ‘.csv’ will be appended if the delimiter is ‘,’, else ‘.tsv’ will be
appended. Can include path info.

delim:
allows the user to use a delimiter other than the default tab (“,” is popular with file extension
“.csv”)

matrixOnly:
outputs the data with no header row.

appendFile:
will add this output to the end of the specified file if it already exists.

fileCollisionMethod:
Collision method passed to handleFileCollision()

encoding:
The encoding to use when saving a the file. Defaults to utf-8-sig.

setExp(exp)
Sets the ExperimentHandler that this handler is attached to

Do NOT attempt to set the experiment using:

trials._exp = myExperiment

because it needs to be performed using the weakref module.

10.13.3 TrialHandler2

class psychopy.data.TrialHandler2(trialList, nReps, method='random', dataTypes=None, extraInfo=None,
seed=None, originPath=None, name='', autoLog=True)

Class to handle trial sequencing and data storage.

Calls to .next() will fetch the next trial object given to this handler, according to the method specified (random,
sequential, fullRandom). Calls will raise a StopIteration error if trials have finished.

See demo_trialHandler.py

The psydat file format is literally just a pickled copy of the TrialHandler object that saved it. You can open it
with:

from psychopy.tools.filetools import fromFile
dat = fromFile(path)

10.13. psychopy.data - functions for storing/saving/analysing data 803

PsychoPy - Psychology software for Python, Release 2023.2.3

Then you’ll find that dat has the following attributes that

Parameters
trialList: filename or a simple list (or flat array) of

dictionaries specifying conditions

nReps: number of repeats for all conditions

method: ‘random’, ‘sequential’, or ‘fullRandom’
‘sequential’ obviously presents the conditions in the order they appear in the list. ‘random’
will result in a shuffle of the conditions on each repeat, but all conditions occur once before
the second repeat etc. ‘fullRandom’ fully randomises the trials across repeats as well, which
means you could potentially run all trials of one condition before any trial of another.

dataTypes: (optional) list of names for data storage.
e.g. [‘corr’,’rt’,’resp’]. If not provided then these will be created as needed during calls to
addData()

extraInfo: A dictionary
This will be stored alongside the data and usually describes the experiment and subject ID,
date etc.

seed: an integer
If provided then this fixes the random number generator to use the same pattern of trials, by
seeding its startpoint.

originPath: a string describing the location of the script /
experiment file path. The psydat file format will store a copy of the experiment if possible. If
originPath==None is provided here then the TrialHandler will still store a copy of the script
where it was created. If OriginPath==-1 then nothing will be stored.

Attributes (after creation)
.data - a dictionary of numpy arrays, one for each data type

stored

.trialList - the original list of dicts, specifying the conditions

.thisIndex - the index of the current trial in the original
conditions list

.nTotal - the total number of trials that will be run

.nRemaining - the total number of trials remaining

.thisN - total trials completed so far

.thisRepN - which repeat you are currently on

.thisTrialN - which trial number within that repeat

.thisTrial - a dictionary giving the parameters of the current
trial

.finished - True/False for have we finished yet

.extraInfo - the dictionary of extra info as given at beginning

.origin - the contents of the script or builder experiment that
created the handler

_terminate()

Remove references to ourself in experiments and terminate the loop

10.13. psychopy.data - functions for storing/saving/analysing data 804

PsychoPy - Psychology software for Python, Release 2023.2.3

abortCurrentTrial(action='random')
Abort the current trial.

Calling this during an experiment replace this trial. The condition related to the aborted trial will be replaced
elsewhere in the session depending on the method in use for sampling conditions.

Parameters
action (str) – Action to take with the aborted trial. Can be either of ‘random’, or ‘append’.
The default action is ‘random’.

Notes

• When using action=’random’, the RNG state for the trial handler is not used.

addData(thisType, value)
Add a piece of data to the current trial

property data

Returns a pandas DataFrame of the trial data so far Read only attribute - you can’t directly modify Trial-
Handler.data

Note that data are stored internally as a list of dictionaries, one per trial. These are converted to a DataFrame
on access.

getEarlierTrial(n=-1)
Returns the condition information from n trials previously. Useful for comparisons in n-back tasks. Returns
‘None’ if trying to access a trial prior to the first.

getExp()

Return the ExperimentHandler that this handler is attached to, if any. Returns None if not attached

getFutureTrial(n=1)
Returns the condition for n trials into the future, without advancing the trials. Returns ‘None’ if attempting
to go beyond the last trial.

getOriginPathAndFile(originPath=None)
Attempts to determine the path of the script that created this data file and returns both the path to that script
and its contents. Useful to store the entire experiment with the data.

If originPath is provided (e.g. from Builder) then this is used otherwise the calling script is the originPath
(fine from a standard python script).

next()

Advances to next trial and returns it. Updates attributes; thisTrial, thisTrialN and thisIndex If the trials have
ended this method will raise a StopIteration error. This can be handled with code such as:

trials = data.TrialHandler(.......)
for eachTrial in trials: # automatically stops when done

do stuff

or:

trials = data.TrialHandler(.......)
while True: # ie forever

try:
thisTrial = trials.next()

(continues on next page)

10.13. psychopy.data - functions for storing/saving/analysing data 805

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

except StopIteration: # we got a StopIteration error
break # break out of the forever loop

do stuff here for the trial

printAsText(stimOut=None, dataOut=('all_mean', 'all_std', 'all_raw'), delim='\t', matrixOnly=False)
Exactly like saveAsText() except that the output goes to the screen instead of a file

saveAsExcel(fileName, sheetName='rawData', stimOut=None, dataOut=('n', 'all_mean', 'all_std', 'all_raw'),
matrixOnly=False, appendFile=True, fileCollisionMethod='rename')

Save a summary data file in Excel OpenXML format workbook (xlsx) for processing in most spreadsheet
packages. This format is compatible with versions of Excel (2007 or greater) and and with OpenOffice
(>=3.0).

It has the advantage over the simpler text files (see TrialHandler.saveAsText()) that data can be stored
in multiple named sheets within the file. So you could have a single file named after your experiment and
then have one worksheet for each participant. Or you could have one file for each participant and then
multiple sheets for repeated sessions etc.

The file extension .xlsx will be added if not given already.

Parameters
fileName: string

the name of the file to create or append. Can include relative or absolute path

sheetName: string
the name of the worksheet within the file

stimOut: list of strings
the attributes of the trial characteristics to be output. To use this you need to have provided
a list of dictionaries specifying to trialList parameter of the TrialHandler and give here the
names of strings specifying entries in that dictionary

dataOut: list of strings
specifying the dataType and the analysis to be performed, in the form dataType_analysis.
The data can be any of the types that you added using trialHandler.data.add() and
the analysis can be either ‘raw’ or most things in the numpy library, including
‘mean’,’std’,’median’,’max’,’min’. e.g. rt_max will give a column of max reaction times
across the trials assuming that rt values have been stored. The default values will output
the raw, mean and std of all datatypes found.

appendFile: True or False
If False any existing file with this name will be kept and a new file will be created
with a slightly different name. If you want to overwrite the old file, pass ‘overwrite’ to
fileCollisionMethod. If True then a new worksheet will be appended. If a worksheet
already exists with that name a number will be added to make it unique.

fileCollisionMethod: string
Collision method (rename,``overwrite``, fail) passed to handleFileCollision() This
is ignored if append is True.

saveAsJson(fileName=None, encoding='utf-8', fileCollisionMethod='rename')
Serialize the object to the JSON format.

Parameters
• fileName (string, or None) – the name of the file to create or append. Can include a

relative or absolute path. If None, will not write to a file, but return an in-memory JSON

10.13. psychopy.data - functions for storing/saving/analysing data 806

PsychoPy - Psychology software for Python, Release 2023.2.3

object.

• encoding (string, optional) – The encoding to use when writing the file.

• fileCollisionMethod (string) – Collision method passed to
handleFileCollision(). Can be either of ‘rename’, ‘overwrite’, or ‘fail’.

Notes

Currently, a copy of the object is created, and the copy’s .origin attribute is set to an empty string before
serializing because loading the created JSON file would sometimes fail otherwise.

The RNG self._rng cannot be serialized as-is, so we store its state in self._rng_state so we can restore it
when loading.

saveAsPickle(fileName, fileCollisionMethod='rename')
Basically just saves a copy of the handler (with data) to a pickle file.

This can be reloaded if necessary and further analyses carried out.

Parameters
fileCollisionMethod: Collision method passed to handleFileCollision()

saveAsText(fileName, stimOut=None, dataOut=('n', 'all_mean', 'all_std', 'all_raw'), delim=None,
matrixOnly=False, appendFile=True, summarised=True, fileCollisionMethod='rename',
encoding='utf-8-sig')

Write a text file with the data and various chosen stimulus attributes

Parameters

fileName:
will have .tsv appended and can include path info.

stimOut:
the stimulus attributes to be output. To use this you need to use a list of dictionaries and give here the
names of dictionary keys that you want as strings

dataOut:
a list of strings specifying the dataType and the analysis to be performed,in the form dataType_analysis.
The data can be any of the types that you added using trialHandler.data.add() and the analysis can be
either ‘raw’ or most things in the numpy library, including; ‘mean’,’std’,’median’,’max’,’min’. . . The
default values will output the raw, mean and std of all datatypes found

delim:
allows the user to use a delimiter other than tab (“,” is popular with file extension “.csv”)

matrixOnly:
outputs the data with no header row or extraInfo attached

appendFile:
will add this output to the end of the specified file if it already exists

fileCollisionMethod:
Collision method passed to handleFileCollision()

encoding:
The encoding to use when saving a the file. Defaults to utf-8-sig.

10.13. psychopy.data - functions for storing/saving/analysing data 807

PsychoPy - Psychology software for Python, Release 2023.2.3

saveAsWideText(fileName, delim=None, matrixOnly=False, appendFile=True, encoding='utf-8-sig',
fileCollisionMethod='rename')

Write a text file with the session, stimulus, and data values from each trial in chronological order. Also,
return a pandas DataFrame containing same information as the file.

That is, unlike ‘saveAsText’ and ‘saveAsExcel’:
• each row comprises information from only a single trial.

• no summarising is done (such as collapsing to produce mean and standard deviation values across
trials).

This ‘wide’ format, as expected by R for creating dataframes, and various other analysis programs, means
that some information must be repeated on every row.

In particular, if the trialHandler’s ‘extraInfo’ exists, then each entry in there occurs in every row. In builder,
this will include any entries in the ‘Experiment info’ field of the ‘Experiment settings’ dialog. In Coder,
this information can be set using something like:

myTrialHandler.extraInfo = {'SubjID': 'Joan Smith',
'Group': 'Control'}

Parameters
fileName:

if extension is not specified, ‘.csv’ will be appended if the delimiter is ‘,’, else ‘.tsv’ will be
appended. Can include path info.

delim:
allows the user to use a delimiter other than the default tab (“,” is popular with file extension
“.csv”)

matrixOnly:
outputs the data with no header row.

appendFile:
will add this output to the end of the specified file if it already exists.

fileCollisionMethod:
Collision method passed to handleFileCollision()

encoding:
The encoding to use when saving a the file. Defaults to utf-8-sig.

setExp(exp)
Sets the ExperimentHandler that this handler is attached to

Do NOT attempt to set the experiment using:

trials._exp = myExperiment

because it needs to be performed using the weakref module.

property trialAborted

True if the trial has been aborted an should end.

This flag is reset to False on the next call to next().

10.13. psychopy.data - functions for storing/saving/analysing data 808

PsychoPy - Psychology software for Python, Release 2023.2.3

10.13.4 TrialHandlerExt

class psychopy.data.TrialHandlerExt(trialList, nReps, method='random', dataTypes=None,
extraInfo=None, seed=None, originPath=None, name='',
autoLog=True)

A class for handling trial sequences in a non-counterbalanced design (i.e. oddball paradigms). Its functions are
a superset of the class TrialHandler, and as such, can also be used for normal trial handling.

TrialHandlerExt has the same function names for data storage facilities.

To use non-counterbalanced designs, all TrialType dict entries in the trial list must have a key called “weight”.
For example, if you want trial types A, B, C, and D to have 10, 5, 3, and 2 repetitions per block, then the trialList
can look like:

[{Name:’A’, . . . , weight:10},
{Name:’B’, . . . , weight:5}, {Name:’C’, . . . , weight:3}, {Name:’D’, . . . , weight:2}]

For experimenters using an excel or csv file for trial list, a column called weight is appropriate for this purpose.

Calls to .next() will fetch the next trial object given to this handler, according to the method specified (random,
sequential, fullRandom). Calls will raise a StopIteration error when all trials are exhausted.

Authored by Suddha Sourav at BPN, Uni Hamburg - heavily borrowing from the TrialHandler class

Parameters
trialList: a simple list (or flat array) of dictionaries

specifying conditions. This can be imported from an excel / csv file using
importConditions() For non-counterbalanced designs, each dict entry in trialList must
have a key called weight!

nReps: number of repeats for all conditions. When using a
non-counterbalanced design, nReps is analogous to the number of blocks.

method: ‘random’, ‘sequential’, or ‘fullRandom’
When the weights are not specified: ‘sequential’ presents the conditions in the order they
appear in the list. ‘random’ will result in a shuffle of the conditions on each repeat, but
all conditions occur once before the second repeat etc. ‘fullRandom’ fully randomises the
trials across repeats as well, which means you could potentially run all trials of one condition
before any trial of another.

In the presence of weights: ‘sequential’ presents each trial type the number of times specified
by its weight, before moving on to the next type. ‘random’ randomizes the presentation
order within block. ‘fulLRandom’ shuffles trial order across weights an nRep, that is, a full
shuffling.

dataTypes: (optional) list of names for data storage. e.g.
[‘corr’,’rt’,’resp’]. If not provided then these will be created as needed during calls to
addData()

extraInfo: A dictionary
This will be stored alongside the data and usually describes the experiment and subject ID,
date etc.

seed: an integer
If provided then this fixes the random number generator to use the same pattern of trials, by
seeding its startpoint

originPath: a string describing the location of the script /
experiment file path. The psydat file format will store a copy of the experiment if possible. If

10.13. psychopy.data - functions for storing/saving/analysing data 809

PsychoPy - Psychology software for Python, Release 2023.2.3

originPath==None is provided here then the TrialHandler will still store a copy of the script
where it was created. If OriginPath==-1 then nothing will be stored.

Attributes (after creation)
.data - a dictionary of numpy arrays, one for each data type

stored

.trialList - the original list of dicts, specifying the conditions

.thisIndex - the index of the current trial in the original
conditions list

.nTotal - the total number of trials that will be run

.nRemaining - the total number of trials remaining

.thisN - total trials completed so far

.thisRepN - which repeat you are currently on

.thisTrialN - which trial number within that repeat

.thisTrial - a dictionary giving the parameters of the current
trial

.finished - True/False for have we finished yet

.extraInfo - the dictionary of extra info as given at beginning

.origin - the contents of the script or builder experiment that
created the handler

.trialWeights - None if all weights are not specified. If all
weights are specified, then a list containing the weights of the trial types.

_createOutputArray(stimOut, dataOut, delim=None, matrixOnly=False)
Does the leg-work for saveAsText and saveAsExcel. Combines stimOut with ._parseDataOutput()

_createOutputArrayData(dataOut)
This just creates the dataOut part of the output matrix. It is called by _createOutputArray() which creates
the header line and adds the stimOut columns

_createSequence()

Pre-generates the sequence of trial presentations (for non-adaptive methods). This is called automatically
when the TrialHandler is initialised so doesn’t need an explicit call from the user.

The returned sequence has form indices[stimN][repN] Example: sequential with 6 trialtypes (rows), 5 reps
(cols), returns:

[[0 0 0 0 0]
[1 1 1 1 1]
[2 2 2 2 2]
[3 3 3 3 3]
[4 4 4 4 4]
[5 5 5 5 5]]

These 30 trials will be returned by .next() in the order:
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5

Example: random, with 3 trialtypes, where the weights of conditions 0,1, and 2 are 3,2, and 1 respectively,
and a rep value of 5, might return:

10.13. psychopy.data - functions for storing/saving/analysing data 810

PsychoPy - Psychology software for Python, Release 2023.2.3

[[0 1 2 0 1]
[1 0 1 1 1]
[0 2 0 0 0]
[0 0 0 1 0]
[2 0 1 0 2]
[1 1 0 2 0]]

These 30 trials will be returned by .next() in the order:
0, 1, 0, 0, 2, 1, 1, 0, 2, 0, 0, 1, 0, 2, 0 stopIteration

To add a new type of sequence (as of v1.65.02): - add the sequence generation code here - adjust “if
self.method in [. . .]:” in both __init__ and .next() - adjust allowedVals in experiment.py -> shows up in
DlgLoopProperties Note that users can make any sequence whatsoever outside of PsychoPy, and specify
sequential order; any order is possible this way.

_makeIndices(inputArray)
Creates an array of tuples the same shape as the input array where each tuple contains the indices to itself
in the array.

Useful for shuffling and then using as a reference.

_terminate()

Remove references to ourself in experiments and terminate the loop

addData(thisType, value, position=None)
Add data for the current trial

getCurrentTrial()

Returns the condition for the current trial, without advancing the trials.

getCurrentTrialPosInDataHandler()

getEarlierTrial(n=-1)
Returns the condition information from n trials previously. Useful for comparisons in n-back tasks. Returns
‘None’ if trying to access a trial prior to the first.

getExp()

Return the ExperimentHandler that this handler is attached to, if any. Returns None if not attached

getFutureTrial(n=1)
Returns the condition for n trials into the future, without advancing the trials. A negative n returns a previous
(past) trial. Returns ‘None’ if attempting to go beyond the last trial.

getNextTrialPosInDataHandler()

getOriginPathAndFile(originPath=None)
Attempts to determine the path of the script that created this data file and returns both the path to that script
and its contents. Useful to store the entire experiment with the data.

If originPath is provided (e.g. from Builder) then this is used otherwise the calling script is the originPath
(fine from a standard python script).

next()

Advances to next trial and returns it. Updates attributes; thisTrial, thisTrialN and thisIndex If the trials have
ended this method will raise a StopIteration error. This can be handled with code such as:

10.13. psychopy.data - functions for storing/saving/analysing data 811

PsychoPy - Psychology software for Python, Release 2023.2.3

trials = data.TrialHandler(.......)
for eachTrial in trials: # automatically stops when done

do stuff

or:

trials = data.TrialHandler(.......)
while True: # ie forever

try:
thisTrial = trials.next()

except StopIteration: # we got a StopIteration error
break # break out of the forever loop

do stuff here for the trial

printAsText(stimOut=None, dataOut=('all_mean', 'all_std', 'all_raw'), delim='\t', matrixOnly=False)
Exactly like saveAsText() except that the output goes to the screen instead of a file

saveAsExcel(fileName, sheetName='rawData', stimOut=None, dataOut=('n', 'all_mean', 'all_std', 'all_raw'),
matrixOnly=False, appendFile=True, fileCollisionMethod='rename')

Save a summary data file in Excel OpenXML format workbook (xlsx) for processing in most spreadsheet
packages. This format is compatible with versions of Excel (2007 or greater) and and with OpenOffice
(>=3.0).

It has the advantage over the simpler text files (see TrialHandler.saveAsText()) that data can be stored
in multiple named sheets within the file. So you could have a single file named after your experiment and
then have one worksheet for each participant. Or you could have one file for each participant and then
multiple sheets for repeated sessions etc.

The file extension .xlsx will be added if not given already.

Parameters
fileName: string

the name of the file to create or append. Can include relative or absolute path

sheetName: string
the name of the worksheet within the file

stimOut: list of strings
the attributes of the trial characteristics to be output. To use this you need to have provided
a list of dictionaries specifying to trialList parameter of the TrialHandler and give here the
names of strings specifying entries in that dictionary

dataOut: list of strings
specifying the dataType and the analysis to be performed, in the form dataType_analysis.
The data can be any of the types that you added using trialHandler.data.add() and
the analysis can be either ‘raw’ or most things in the numpy library, including
‘mean’,’std’,’median’,’max’,’min’. e.g. rt_max will give a column of max reaction times
across the trials assuming that rt values have been stored. The default values will output
the raw, mean and std of all datatypes found.

appendFile: True or False
If False any existing file with this name will be kept and a new file will be created
with a slightly different name. If you want to overwrite the old file, pass ‘overwrite’ to
fileCollisionMethod. If True then a new worksheet will be appended. If a worksheet
already exists with that name a number will be added to make it unique.

10.13. psychopy.data - functions for storing/saving/analysing data 812

PsychoPy - Psychology software for Python, Release 2023.2.3

fileCollisionMethod: string
Collision method (rename,``overwrite``, fail) passed to handleFileCollision() This
is ignored if append is True.

saveAsJson(fileName=None, encoding='utf-8', fileCollisionMethod='rename')
Serialize the object to the JSON format.

Parameters
• fileName (string, or None) – the name of the file to create or append. Can include a

relative or absolute path. If None, will not write to a file, but return an in-memory JSON
object.

• encoding (string, optional) – The encoding to use when writing the file.

• fileCollisionMethod (string) – Collision method passed to
handleFileCollision(). Can be either of ‘rename’, ‘overwrite’, or ‘fail’.

Notes

Currently, a copy of the object is created, and the copy’s .origin attribute is set to an empty string before
serializing because loading the created JSON file would sometimes fail otherwise.

saveAsPickle(fileName, fileCollisionMethod='rename')
Basically just saves a copy of the handler (with data) to a pickle file.

This can be reloaded if necessary and further analyses carried out.

Parameters
fileCollisionMethod: Collision method passed to handleFileCollision()

saveAsText(fileName, stimOut=None, dataOut=('n', 'all_mean', 'all_std', 'all_raw'), delim=None,
matrixOnly=False, appendFile=True, summarised=True, fileCollisionMethod='rename',
encoding='utf-8-sig')

Write a text file with the data and various chosen stimulus attributes

Parameters

fileName:
will have .tsv appended and can include path info.

stimOut:
the stimulus attributes to be output. To use this you need to use a list of dictionaries and give here the
names of dictionary keys that you want as strings

dataOut:
a list of strings specifying the dataType and the analysis to be performed,in the form dataType_analysis.
The data can be any of the types that you added using trialHandler.data.add() and the analysis can be
either ‘raw’ or most things in the numpy library, including; ‘mean’,’std’,’median’,’max’,’min’. . . The
default values will output the raw, mean and std of all datatypes found

delim:
allows the user to use a delimiter other than tab (“,” is popular with file extension “.csv”)

matrixOnly:
outputs the data with no header row or extraInfo attached

appendFile:
will add this output to the end of the specified file if it already exists

10.13. psychopy.data - functions for storing/saving/analysing data 813

PsychoPy - Psychology software for Python, Release 2023.2.3

fileCollisionMethod:
Collision method passed to handleFileCollision()

encoding:
The encoding to use when saving a the file. Defaults to utf-8-sig.

saveAsWideText(fileName, delim='\t', matrixOnly=False, appendFile=True, encoding='utf-8-sig',
fileCollisionMethod='rename')

Write a text file with the session, stimulus, and data values from each trial in chronological order.

That is, unlike ‘saveAsText’ and ‘saveAsExcel’:
• each row comprises information from only a single trial.

• no summarizing is done (such as collapsing to produce mean and standard deviation values across
trials).

This ‘wide’ format, as expected by R for creating dataframes, and various other analysis programs, means
that some information must be repeated on every row.

In particular, if the trialHandler’s ‘extraInfo’ exists, then each entry in there occurs in every row. In builder,
this will include any entries in the ‘Experiment info’ field of the ‘Experiment settings’ dialog. In Coder,
this information can be set using something like:

myTrialHandler.extraInfo = {'SubjID':'Joan Smith',
'Group':'Control'}

Parameters
fileName:

if extension is not specified, ‘.csv’ will be appended if the delimiter is ‘,’, else ‘.txt’ will be
appended. Can include path info.

delim:
allows the user to use a delimiter other than the default tab (“,” is popular with file extension
“.csv”)

matrixOnly:
outputs the data with no header row.

appendFile:
will add this output to the end of the specified file if it already exists.

fileCollisionMethod:
Collision method passed to handleFileCollision()

encoding:
The encoding to use when saving a the file. Defaults to utf-8-sig.

setExp(exp)
Sets the ExperimentHandler that this handler is attached to

Do NOT attempt to set the experiment using:

trials._exp = myExperiment

because it needs to be performed using the weakref module.

10.13. psychopy.data - functions for storing/saving/analysing data 814

PsychoPy - Psychology software for Python, Release 2023.2.3

10.13.5 StairHandler

class psychopy.data.StairHandler(startVal, nReversals=None, stepSizes=4, nTrials=0, nUp=1, nDown=3,
applyInitialRule=True, extraInfo=None, method='2AFC', stepType='db',
minVal=None, maxVal=None, originPath=None, name='', autoLog=True,
**kwargs)

Class to handle smoothly the selection of the next trial and report current values etc. Calls to next() will fetch
the next object given to this handler, according to the method specified.

See Demos >> ExperimentalControl >> JND_staircase_exp.py

The staircase will terminate when nTrials AND nReversals have been exceeded. If stepSizes was an array and
has been exceeded before nTrials is exceeded then the staircase will continue to reverse.

nUp and nDown are always considered as 1 until the first reversal is reached. The values entered as arguments
are then used.

Parameters
startVal:

The initial value for the staircase.

nReversals:
The minimum number of reversals permitted. If stepSizes is a list, but the minimum num-
ber of reversals to perform, nReversals, is less than the length of this list, PsychoPy will
automatically increase the minimum number of reversals and emit a warning.

stepSizes:
The size of steps as a single value or a list (or array). For a single value the step size is fixed.
For an array or list the step size will progress to the next entry at each reversal.

nTrials:
The minimum number of trials to be conducted. If the staircase has not reached the required
number of reversals then it will continue.

nUp:
The number of ‘incorrect’ (or 0) responses before the staircase level increases.

nDown:
The number of ‘correct’ (or 1) responses before the staircase level decreases.

applyInitialRule
[bool] Whether to apply a 1-up/1-down rule until the first reversal point (if True), before
switching to the specified up/down rule.

extraInfo:
A dictionary (typically) that will be stored along with collected data using saveAsPickle()
or saveAsText() methods.

method:
Not used and may be deprecated in future releases.

stepType: ‘db’, ‘lin’, ‘log’
The type of steps that should be taken each time. ‘lin’ will simply add or subtract that amount
each step, ‘db’ and ‘log’ will step by a certain number of decibels or log units (note that this
will prevent your value ever reaching zero or less)

minVal: None, or a number
The smallest legal value for the staircase, which can be used to prevent it reaching impossible
contrast values, for instance.

10.13. psychopy.data - functions for storing/saving/analysing data 815

PsychoPy - Psychology software for Python, Release 2023.2.3

maxVal: None, or a number
The largest legal value for the staircase, which can be used to prevent it reaching impossible
contrast values, for instance.

Additional keyword arguments will be ignored.

Notes
The additional keyword arguments **kwargs might for example be passed by the MultiStairHandler, which
expects a label keyword for each staircase. These parameters are to be ignored by the StairHandler.

_intensityDec()

decrement the current intensity and reset counter

_intensityInc()

increment the current intensity and reset counter

_terminate()

Remove references to ourself in experiments and terminate the loop

addData(result, intensity=None)
Deprecated since 1.79.00: This function name was ambiguous. Please use one of these instead:

• .addResponse(result, intensity)

• .addOtherData(‘dataName’, value’)

addOtherData(dataName, value)
Add additional data to the handler, to be tracked alongside the result data but not affecting the value of the
staircase

addResponse(result, intensity=None)
Add a 1 or 0 to signify a correct / detected or incorrect / missed trial.

This is essential to advance the staircase to a new intensity level!

Supplying an intensity value here indicates that you did not use the recommended intensity in your last trial
and the staircase will replace its recorded value with the one you supplied here.

calculateNextIntensity()

Based on current intensity, counter of correct responses, and current direction.

getExp()

Return the ExperimentHandler that this handler is attached to, if any. Returns None if not attached

getOriginPathAndFile(originPath=None)
Attempts to determine the path of the script that created this data file and returns both the path to that script
and its contents. Useful to store the entire experiment with the data.

If originPath is provided (e.g. from Builder) then this is used otherwise the calling script is the originPath
(fine from a standard python script).

property intensity

The intensity (level) of the current staircase

next()

Advances to next trial and returns it. Updates attributes; thisTrial, thisTrialN and thisIndex.

If the trials have ended, calling this method will raise a StopIteration error. This can be handled with code
such as:

10.13. psychopy.data - functions for storing/saving/analysing data 816

PsychoPy - Psychology software for Python, Release 2023.2.3

staircase = data.StairHandler(.......)
for eachTrial in staircase: # automatically stops when done

do stuff

or:

staircase = data.StairHandler(.......)
while True: # ie forever

try:
thisTrial = staircase.next()

except StopIteration: # we got a StopIteration error
break # break out of the forever loop

do stuff here for the trial

printAsText(stimOut=None, dataOut=('all_mean', 'all_std', 'all_raw'), delim='\t', matrixOnly=False)
Exactly like saveAsText() except that the output goes to the screen instead of a file

saveAsExcel(fileName, sheetName='data', matrixOnly=False, appendFile=True,
fileCollisionMethod='rename')

Save a summary data file in Excel OpenXML format workbook (xlsx) for processing in most spreadsheet
packages. This format is compatible with versions of Excel (2007 or greater) and and with OpenOffice
(>=3.0).

It has the advantage over the simpler text files (see TrialHandler.saveAsText()) that data can be stored
in multiple named sheets within the file. So you could have a single file named after your experiment and
then have one worksheet for each participant. Or you could have one file for each participant and then
multiple sheets for repeated sessions etc.

The file extension .xlsx will be added if not given already.

The file will contain a set of values specifying the staircase level (‘intensity’) at each reversal, a list of
reversal indices (trial numbers), the raw staircase / intensity level on every trial and the corresponding
responses of the participant on every trial.

Parameters
fileName: string

the name of the file to create or append. Can include relative or absolute path.

sheetName: string
the name of the worksheet within the file

matrixOnly: True or False
If set to True then only the data itself will be output (no additional info)

appendFile: True or False
If False any existing file with this name will be overwritten. If True then a new worksheet
will be appended. If a worksheet already exists with that name a number will be added to
make it unique.

fileCollisionMethod: string
Collision method passed to handleFileCollision() This is ignored if appendFile is
True.

saveAsJson(fileName=None, encoding='utf-8-sig', fileCollisionMethod='rename')
Serialize the object to the JSON format.

Parameters

10.13. psychopy.data - functions for storing/saving/analysing data 817

PsychoPy - Psychology software for Python, Release 2023.2.3

• fileName (string, or None) – the name of the file to create or append. Can include a
relative or absolute path. If None, will not write to a file, but return an in-memory JSON
object.

• encoding (string, optional) – The encoding to use when writing the file.

• fileCollisionMethod (string) – Collision method passed to
handleFileCollision(). Can be either of ‘rename’, ‘overwrite’, or ‘fail’.

Notes

Currently, a copy of the object is created, and the copy’s .origin attribute is set to an empty string before
serializing because loading the created JSON file would sometimes fail otherwise.

saveAsPickle(fileName, fileCollisionMethod='rename')
Basically just saves a copy of self (with data) to a pickle file.

This can be reloaded if necessary and further analyses carried out.

Parameters
fileCollisionMethod: Collision method passed to handleFileCollision()

saveAsText(fileName, delim=None, matrixOnly=False, fileCollisionMethod='rename', encoding='utf-8-sig')
Write a text file with the data

Parameters
fileName: a string

The name of the file, including path if needed. The extension .tsv will be added if not
included.

delim: a string
the delimitter to be used (e.g. ‘ ‘ for tab-delimitted, ‘,’ for csv files)

matrixOnly: True/False
If True, prevents the output of the extraInfo provided at initialisation.

fileCollisionMethod:
Collision method passed to handleFileCollision()

encoding:
The encoding to use when saving a the file. Defaults to utf-8-sig.

setExp(exp)
Sets the ExperimentHandler that this handler is attached to

Do NOT attempt to set the experiment using:

trials._exp = myExperiment

because it needs to be performed using the weakref module.

10.13. psychopy.data - functions for storing/saving/analysing data 818

PsychoPy - Psychology software for Python, Release 2023.2.3

10.13.6 PsiHandler

class psychopy.data.PsiHandler(nTrials, intensRange, alphaRange, betaRange, intensPrecision,
alphaPrecision, betaPrecision, delta, stepType='lin', expectedMin=0.5,
prior=None, fromFile=False, extraInfo=None, name='')

Handler to implement the “Psi” adaptive psychophysical method (Kontsevich & Tyler, 1999).

This implementation assumes the form of the psychometric function to be a cumulative Gaussian. Psi estimates
the two free parameters of the psychometric function, the location (alpha) and slope (beta), using Bayes’ rule
and grid approximation of the posterior distribution. It chooses stimuli to present by minimizing the entropy of
this grid. Because this grid is represented internally as a 4-D array, one must choose the intensity, alpha, and
beta ranges carefully so as to avoid a Memory Error. Maximum likelihood is used to estimate Lambda, the most
likely location/slope pair. Because Psi estimates the entire psychometric function, any threshold defined on the
function may be estimated once Lambda is determined.

It is advised that Lambda estimates are examined after completion of the Psi procedure. If the estimated alpha or
beta values equal your specified search bounds, then the search range most likely did not contain the true value.
In this situation the procedure should be repeated with appropriately adjusted bounds.

Because Psi is a Bayesian method, it can be initialized with a prior from existing research. A function to save
the posterior over Lambda as a Numpy binary file is included.

Kontsevich & Tyler (1999) specify their psychometric function in terms of d’. PsiHandler avoids this and treats
all parameters with respect to stimulus intensity. Specifically, the forms of the psychometric function assumed
for Yes/No and Two Alternative Forced Choice (2AFC) are, respectively:

_normCdf = norm.cdf(x, mean=alpha, sd=beta) Y(x) = .5 * delta + (1 - delta) * _normCdf

Y(x) = .5 * delta + (1 - delta) * (.5 + .5 * _normCdf)

Initializes the handler and creates an internal Psi Object for grid approximation.

Parameters
nTrials (int)

The number of trials to run.

intensRange (list)
Two element list containing the (inclusive) endpoints of the stimuli intensity range.

alphaRange (list)
Two element list containing the (inclusive) endpoints of the alpha (location parameter) range.

betaRange (list)
Two element list containing the (inclusive) endpoints of the beta (slope parameter) range.

intensPrecision (float or int)
If stepType == ‘lin’, this specifies the step size of the stimuli intensity range. If stepType ==
‘log’, this specifies the number of steps in the stimuli intensity range.

alphaPrecision (float)
The step size of the alpha (location parameter) range.

betaPrecision (float)
The step size of the beta (slope parameter) range.

delta (float)
The guess rate.

stepType (str)
The type of steps to be used when constructing the stimuli intensity range. If ‘lin’ then evenly
spaced steps are used. If ‘log’ then logarithmically spaced steps are used. Defaults to ‘lin’.

10.13. psychopy.data - functions for storing/saving/analysing data 819

PsychoPy - Psychology software for Python, Release 2023.2.3

expectedMin (float)
The expected lower asymptote of the psychometric function (PMF).

For a Yes/No task, the PMF usually extends across the interval [0, 1]; here, expectedMin
should be set to 0.

For a 2-AFC task, the PMF spreads out across [0.5, 1.0]. Therefore, expectedMin should be
set to 0.5 in this case, and the 2-AFC psychometric function described above going to be is
used.

Currently, only Yes/No and 2-AFC designs are supported.

Defaults to 0.5, or a 2-AFC task.

prior (numpy ndarray or str)
Optional prior distribution with which to initialize the Psi Object. This can either be a numpy
ndarray object or the path to a numpy binary file (.npy) containing the ndarray.

fromFile (str)
Flag specifying whether prior is a file pathname or not.

extraInfo (dict)
Optional dictionary object used in PsychoPy’s built-in logging system.

name (str)
Optional name for the PsiHandler used in PsychoPy’s built-in logging system.

Raises
NotImplementedError

If the supplied minVal parameter implies an experimental design other than Yes/No or 2-
AFC.

_checkFinished()

checks if we are finished. Updates attribute: finished

_intensityDec()

decrement the current intensity and reset counter

_intensityInc()

increment the current intensity and reset counter

_terminate()

Remove references to ourself in experiments and terminate the loop

addData(result, intensity=None)
Deprecated since 1.79.00: This function name was ambiguous. Please use one of these instead:

• .addResponse(result, intensity)

• .addOtherData(‘dataName’, value’)

addOtherData(dataName, value)
Add additional data to the handler, to be tracked alongside the result data but not affecting the value of the
staircase

addResponse(result, intensity=None)
Add a 1 or 0 to signify a correct / detected or incorrect / missed trial. Supplying an intensity value here
indicates that you did not use the recommended intensity in your last trial and the staircase will replace its
recorded value with the one you supplied here.

10.13. psychopy.data - functions for storing/saving/analysing data 820

PsychoPy - Psychology software for Python, Release 2023.2.3

calculateNextIntensity()

Based on current intensity, counter of correct responses, and current direction.

estimateLambda()

Returns a tuple of (location, slope)

estimateThreshold(thresh, lamb=None)
Returns an intensity estimate for the provided probability.

The optional argument ‘lamb’ allows thresholds to be estimated without having to recompute the maximum
likelihood lambda.

getExp()

Return the ExperimentHandler that this handler is attached to, if any. Returns None if not attached

getOriginPathAndFile(originPath=None)
Attempts to determine the path of the script that created this data file and returns both the path to that script
and its contents. Useful to store the entire experiment with the data.

If originPath is provided (e.g. from Builder) then this is used otherwise the calling script is the originPath
(fine from a standard python script).

property intensity

The intensity (level) of the current staircase

next()

Advances to next trial and returns it.

printAsText(stimOut=None, dataOut=('all_mean', 'all_std', 'all_raw'), delim='\t', matrixOnly=False)
Exactly like saveAsText() except that the output goes to the screen instead of a file

saveAsExcel(fileName, sheetName='data', matrixOnly=False, appendFile=True,
fileCollisionMethod='rename')

Save a summary data file in Excel OpenXML format workbook (xlsx) for processing in most spreadsheet
packages. This format is compatible with versions of Excel (2007 or greater) and and with OpenOffice
(>=3.0).

It has the advantage over the simpler text files (see TrialHandler.saveAsText()) that data can be stored
in multiple named sheets within the file. So you could have a single file named after your experiment and
then have one worksheet for each participant. Or you could have one file for each participant and then
multiple sheets for repeated sessions etc.

The file extension .xlsx will be added if not given already.

The file will contain a set of values specifying the staircase level (‘intensity’) at each reversal, a list of
reversal indices (trial numbers), the raw staircase / intensity level on every trial and the corresponding
responses of the participant on every trial.

Parameters
fileName: string

the name of the file to create or append. Can include relative or absolute path.

sheetName: string
the name of the worksheet within the file

matrixOnly: True or False
If set to True then only the data itself will be output (no additional info)

10.13. psychopy.data - functions for storing/saving/analysing data 821

PsychoPy - Psychology software for Python, Release 2023.2.3

appendFile: True or False
If False any existing file with this name will be overwritten. If True then a new worksheet
will be appended. If a worksheet already exists with that name a number will be added to
make it unique.

fileCollisionMethod: string
Collision method passed to handleFileCollision() This is ignored if appendFile is
True.

saveAsJson(fileName=None, encoding='utf-8-sig', fileCollisionMethod='rename')
Serialize the object to the JSON format.

Parameters
• fileName (string, or None) – the name of the file to create or append. Can include a

relative or absolute path. If None, will not write to a file, but return an in-memory JSON
object.

• encoding (string, optional) – The encoding to use when writing the file.

• fileCollisionMethod (string) – Collision method passed to
handleFileCollision(). Can be either of ‘rename’, ‘overwrite’, or ‘fail’.

Notes

Currently, a copy of the object is created, and the copy’s .origin attribute is set to an empty string before
serializing because loading the created JSON file would sometimes fail otherwise.

saveAsPickle(fileName, fileCollisionMethod='rename')
Basically just saves a copy of self (with data) to a pickle file.

This can be reloaded if necessary and further analyses carried out.

Parameters
fileCollisionMethod: Collision method passed to handleFileCollision()

saveAsText(fileName, delim=None, matrixOnly=False, fileCollisionMethod='rename', encoding='utf-8-sig')
Write a text file with the data

Parameters
fileName: a string

The name of the file, including path if needed. The extension .tsv will be added if not
included.

delim: a string
the delimitter to be used (e.g. ‘ ‘ for tab-delimitted, ‘,’ for csv files)

matrixOnly: True/False
If True, prevents the output of the extraInfo provided at initialisation.

fileCollisionMethod:
Collision method passed to handleFileCollision()

encoding:
The encoding to use when saving a the file. Defaults to utf-8-sig.

savePosterior(fileName, fileCollisionMethod='rename')
Saves the posterior array over probLambda as a pickle file with the specified name.

10.13. psychopy.data - functions for storing/saving/analysing data 822

PsychoPy - Psychology software for Python, Release 2023.2.3

Parameters
fileCollisionMethod (string) – Collision method passed to handleFileCollision()

setExp(exp)
Sets the ExperimentHandler that this handler is attached to

Do NOT attempt to set the experiment using:

trials._exp = myExperiment

because it needs to be performed using the weakref module.

10.13.7 QuestHandler

class psychopy.data.QuestHandler(startVal, startValSd, pThreshold=0.82, nTrials=None, stopInterval=None,
method='quantile', beta=3.5, delta=0.01, gamma=0.5, grain=0.01,
range=None, extraInfo=None, minVal=None, maxVal=None,
staircase=None, originPath=None, name='', autoLog=True, **kwargs)

Class that implements the Quest algorithm for quick measurement of psychophysical thresholds.

Uses Andrew Straw’s QUEST, which is a Python port of Denis Pelli’s Matlab code.

Measures threshold using a Weibull psychometric function. Currently, it is not possible to use a different psy-
chometric function.

The Weibull psychometric function is given by the formula

Ψ(𝑥) = 𝛿𝛾 + (1 − 𝛿)[1 − (1 − 𝛾) exp(−10𝑏𝑒𝑡𝑎(𝑥−𝑇+𝜖))]

Here, 𝑥 is an intensity or a contrast (in log10 units), and 𝑇 is estimated threshold.

Quest internally shifts the psychometric function such that intensity at the user-specified threshold performance
level pThreshold (e.g., 50% in a yes-no or 75% in a 2-AFC task) is euqal to 0. The parameter 𝜖 is responsible
for this shift, and is determined automatically based on the specified pThreshold value. It is the parame-
ter Watson & Pelli (1983) introduced to perform measurements at the “optimal sweat factor”. Assuming your
QuestHandler instance is called q, you can retrieve this value via q.epsilon.

Example:

setup display/window
...
create stimulus
stimulus = visual.RadialStim(win=win, tex='sinXsin', size=1,

pos=[0,0], units='deg')
...
create staircase object
trying to find out the point where subject's response is 50 / 50
if wanted to do a 2AFC then the defaults for pThreshold and gamma
are good. As start value, we'll use 50% contrast, with SD = 20%
staircase = data.QuestHandler(0.5, 0.2,

pThreshold=0.63, gamma=0.01,
nTrials=20, minVal=0, maxVal=1)

...
while thisContrast in staircase:

setup stimulus
stimulus.setContrast(thisContrast)

(continues on next page)

10.13. psychopy.data - functions for storing/saving/analysing data 823

http://www.visionegg.org/Quest

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

stimulus.draw()
win.flip()
core.wait(0.5)
get response
...
inform QUEST of the response, needed to calculate next level
staircase.addResponse(thisResp)

...
can now access 1 of 3 suggested threshold levels
staircase.mean()
staircase.mode()
staircase.quantile(0.5) # gets the median

Typical values for pThreshold are:
• 0.82 which is equivalent to a 3 up 1 down standard staircase

• 0.63 which is equivalent to a 1 up 1 down standard staircase
(and might want gamma=0.01)

The variable(s) nTrials and/or stopSd must be specified.

beta, delta, and gamma are the parameters of the Weibull psychometric function.

Parameters
startVal:

Prior threshold estimate or your initial guess threshold.

startValSd:
Standard deviation of your starting guess threshold. Be generous with the sd as QUEST will
have trouble finding the true threshold if it’s more than one sd from your initial guess.

pThreshold
Your threshold criterion expressed as probability of response==1. An intensity offset is in-
troduced into the psychometric function so that the threshold (i.e., the midpoint of the table)
yields pThreshold.

nTrials: None or a number
The maximum number of trials to be conducted.

stopInterval: None or a number
The minimum 5-95% confidence interval required in the threshold estimate before stopping.
If both this and nTrials is specified, whichever happens first will determine when Quest will
stop.

method: ‘quantile’, ‘mean’, ‘mode’
The method used to determine the next threshold to test. If you want to get a specific threshold
level at the end of your staircasing, please use the quantile, mean, and mode methods directly.

beta: 3.5 or a number
Controls the steepness of the psychometric function.

delta: 0.01 or a number
The fraction of trials on which the observer presses blindly.

gamma: 0.5 or a number
The fraction of trials that will generate response 1 when intensity=-Inf.

10.13. psychopy.data - functions for storing/saving/analysing data 824

PsychoPy - Psychology software for Python, Release 2023.2.3

grain: 0.01 or a number
The quantization of the internal table.

range: None, or a number
The intensity difference between the largest and smallest intensity that the internal table
can store. This interval will be centered on the initial guess tGuess. QUEST assumes that
intensities outside of this range have zero prior probability (i.e., they are impossible).

extraInfo:
A dictionary (typically) that will be stored along with collected data using saveAsPickle()
or saveAsText() methods.

minVal: None, or a number
The smallest legal value for the staircase, which can be used to prevent it reaching impossible
contrast values, for instance.

maxVal: None, or a number
The largest legal value for the staircase, which can be used to prevent it reaching impossible
contrast values, for instance.

staircase: None or StairHandler
Can supply a staircase object with intensities and results. Might be useful to give the quest
algorithm more information if you have it. You can also call the importData function directly.

Additional keyword arguments will be ignored.

Notes
The additional keyword arguments **kwargs might for example be passed by the MultiStairHandler, which
expects a label keyword for each staircase. These parameters are to be ignored by the StairHandler.

_checkFinished()

checks if we are finished Updates attribute: finished

_intensity()

assigns the next intensity level

_intensityDec()

decrement the current intensity and reset counter

_intensityInc()

increment the current intensity and reset counter

_terminate()

Remove references to ourself in experiments and terminate the loop

addData(result, intensity=None)
Deprecated since 1.79.00: This function name was ambiguous. Please use one of these instead:

• .addResponse(result, intensity)

• .addOtherData(‘dataName’, value’)

addOtherData(dataName, value)
Add additional data to the handler, to be tracked alongside the result data but not affecting the value of the
staircase

addResponse(result, intensity=None)
Add a 1 or 0 to signify a correct / detected or incorrect / missed trial

Supplying an intensity value here indicates that you did not use the recommended intensity in your last trial
and the staircase will replace its recorded value with the one you supplied here.

10.13. psychopy.data - functions for storing/saving/analysing data 825

PsychoPy - Psychology software for Python, Release 2023.2.3

property beta

calculateNextIntensity()

based on current intensity and counter of correct responses

confInterval(getDifference=False)
Return estimate for the 5%–95% confidence interval (CI).

Parameters
getDifference (bool)

If True, return the width of the confidence interval (95% - 5% percentiles). If False,
return an NumPy array with estimates for the 5% and 95% boundaries.

Returns
scalar or array of length 2.

property delta

property epsilon

property gamma

getExp()

Return the ExperimentHandler that this handler is attached to, if any. Returns None if not attached

getOriginPathAndFile(originPath=None)
Attempts to determine the path of the script that created this data file and returns both the path to that script
and its contents. Useful to store the entire experiment with the data.

If originPath is provided (e.g. from Builder) then this is used otherwise the calling script is the originPath
(fine from a standard python script).

property grain

importData(intensities, results)
import some data which wasn’t previously given to the quest algorithm

incTrials(nNewTrials)
increase maximum number of trials Updates attribute: nTrials

property intensity

The intensity (level) of the current staircase

mean()

mean of Quest posterior pdf

mode()

mode of Quest posterior pdf

next()

Advances to next trial and returns it. Updates attributes; thisTrial, thisTrialN, thisIndex, finished, intensities

If the trials have ended, calling this method will raise a StopIteration error. This can be handled with code
such as:

staircase = data.QuestHandler(.......)
for eachTrial in staircase: # automatically stops when done

do stuff

10.13. psychopy.data - functions for storing/saving/analysing data 826

PsychoPy - Psychology software for Python, Release 2023.2.3

or:

staircase = data.QuestHandler(.......)
while True: # i.e. forever

try:
thisTrial = staircase.next()

except StopIteration: # we got a StopIteration error
break # break out of the forever loop

do stuff here for the trial

printAsText(stimOut=None, dataOut=('all_mean', 'all_std', 'all_raw'), delim='\t', matrixOnly=False)
Exactly like saveAsText() except that the output goes to the screen instead of a file

quantile(p=None)
quantile of Quest posterior pdf

property range

saveAsExcel(fileName, sheetName='data', matrixOnly=False, appendFile=True,
fileCollisionMethod='rename')

Save a summary data file in Excel OpenXML format workbook (xlsx) for processing in most spreadsheet
packages. This format is compatible with versions of Excel (2007 or greater) and and with OpenOffice
(>=3.0).

It has the advantage over the simpler text files (see TrialHandler.saveAsText()) that data can be stored
in multiple named sheets within the file. So you could have a single file named after your experiment and
then have one worksheet for each participant. Or you could have one file for each participant and then
multiple sheets for repeated sessions etc.

The file extension .xlsx will be added if not given already.

The file will contain a set of values specifying the staircase level (‘intensity’) at each reversal, a list of
reversal indices (trial numbers), the raw staircase / intensity level on every trial and the corresponding
responses of the participant on every trial.

Parameters
fileName: string

the name of the file to create or append. Can include relative or absolute path.

sheetName: string
the name of the worksheet within the file

matrixOnly: True or False
If set to True then only the data itself will be output (no additional info)

appendFile: True or False
If False any existing file with this name will be overwritten. If True then a new worksheet
will be appended. If a worksheet already exists with that name a number will be added to
make it unique.

fileCollisionMethod: string
Collision method passed to handleFileCollision() This is ignored if appendFile is
True.

saveAsJson(fileName=None, encoding='utf-8-sig', fileCollisionMethod='rename')
Serialize the object to the JSON format.

Parameters

10.13. psychopy.data - functions for storing/saving/analysing data 827

PsychoPy - Psychology software for Python, Release 2023.2.3

• fileName (string, or None) – the name of the file to create or append. Can include a
relative or absolute path. If None, will not write to a file, but return an in-memory JSON
object.

• encoding (string, optional) – The encoding to use when writing the file.

• fileCollisionMethod (string) – Collision method passed to
handleFileCollision(). Can be either of ‘rename’, ‘overwrite’, or ‘fail’.

Notes

Currently, a copy of the object is created, and the copy’s .origin attribute is set to an empty string before
serializing because loading the created JSON file would sometimes fail otherwise.

saveAsPickle(fileName, fileCollisionMethod='rename')
Basically just saves a copy of self (with data) to a pickle file.

This can be reloaded if necessary and further analyses carried out.

Parameters
fileCollisionMethod: Collision method passed to handleFileCollision()

saveAsText(fileName, delim=None, matrixOnly=False, fileCollisionMethod='rename', encoding='utf-8-sig')
Write a text file with the data

Parameters
fileName: a string

The name of the file, including path if needed. The extension .tsv will be added if not
included.

delim: a string
the delimitter to be used (e.g. ‘ ‘ for tab-delimitted, ‘,’ for csv files)

matrixOnly: True/False
If True, prevents the output of the extraInfo provided at initialisation.

fileCollisionMethod:
Collision method passed to handleFileCollision()

encoding:
The encoding to use when saving a the file. Defaults to utf-8-sig.

sd()

standard deviation of Quest posterior pdf

setExp(exp)
Sets the ExperimentHandler that this handler is attached to

Do NOT attempt to set the experiment using:

trials._exp = myExperiment

because it needs to be performed using the weakref module.

simulate(tActual)
returns a simulated user response to the next intensity level presented by Quest, need to supply the actual
threshold level

10.13. psychopy.data - functions for storing/saving/analysing data 828

PsychoPy - Psychology software for Python, Release 2023.2.3

10.13.8 QuestPlusHandler

class psychopy.data.QuestPlusHandler(nTrials, intensityVals, thresholdVals, slopeVals, lowerAsymptoteVals,
lapseRateVals, responseVals=('Yes', 'No'), prior=None,
startIntensity=None, psychometricFunc='weibull',
stimScale='log10', stimSelectionMethod='minEntropy',
stimSelectionOptions=None, paramEstimationMethod='mean',
extraInfo=None, name='', label='', **kwargs)

QUEST+ implementation. Currently only supports parameter estimation of a Weibull-shaped psychometric func-
tion.

The parameter estimates can be retrieved via the .paramEstimate attribute, which returns a dictionary whose
keys correspond to the names of the estimated parameters (i.e., QuestPlusHandler.paramEstimate[‘threshold’]
will provide the threshold estimate). Retrieval of the marginal posterior distributions works similarly: they can
be accessed via the .posterior dictionary.

Parameters
• nTrials (int) – Number of trials to run.

• intensityVals (collection of floats) – The complete set of possible stimulus lev-
els. Note that the stimulus levels are not necessarily limited to intensities (as the name of
this parameter implies), but they could also be contrasts, durations, weights, etc.

• thresholdVals (float or collection of floats) – The complete set of possible
threshold values.

• slopeVals (float or collection of floats) – The complete set of possible slope
values.

• lowerAsymptoteVals (float or collection of floats) – The complete set of pos-
sible values of the lower asymptote. This corresponds to false-alarm rates in yes-no tasks,
and to the guessing rate in n-AFC tasks. Therefore, when performing an n-AFC experiment,
the collection should consists of a single value only (e.g., [0.5] for 2-AFC, [0.33] for 3-AFC,
[0.25] for 4-AFC, etc.).

• lapseRateVals (float or collection of floats) – The complete set of possible
lapse rate values. The lapse rate defines the upper asymptote of the psychometric function,
which will be at 1 - lapse rate.

• responseVals (collection) – The complete set of possible response outcomes. Cur-
rently, only two outcomes are supported: the first element must correspond to a successful
response / stimulus detection, and the second one to an unsuccessful or incorrect response.
For example, in a yes-no task, one would use [‘Yes’, ‘No’], and in an n-AFC task, [‘Correct’,
‘Incorrect’]; or, alternatively, the less verbose [1, 0] in both cases.

• prior (dict of floats) – The prior probabilities to assign to the parameter val-
ues. The dictionary keys correspond to the respective parameters: threshold, slope,
lowerAsymptote, lapseRate.

• startIntensity (float) – The very first intensity (or stimulus level) to present.

• psychometricFunc ({'weibull'}) – The psychometric function to fit. Currently, only the
Weibull function is supported.

• stimScale ({'log10', 'dB', 'linear'}) – The scale on which the stimulus intensities (or
stimulus levels) are provided. Currently supported are the decadic logarithm, log10; deci-
bels, dB; and a linear scale, linear.

10.13. psychopy.data - functions for storing/saving/analysing data 829

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

• stimSelectionMethod ({'minEntropy', 'minNEntropy'}) – How to select the next stim-
ulus. minEntropy will select the stimulus that will minimize the expected entropy. minNEn-
tropy will randomly pick pick a stimulus from the set of stimuli that will produce the smallest,
2nd-smallest, . . . , N-smallest entropy. This can be used to ensure some variation in the stim-
ulus selection (and subsequent presentation) procedure. The number N will then have to be
specified via the stimSelectionOption parameter.

• stimSelectionOptions (dict) – This parameter further controls how to select the next
stimulus in case stimSelectionMethod=minNEntropy. The dictionary supports two keys: N
and maxConsecutiveReps. N defines the number of “best” stimuli (i.e., those which produce
the smallest N expected entropies) from which to randomly select a stimulus for presentation
in the next trial. maxConsecutiveReps defines how many times the exact same stimulus can
be presented on consecutive trials. For example, to randomly pick a stimulus from those
which will produce the 4 smallest expected entropies, and to allow the same stimulus to be
presented on two consecutive trials max, use stimSelectionOptions=dict(N=4, maxConsec-
utiveReps=2). To achieve reproducible results, you may pass a seed to the random number
generator via the randomSeed key.

• paramEstimationMethod ({'mean', 'mode'}) – How to calculate the final parameter es-
timate. mean returns the mean of each parameter, weighted by their respective posterior
probabilities. mode returns the the parameters at the peak of the posterior distribution.

• extraInfo (dict) – Additional information to store along the actual QUEST+ staircase
data.

• name (str) – The name of the QUEST+ staircase object. This will appear in the PsychoPy
logs.

• label (str) – Only used by MultiStairHandler, and otherwise ignored.

• kwargs (dict) – Additional keyword arguments. These might be passed, for example,
through a MultiStairHandler, and will be ignored. A warning will be emitted whenever
additional keyword arguments have been passed.

Warns
RuntimeWarning – If an unknown keyword argument was passed.

Notes

The QUEST+ algorithm was first described by1.

_intensityDec()

decrement the current intensity and reset counter

_intensityInc()

increment the current intensity and reset counter

_terminate()

Remove references to ourself in experiments and terminate the loop

addData(result, intensity=None)
Deprecated since 1.79.00: This function name was ambiguous. Please use one of these instead:

• .addResponse(result, intensity)

• .addOtherData(‘dataName’, value’)

1 Andrew B. Watson (2017). QUEST+: A general multidimensional Bayesian adaptive psychometric method. Journal of Vision, 17(3):10. doi:
10.1167/17.3.10.

10.13. psychopy.data - functions for storing/saving/analysing data 830

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

addOtherData(dataName, value)
Add additional data to the handler, to be tracked alongside the result data but not affecting the value of the
staircase

addResponse(response, intensity=None)
Add a 1 or 0 to signify a correct / detected or incorrect / missed trial.

This is essential to advance the staircase to a new intensity level!

Supplying an intensity value here indicates that you did not use the recommended intensity in your last trial
and the staircase will replace its recorded value with the one you supplied here.

calculateNextIntensity()

Based on current intensity, counter of correct responses, and current direction.

getExp()

Return the ExperimentHandler that this handler is attached to, if any. Returns None if not attached

getOriginPathAndFile(originPath=None)
Attempts to determine the path of the script that created this data file and returns both the path to that script
and its contents. Useful to store the entire experiment with the data.

If originPath is provided (e.g. from Builder) then this is used otherwise the calling script is the originPath
(fine from a standard python script).

property intensity

The intensity (level) of the current staircase

next()

Advances to next trial and returns it. Updates attributes; thisTrial, thisTrialN and thisIndex.

If the trials have ended, calling this method will raise a StopIteration error. This can be handled with code
such as:

staircase = data.StairHandler(.......)
for eachTrial in staircase: # automatically stops when done

do stuff

or:

staircase = data.StairHandler(.......)
while True: # ie forever

try:
thisTrial = staircase.next()

except StopIteration: # we got a StopIteration error
break # break out of the forever loop

do stuff here for the trial

property paramEstimate

The estimated parameters of the psychometric function.

Returns
A dictionary whose keys correspond to the names of the estimated parameters.

Return type
dict of floats

10.13. psychopy.data - functions for storing/saving/analysing data 831

https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

property posterior

The marginal posterior distributions.

Returns
A dictionary whose keys correspond to the names of the estimated parameters.

Return type
dict of np.ndarrays

printAsText(stimOut=None, dataOut=('all_mean', 'all_std', 'all_raw'), delim='\t', matrixOnly=False)
Exactly like saveAsText() except that the output goes to the screen instead of a file

property prior

The marginal prior distributions.

Returns
A dictionary whose keys correspond to the names of the parameters.

Return type
dict of np.ndarrays

saveAsExcel(fileName, sheetName='data', matrixOnly=False, appendFile=True,
fileCollisionMethod='rename')

Save a summary data file in Excel OpenXML format workbook (xlsx) for processing in most spreadsheet
packages. This format is compatible with versions of Excel (2007 or greater) and and with OpenOffice
(>=3.0).

It has the advantage over the simpler text files (see TrialHandler.saveAsText()) that data can be stored
in multiple named sheets within the file. So you could have a single file named after your experiment and
then have one worksheet for each participant. Or you could have one file for each participant and then
multiple sheets for repeated sessions etc.

The file extension .xlsx will be added if not given already.

The file will contain a set of values specifying the staircase level (‘intensity’) at each reversal, a list of
reversal indices (trial numbers), the raw staircase / intensity level on every trial and the corresponding
responses of the participant on every trial.

Parameters
fileName: string

the name of the file to create or append. Can include relative or absolute path.

sheetName: string
the name of the worksheet within the file

matrixOnly: True or False
If set to True then only the data itself will be output (no additional info)

appendFile: True or False
If False any existing file with this name will be overwritten. If True then a new worksheet
will be appended. If a worksheet already exists with that name a number will be added to
make it unique.

fileCollisionMethod: string
Collision method passed to handleFileCollision() This is ignored if appendFile is
True.

saveAsJson(fileName=None, encoding='utf-8-sig', fileCollisionMethod='rename')
Serialize the object to the JSON format.

Parameters

10.13. psychopy.data - functions for storing/saving/analysing data 832

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

• fileName (string, or None) – the name of the file to create or append. Can include a
relative or absolute path. If None, will not write to a file, but return an in-memory JSON
object.

• encoding (string, optional) – The encoding to use when writing the file.

• fileCollisionMethod (string) – Collision method passed to
handleFileCollision(). Can be either of ‘rename’, ‘overwrite’, or ‘fail’.

Notes

Currently, a copy of the object is created, and the copy’s .origin attribute is set to an empty string before
serializing because loading the created JSON file would sometimes fail otherwise.

saveAsPickle(fileName, fileCollisionMethod='rename')
Basically just saves a copy of self (with data) to a pickle file.

This can be reloaded if necessary and further analyses carried out.

Parameters
fileCollisionMethod: Collision method passed to handleFileCollision()

saveAsText(fileName, delim=None, matrixOnly=False, fileCollisionMethod='rename', encoding='utf-8-sig')
Write a text file with the data

Parameters
fileName: a string

The name of the file, including path if needed. The extension .tsv will be added if not
included.

delim: a string
the delimitter to be used (e.g. ‘ ‘ for tab-delimitted, ‘,’ for csv files)

matrixOnly: True/False
If True, prevents the output of the extraInfo provided at initialisation.

fileCollisionMethod:
Collision method passed to handleFileCollision()

encoding:
The encoding to use when saving a the file. Defaults to utf-8-sig.

setExp(exp)
Sets the ExperimentHandler that this handler is attached to

Do NOT attempt to set the experiment using:

trials._exp = myExperiment

because it needs to be performed using the weakref module.

property startIntensity

10.13. psychopy.data - functions for storing/saving/analysing data 833

PsychoPy - Psychology software for Python, Release 2023.2.3

10.13.9 MultiStairHandler

class psychopy.data.MultiStairHandler(stairType='simple', method='random', conditions=None,
nTrials=50, randomSeed=None, originPath=None, name='',
autoLog=True)

A Handler to allow easy interleaved staircase procedures (simple or QUEST).

Parameters for the staircases, as used by the relevant StairHandler or QuestHandler (e.g. the startVal, min-
Val, maxVal. . .) should be specified in the conditions list and may vary between each staircase. In particular, the
conditions must include a startVal (because this is a required argument to the above handlers), a label to tag the
staircase and a startValSd (only for QUEST staircases). Any parameters not specified in the conditions file will
revert to the default for that individual handler.

If you need to customize the behaviour further you may want to look at the recipe on interleavedStairs.

Params
stairType: ‘simple’, ‘quest’, or ‘questplus’

Use a StairHandler, a QuestHandler, or a
QuestPlusHandler.

method: ‘random’, ‘fullRandom’, or ‘sequential’
If random, stairs are shuffled in each repeat but not randomized more than that (so you can’t
have 3 repeats of the same staircase in a row unless it’s the only one still running). If fullRan-
dom, the staircase order is “fully” randomized, meaning that, theoretically, a large number
of subsequent trials could invoke the same staircase repeatedly. If sequential, don’t perform
any randomization.

conditions: a list of dictionaries specifying conditions
Can be used to control parameters for the different staircases. Can be imported from an Excel
file using psychopy.data.importConditions MUST include keys providing, ‘startVal’, ‘label’
and ‘startValSd’ (QUEST only). The ‘label’ will be used in data file saving so should be
unique. See Example Usage below.

nTrials=50
Minimum trials to run (but may take more if the staircase hasn’t also met its minimal rever-
sals. See StairHandler

randomSeed
[int or None] The seed with which to initialize the random number generator (RNG). If None
(default), do not initialize the RNG with a specific value.

Example usage:

conditions=[
{'label':'low', 'startVal': 0.1, 'ori':45},
{'label':'high','startVal': 0.8, 'ori':45},
{'label':'low', 'startVal': 0.1, 'ori':90},
{'label':'high','startVal': 0.8, 'ori':90},
]

stairs = data.MultiStairHandler(conditions=conditions, nTrials=50)

for thisIntensity, thisCondition in stairs:
thisOri = thisCondition['ori']

do something with thisIntensity and thisOri

(continues on next page)

10.13. psychopy.data - functions for storing/saving/analysing data 834

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

stairs.addResponse(correctIncorrect) # this is ESSENTIAL

save data as multiple formats
stairs.saveDataAsExcel(fileName) # easy to browse
stairs.saveAsPickle(fileName) # contains more info

Raises
ValueError – If an unknown randomization option was passed via the method keyword argu-
ment.

_startNewPass()

Create a new iteration of the running staircases for this pass.

This is not normally needed by the user - it gets called at __init__ and every time that next() runs out of
trials for this pass.

_terminate()

Remove references to ourself in experiments and terminate the loop

abortCurrentTrial(action='random')
Abort the current trial (staircase).

Calling this during an experiment abort the current staircase used this trial. The current staircase will be
reshuffled into available staircases depending on the action parameter.

Parameters
action (str) – Action to take with the aborted trial. Can be either of ‘random’, or ‘append’.
The default action is ‘random’.

Notes

• When using action=’random’, the RNG state for the trial handler is not used.

addData(result, intensity=None)
Deprecated 1.79.00: It was ambiguous whether you were adding the response (0 or 1) or some other data
concerning the trial so there is now a pair of explicit methods:

• addResponse(corr,intensity) #some data that alters the next
trial value

• addOtherData(‘RT’, reactionTime) #some other data that won’t
control staircase

addOtherData(name, value)
Add some data about the current trial that will not be used to control the staircase(s) such as reaction time
data

addResponse(result, intensity=None)
Add a 1 or 0 to signify a correct / detected or incorrect / missed trial

This is essential to advance the staircase to a new intensity level!

getExp()

Return the ExperimentHandler that this handler is attached to, if any. Returns None if not attached

10.13. psychopy.data - functions for storing/saving/analysing data 835

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

getOriginPathAndFile(originPath=None)
Attempts to determine the path of the script that created this data file and returns both the path to that script
and its contents. Useful to store the entire experiment with the data.

If originPath is provided (e.g. from Builder) then this is used otherwise the calling script is the originPath
(fine from a standard python script).

property intensity

The intensity (level) of the current staircase

next()

Advances to next trial and returns it.

This can be handled with code such as:

staircase = data.MultiStairHandler(.......)
for eachTrial in staircase: # automatically stops when done

do stuff here for the trial

or:

staircase = data.MultiStairHandler(.......)
while True: # ie forever

try:
thisTrial = staircase.next()

except StopIteration: # we got a StopIteration error
break # break out of the forever loop

do stuff here for the trial

printAsText(delim='\t', matrixOnly=False)
Write the data to the standard output stream

Parameters
delim: a string

the delimitter to be used (e.g. ‘ ‘ for tab-delimitted, ‘,’ for csv files)

matrixOnly: True/False
If True, prevents the output of the extraInfo provided at initialisation.

saveAsExcel(fileName, matrixOnly=False, appendFile=False, fileCollisionMethod='rename')
Save a summary data file in Excel OpenXML format workbook (xlsx) for processing in most spreadsheet
packages. This format is compatible with versions of Excel (2007 or greater) and with OpenOffice (>=3.0).

It has the advantage over the simpler text files (see TrialHandler.saveAsText()) that the data from each
staircase will be save in the same file, with the sheet name coming from the ‘label’ given in the dictionary
of conditions during initialisation of the Handler.

The file extension .xlsx will be added if not given already.

The file will contain a set of values specifying the staircase level (‘intensity’) at each reversal, a list of rever-
sal indices (trial numbers), the raw staircase/intensity level on every trial and the corresponding responses
of the participant on every trial.

Parameters
fileName: string

the name of the file to create or append. Can include relative or absolute path

10.13. psychopy.data - functions for storing/saving/analysing data 836

PsychoPy - Psychology software for Python, Release 2023.2.3

matrixOnly: True or False
If set to True then only the data itself will be output (no additional info)

appendFile: True or False
If False any existing file with this name will be overwritten. If True then a new worksheet
will be appended. If a worksheet already exists with that name a number will be added to
make it unique.

fileCollisionMethod: string
Collision method passed to handleFileCollision() This is ignored if append is True.

saveAsJson(fileName=None, encoding='utf-8-sig', fileCollisionMethod='rename')
Serialize the object to the JSON format.

Parameters
• fileName (string, or None) – the name of the file to create or append. Can include a

relative or absolute path. If None, will not write to a file, but return an in-memory JSON
object.

• encoding (string, optional) – The encoding to use when writing the file.

• fileCollisionMethod (string) – Collision method passed to
handleFileCollision(). Can be either of ‘rename’, ‘overwrite’, or ‘fail’.

Notes

Currently, a copy of the object is created, and the copy’s .origin attribute is set to an empty string before
serializing because loading the created JSON file would sometimes fail otherwise.

saveAsPickle(fileName, fileCollisionMethod='rename')
Saves a copy of self (with data) to a pickle file.

This can be reloaded later and further analyses carried out.

Parameters
fileCollisionMethod: Collision method passed to handleFileCollision()

saveAsText(fileName, delim=None, matrixOnly=False, fileCollisionMethod='rename', encoding='utf-8-sig')
Write out text files with the data.

For MultiStairHandler this will output one file for each staircase that was run, with _label added to the
fileName that you specify above (label comes from the condition dictionary you specified when you created
the Handler).

Parameters
fileName: a string

The name of the file, including path if needed. The extension .tsv will be added if not
included.

delim: a string
the delimiter to be used (e.g. ‘ ‘ for tab-delimited, ‘,’ for csv files)

matrixOnly: True/False
If True, prevents the output of the extraInfo provided at initialisation.

fileCollisionMethod:
Collision method passed to handleFileCollision()

encoding:
The encoding to use when saving a the file. Defaults to utf-8-sig.

10.13. psychopy.data - functions for storing/saving/analysing data 837

PsychoPy - Psychology software for Python, Release 2023.2.3

setExp(exp)
Sets the ExperimentHandler that this handler is attached to

Do NOT attempt to set the experiment using:

trials._exp = myExperiment

because it needs to be performed using the weakref module.

10.13.10 FitWeibull

class psychopy.data.FitWeibull(xx, yy, sems=1.0, guess=None, display=1, expectedMin=0.5,
optimize_kws=None)

Fit a Weibull function (either 2AFC or YN) of the form:

y = chance + (1.0-chance)*(1-exp(-(xx/alpha)**(beta)))

and with inverse:

x = alpha * (-log((1.0-y)/(1-chance)))**(1.0/beta)

After fitting the function you can evaluate an array of x-values with fit.eval(x), retrieve the inverse of the
function with fit.inverse(y) or retrieve the parameters from fit.params (a list with [alpha, beta])

_doFit()

The Fit class that derives this needs to specify its _evalFunction

eval(xx, params=None)
Evaluate xx for the current parameters of the model, or for arbitrary params if these are given.

inverse(yy, params=None)
Evaluate yy for the current parameters of the model, or for arbitrary params if these are given.

10.13.11 FitLogistic

class psychopy.data.FitLogistic(xx, yy, sems=1.0, guess=None, display=1, expectedMin=0.5,
optimize_kws=None)

Fit a Logistic function (either 2AFC or YN) of the form:

y = chance + (1-chance)/(1+exp((PSE-xx)*JND))

and with inverse:

x = PSE - log((1-chance)/(yy-chance) - 1)/JND

After fitting the function you can evaluate an array of x-values with fit.eval(x), retrieve the inverse of the
function with fit.inverse(y) or retrieve the parameters from fit.params (a list with [PSE, JND])

_doFit()

The Fit class that derives this needs to specify its _evalFunction

eval(xx, params=None)
Evaluate xx for the current parameters of the model, or for arbitrary params if these are given.

10.13. psychopy.data - functions for storing/saving/analysing data 838

PsychoPy - Psychology software for Python, Release 2023.2.3

inverse(yy, params=None)
Evaluate yy for the current parameters of the model, or for arbitrary params if these are given.

10.13.12 FitNakaRushton

class psychopy.data.FitNakaRushton(xx, yy, sems=1.0, guess=None, display=1, expectedMin=0.5,
optimize_kws=None)

Fit a Naka-Rushton function of the form:

yy = rMin + (rMax-rMin) * xx**n/(xx**n+c50**n)

After fitting the function you can evaluate an array of x-values with fit.eval(x), retrieve the inverse of the
function with fit.inverse(y) or retrieve the parameters from fit.params (a list with [rMin, rMax, c50,
n])

Note that this differs from most of the other functions in not using a value for the expected minimum. Rather, it
fits this as one of the parameters of the model.

_doFit()

The Fit class that derives this needs to specify its _evalFunction

eval(xx, params=None)
Evaluate xx for the current parameters of the model, or for arbitrary params if these are given.

inverse(yy, params=None)
Evaluate yy for the current parameters of the model, or for arbitrary params if these are given.

10.13.13 FitCumNormal

class psychopy.data.FitCumNormal(xx, yy, sems=1.0, guess=None, display=1, expectedMin=0.5,
optimize_kws=None)

Fit a Cumulative Normal function (aka error function or erf) of the form:

y = chance + (1-chance)*((special.erf((xx-xShift)/(sqrt(2)*sd))+1)*0.5)

and with inverse:

x = xShift+sqrt(2)*sd*(erfinv(((yy-chance)/(1-chance)-.5)*2))

After fitting the function you can evaluate an array of x-values with fit.eval(x), retrieve the inverse of the function
with fit.inverse(y) or retrieve the parameters from fit.params (a list with [centre, sd] for the Gaussian distribution
forming the cumulative)

NB: Prior to version 1.74 the parameters had different meaning, relating to xShift and slope of the function
(similar to 1/sd). Although that is more in with the parameters for the Weibull fit, for instance, it is less in keeping
with standard expectations of normal (Gaussian distributions) so in version 1.74.00 the parameters became the
[centre,sd] of the normal distribution.

_doFit()

The Fit class that derives this needs to specify its _evalFunction

eval(xx, params=None)
Evaluate xx for the current parameters of the model, or for arbitrary params if these are given.

10.13. psychopy.data - functions for storing/saving/analysing data 839

PsychoPy - Psychology software for Python, Release 2023.2.3

inverse(yy, params=None)
Evaluate yy for the current parameters of the model, or for arbitrary params if these are given.

10.13.14 importConditions()

psychopy.data.importConditions(fileName, returnFieldNames=False, selection='')
Imports a list of conditions from an .xlsx, .csv, or .pkl file

The output is suitable as an input to TrialHandler trialList or to MultiStairHandler as a conditions list.

If fileName ends with:

• .csv: import as a comma-separated-value file
(header + row x col)

• .xlsx: import as Excel 2007 (xlsx) files.
No support for older (.xls) is planned.

• .pkl: import from a pickle file as list of lists
(header + row x col)

The file should contain one row per type of trial needed and one column for each parameter that defines the trial
type. The first row should give parameter names, which should:

• be unique

• begin with a letter (upper or lower case)

• contain no spaces or other punctuation (underscores are permitted)

selection is used to select a subset of condition indices to be used It can be a list/array of indices, a python slice
object or a string to be parsed as either option. e.g.:

• “1,2,4” or [1,2,4] or (1,2,4) are the same

• “2:5” # 2, 3, 4 (doesn’t include last whole value)

• “-10:2:” # tenth from last to the last in steps of 2

• slice(-10, 2, None) # the same as above

• random(5) * 8 # five random vals 0-7

10.13.15 functionFromStaircase()

psychopy.data.functionFromStaircase(intensities, responses, bins=10)
Create a psychometric function by binning data from a staircase procedure. Although the default is 10 bins Jon
now always uses ‘unique’ bins (fewer bins looks pretty but leads to errors in slope estimation)

usage:

intensity, meanCorrect, n = functionFromStaircase(intensities,
responses, bins)

where:
intensities

are a list (or array) of intensities to be binned

10.13. psychopy.data - functions for storing/saving/analysing data 840

PsychoPy - Psychology software for Python, Release 2023.2.3

responses
are a list of 0,1 each corresponding to the equivalent intensity value

bins
can be an integer (giving that number of bins) or ‘unique’ (each bin is made from aa data for exactly
one intensity value)

intensity
a numpy array of intensity values (where each is the center of an intensity bin)

meanCorrect
a numpy array of mean % correct in each bin

n
a numpy array of number of responses contributing to each mean

10.13.16 bootStraps()

psychopy.data.bootStraps(dat, n=1)
Create a list of n bootstrapped resamples of the data

SLOW IMPLEMENTATION (Python for-loop)

Usage:
out = bootStraps(dat, n=1)

Where:
dat

an NxM or 1xN array (each row is a different condition, each column is a different trial)

n
number of bootstrapped resamples to create

out
• dim[0]=conditions

• dim[1]=trials

• dim[2]=resamples

10.14 Encryption

Some labs may wish to better protect their data from casual inspection or accidental disclosure. This is possible within
using a separate python package, pyFileSec, which grew out of . pyFileSec is distributed with the StandAlone versions
of , or can be installed using pip or easy_install via https://pypi.python.org/pypi/PyFileSec/

Some elaboration of pyFileSec usage and security strategy can be found here: https://pythonhosted.org/PyFileSec

Basic usage is illustrated in the Coder demo > misc > encrypt_data.py

10.14. Encryption 841

https://pypi.python.org/pypi/PyFileSec/
https://pythonhosted.org/PyFileSec

PsychoPy - Psychology software for Python, Release 2023.2.3

10.15 psychopy.event - for keypresses and mouse clicks

class psychopy.event.Mouse(visible=True, newPos=None, win=None)
Easy way to track what your mouse is doing.

It needn’t be a class, but since Joystick works better as a class this may as well be one too for consistency

Create your visual.Window before creating a Mouse.

Parameters
visible

[True or False] makes the mouse invisible if necessary

newPos
[None or [x,y]] gives the mouse a particular starting position (pygame Window only)

win
[None or Window] the window to which this mouse is attached (the first found if None pro-
vided)

clickReset(buttons=(0, 1, 2))
Reset a 3-item list of core.Clocks use in timing button clicks.

The pyglet mouse-button-pressed handler uses their clock.getLastResetTime() when a button is pressed so
the user can reset them at stimulus onset or offset to measure RT. The default is to reset all, but they can be
reset individually as specified in buttons list

getPos()

Returns the current position of the mouse, in the same units as the Window (0,0) is at centre

getPressed(getTime=False)
Returns a 3-item list indicating whether or not buttons 0,1,2 are currently pressed.

If getTime=True (False by default) then getPressed will return all buttons that have been pressed since the
last call to mouse.clickReset as well as their time stamps:

buttons = mouse.getPressed()
buttons, times = mouse.getPressed(getTime=True)

Typically you want to call mouse.clickReset() at stimulus onset, then after the button is pressed in reaction
to it, the total time elapsed from the last reset to click is in mouseTimes. This is the actual RT, regardless
of when the call to getPressed() was made.

getRel()

Returns the new position of the mouse relative to the last call to getRel or getPos, in the same units as the
Window.

getVisible()

Gets the visibility of the mouse (1 or 0)

getWheelRel()

Returns the travel of the mouse scroll wheel since last call. Returns a numpy.array(x,y) but for most wheels
y is the only value that will change (except Mac mighty mice?)

isPressedIn(shape, buttons=(0, 1, 2))
Returns True if the mouse is currently inside the shape and one of the mouse buttons is pressed. The default
is that any of the 3 buttons can indicate a click; for only a left-click, specify buttons=[0]:

10.15. psychopy.event - for keypresses and mouse clicks 842

PsychoPy - Psychology software for Python, Release 2023.2.3

if mouse.isPressedIn(shape):
if mouse.isPressedIn(shape, buttons=[0]): # left-clicks only

Ideally, shape can be anything that has a .contains() method, like ShapeStim or Polygon. Not tested with
ImageStim.

mouseMoveTime()

mouseMoved(distance=None, reset=False)
Determine whether/how far the mouse has moved.

With no args returns true if mouse has moved at all since last getPos() call, or distance (x,y) can be set to
pos or neg distances from x and y to see if moved either x or y that far from lastPos, or distance can be an
int/float to test if new coordinates are more than that far in a straight line from old coords.

Retrieve time of last movement from self.mouseClock.getTime().

Reset can be to ‘here’ or to screen coords (x,y) which allows measuring distance from there to mouse when
moved. If reset is (x,y) and distance is set, then prevPos is set to (x,y) and distance from (x,y) to here
is checked, mouse.lastPos is set as current (x,y) by getPos(), mouse.prevPos holds lastPos from last time
mouseMoved was called.

setExclusive(exclusivity)
Binds the mouse to the experiment window. Only works in Pyglet.

In multi-monitor settings, or with a window that is not fullscreen, the mouse pointer can drift, and thereby
PsychoPy might not get the events from that window. setExclusive(True) works with Pyglet to bind the
mouse to the experiment window.

Note that binding the mouse pointer to a window will cause the pointer to vanish, and absolute positions
will no longer be meaningful getPos() returns [0, 0] in this case.

setPos(newPos=(0, 0))
Sets the current position of the mouse, in the same units as the Window. (0,0) is the center.

Parameters
newPos

[(x,y) or [x,y]] the new position on the screen

setVisible(visible)
Sets the visibility of the mouse to 1 or 0

NB when the mouse is not visible its absolute position is held at (0, 0) to prevent it from going off the screen
and getting lost! You can still use getRel() in that case.

property units

The units for this mouse (will match the current units for the Window it lives in)

psychopy.event.clearEvents(eventType=None)
Clears all events currently in the event buffer.

Optional argument, eventType, specifies only certain types to be cleared.

Parameters
eventType

[None, ‘mouse’, ‘joystick’, ‘keyboard’] If this is not None then only events of the given type
are cleared

10.15. psychopy.event - for keypresses and mouse clicks 843

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.event.waitKeys(maxWait=inf, keyList=None, modifiers=False, timeStamped=False,
clearEvents=True)

Same as ~psychopy.event.getKeys, but halts everything (including drawing) while awaiting input from keyboard.

Parameters
maxWait

[any numeric value.] Maximum number of seconds period and which keys to wait for. De-
fault is float(‘inf’) which simply waits forever.

keyList
[None or []] Allows the user to specify a set of keys to check for. Only keypresses from
this set of keys will be removed from the keyboard buffer. If the keyList is None, all keys
will be checked and the key buffer will be cleared completely. NB, pygame doesn’t return
timestamps (they are always 0)

modifiers
[False or True] If True will return a list of tuples instead of a list of keynames. Each tuple
has (keyname, modifiers). The modifiers are a dict of keyboard modifier flags keyed by the
modifier name (eg. ‘shift’, ‘ctrl’).

timeStamped
[False, True, or Clock] If True will return a list of tuples instead of a list of keynames. Each
tuple has (keyname, time). If a core.Clock is given then the time will be relative to the Clock’s
last reset.

clearEvents
[True or False] Whether to clear the keyboard event buffer (and discard preceding key-
presses) before starting to monitor for new keypresses.

Returns None if times out.

psychopy.event.getKeys(keyList=None, modifiers=False, timeStamped=False)
Returns a list of keys that were pressed.

Parameters
keyList

[None or []] Allows the user to specify a set of keys to check for. Only keypresses from
this set of keys will be removed from the keyboard buffer. If the keyList is None, all keys
will be checked and the key buffer will be cleared completely. NB, pygame doesn’t return
timestamps (they are always 0)

modifiers
[False or True] If True will return a list of tuples instead of a list of keynames. Each tuple
has (keyname, modifiers). The modifiers are a dict of keyboard modifier flags keyed by the
modifier name (eg. ‘shift’, ‘ctrl’).

timeStamped
[False, True, or Clock] If True will return a list of tuples instead of a list of keynames. Each
tuple has (keyname, time). If a core.Clock is given then the time will be relative to the Clock’s
last reset.

Author
• 2003 written by Jon Peirce

• 2009 keyList functionality added by Gary Strangman

• 2009 timeStamped code provided by Dave Britton

• 2016 modifiers code provided by 5AM Solutions

10.15. psychopy.event - for keypresses and mouse clicks 844

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.event.xydist(p1=(0.0, 0.0), p2=(0.0, 0.0))
Helper function returning the cartesian distance between p1 and p2

10.16 psychopy.filters - helper functions for creating filters

This module has moved to psychopy.visual.filters but you can still (currently) import it as psychopy.filters

Various useful functions for creating filters and textures (e.g. for PatchStim)

psychopy.visual.filters.butter2d_bp(size, cutin, cutoff, n)
Bandpass Butterworth filter in two dimensions.

Parameters
size

[tuple] size of the filter

cutin
[float] relative cutin frequency of the filter (0 - 1.0)

cutoff
[float] relative cutoff frequency of the filter (0 - 1.0)

n
[int, optional] order of the filter, the higher n is the sharper the transition is.

Returns
numpy.ndarray

filter kernel in 2D centered

psychopy.visual.filters.butter2d_hp(size, cutoff, n=3)
Highpass Butterworth filter in two dimensions.

Parameters
size

[tuple] size of the filter

cutoff
[float] relative cutoff frequency of the filter (0 - 1.0)

n
[int, optional] order of the filter, the higher n is the sharper the transition is.

Returns
numpy.ndarray:

filter kernel in 2D centered

psychopy.visual.filters.butter2d_lp(size, cutoff, n=3)
Create lowpass 2D Butterworth filter.

Parameters
size

[tuple] size of the filter

cutoff
[float] relative cutoff frequency of the filter (0 - 1.0)

10.16. psychopy.filters - helper functions for creating filters 845

PsychoPy - Psychology software for Python, Release 2023.2.3

n
[int, optional] order of the filter, the higher n is the sharper the transition is.

Returns
numpy.ndarray

filter kernel in 2D centered

psychopy.visual.filters.butter2d_lp_elliptic(size, cutoff_x, cutoff_y, n=3, alpha=0, offset_x=0,
offset_y=0)

Butterworth lowpass filter of any elliptical shape.

Parameters
size

[tuple] size of the filter

cutoff_x, cutoff_y
[float, float] relative cutoff frequency of the filter (0 - 1.0) for x and y axes

alpha
[float, optional] rotation angle (in radians)

offset_x, offset_y
[float] offsets for the ellipsoid

n
[int, optional] order of the filter, the higher n is the sharper the transition is.

Returns
numpy.ndarray:

filter kernel in 2D centered

psychopy.visual.filters.conv2d(smaller, larger)
Convolve a pair of 2d numpy matrices.

Uses fourier transform method, so faster if larger matrix has dimensions of size 2**n

Actually right now the matrices must be the same size (will sort out padding issues another day!)

psychopy.visual.filters.getRMScontrast(matrix)
Returns the RMS contrast (the sample standard deviation) of a array

psychopy.visual.filters.imfft(X)
Perform 2D FFT on an image and center low frequencies

psychopy.visual.filters.imifft(X)
Inverse 2D FFT with decentering

psychopy.visual.filters.make2DGauss(x, y, mean=0.0, sd=1.0, gain=1.0, base=0.0)

Return the gaussian distribution for a given set of x-vals

Parameters
• x – should be x and y indexes as might be created by numpy.mgrid

• y – should be x and y indexes as might be created by numpy.mgrid

• mean (float) – the centre of the distribution - may be a tuple

• sd (float) – the width of the distribution - may be a tuple

10.16. psychopy.filters - helper functions for creating filters 846

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

• gain (float) – the height of the distribution

• base (float) – an offset added to the result

psychopy.visual.filters.makeGauss(x, mean=0.0, sd=1.0, gain=1.0, base=0.0)

Return the gaussian distribution for a given set of x-vals

Parameters
mean: float

the centre of the distribution

sd: float
the width of the distribution

gain: float
the height of the distribution

base: float
an offset added to the result

psychopy.visual.filters.makeGrating(res, ori=0.0, cycles=1.0, phase=0.0, gratType='sin', contr=1.0)
Make an array containing a luminance grating of the specified params

Parameters
res: integer

the size of the resulting matrix on both dimensions (e.g 256)

ori: float or int (default=0.0)
the orientation of the grating in degrees

cycles:float or int (default=1.0)
the number of grating cycles within the array

phase: float or int (default=0.0)
the phase of the grating in degrees (NB this differs to most PsychoPy phase arguments which
use units of fraction of a cycle)

gratType: ‘sin’, ‘sqr’, ‘ramp’ or ‘sinXsin’ (default=”sin”)
the type of grating to be ‘drawn’

contr: float (default=1.0)
contrast of the grating

Returns
a square numpy array of size resXres

psychopy.visual.filters.makeMask(matrixSize, shape='circle', radius=1.0, center=(0.0, 0.0), range=(-1, 1),
fringeWidth=0.2)

Returns a matrix to be used as an alpha mask (circle,gauss,ramp).

Parameters
matrixSize: integer

the size of the resulting matrix on both dimensions (e.g 256)

shape: ‘circle’,’gauss’,’ramp’ (linear gradient from center),
‘raisedCosine’ (the edges are blurred by a raised cosine) shape of the mask

10.16. psychopy.filters - helper functions for creating filters 847

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PsychoPy - Psychology software for Python, Release 2023.2.3

radius: float
scale factor to be applied to the mask (circle with radius of [1,1] will extend just to the edge
of the matrix). Radius can asymmetric, e.g. [1.0,2.0] will be wider than it is tall.

center: 2x1 tuple or list (default=[0.0,0.0])
the centre of the mask in the matrix ([1,1] is top-right corner, [-1,-1] is bottom-left)

fringeWidth: float (0-1)
The proportion of the raisedCosine that is being blurred.

range: 2x1 tuple or list (default=[-1,1])
The minimum and maximum value in the mask matrix

psychopy.visual.filters.makeRadialMatrix(matrixSize, center=(0.0, 0.0), radius=1.0)
Generate a square matrix where each element values is its distance from the centre of the matrix.

Parameters
• matrixSize (int) – Matrix size. Corresponds to the number of elements along each di-

mension. Must be >0.

• radius (float) – scale factor to be applied to the mask (circle with radius of [1,1] will
extend just to the edge of the matrix). Radius can be asymmetric, e.g. [1.0,2.0] will be wider
than it is tall.

• center (2x1 tuple or list (default=[0.0,0.0])) – the centre of the mask in the
matrix ([1,1] is top-right corner, [-1,-1] is bottom-left)

Returns
Square matrix populated with distance values and size == (matrixSize, matrixSize).

Return type
ndarray

psychopy.visual.filters.maskMatrix(matrix, shape='circle', radius=1.0, center=(0.0, 0.0))
Make and apply a mask to an input matrix (e.g. a grating)

Parameters
matrix: a square numpy array

array to which the mask should be applied

shape: ‘circle’,’gauss’,’ramp’ (linear gradient from center)
shape of the mask

radius: float
scale factor to be applied to the mask (circle with radius of [1,1] will extend just to the edge
of the matrix). Radius can be asymmetric, e.g. [1.0,2.0] will be wider than it is tall.

center: 2x1 tuple or list (default=[0.0,0.0])
the centre of the mask in the matrix ([1,1] is top-right corner, [-1,-1] is bottom-left)

10.16. psychopy.filters - helper functions for creating filters 848

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list

PsychoPy - Psychology software for Python, Release 2023.2.3

10.17 psychopy.gui - create dialogue boxes

10.17.1 DlgFromDict

class psychopy.gui.DlgFromDict(dictionary, title='', fixed=None, order=None, tip=None, screen=-1,
sortKeys=True, copyDict=False, labels=None, show=True,
sort_keys=None, copy_dict=None)

Creates a dialogue box that represents a dictionary of values. Any values changed by the user are change (in-
place) by this dialogue box.

Parameters
• dictionary (dict) – A dictionary defining the input fields (keys) and pre-filled values

(values) for the user dialog

• title (str) – The title of the dialog window

• labels (dict) – A dictionary defining labels (values) to be displayed instead of key strings
(keys) defined in dictionary. Not all keys in dictionary need to be contained in labels.

• fixed (list) – A list of keys for which the values shall be displayed in non-editable fields

• order (list) – A list of keys defining the display order of keys in dictionary. If not all keys
in dictionary` are contained in order, those will appear in random order after all ordered
keys.

• tip (list) – A dictionary assigning tooltips to the keys

• screen (int) – Screen number where the Dialog is displayed. If -1, the Dialog will be
displayed on the primary screen.

• sortKeys (bool) – A boolean flag indicating that keys are to be sorted alphabetically.

• copyDict (bool) – If False, modify dictionary in-place. If True, a copy of the dic-
tionary is created, and the altered version (after user interaction) can be retrieved from
:attr:~`psychopy.gui.DlgFromDict.dictionary`.

• labels – A dictionary defining labels (dict values) to be displayed instead of key strings
(dict keys) defined in dictionary. Not all keys in `dictionary´ need to be contained in labels.

• show (bool) – Whether to immediately display the dialog upon instantiation. If False, it can
be displayed at a later time by calling its show() method.

• e.g. –

• :: –

info = {‘Observer’:’jwp’, ‘GratingOri’:45,
’ExpVersion’: 1.1, ‘Group’: [‘Test’, ‘Control’]}

infoDlg = gui.DlgFromDict(dictionary=info,
title=’TestExperiment’, fixed=[‘ExpVersion’])

if infoDlg.OK:
print(info)

else:
print(‘User Cancelled’)

• above (In the code) –

• values (the contents of info will be updated to the) –

10.17. psychopy.gui - create dialogue boxes 849

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

• box. (returned by the dialogue) –

• OK) (If the user cancels (rather than pressing) –

:param : :param then the dictionary remains unchanged. If you want to check whether: :param the user hit OK:
:param then check whether DlgFromDict.OK equals: :param True or False: :param See GUI.py for a usage demo:
:param including order and tip (tooltip).:

show()

Display the dialog.

10.17.2 Dlg

class psychopy.gui.Dlg(title='PsychoPy Dialog', pos=None, size=None, style=None, labelButtonOK=' OK ',
labelButtonCancel=' Cancel ', screen=-1)

A simple dialogue box. You can add text or input boxes (sequentially) and then retrieve the values.

see also the function dlgFromDict for an even simpler version

Example

from psychopy import gui

myDlg = gui.Dlg(title="JWP's experiment")
myDlg.addText('Subject info')
myDlg.addField('Name:')
myDlg.addField('Age:', 21)
myDlg.addText('Experiment Info')
myDlg.addField('Grating Ori:',45)
myDlg.addField('Group:', choices=["Test", "Control"])
ok_data = myDlg.show() # show dialog and wait for OK or Cancel
if myDlg.OK: # or if ok_data is not None

print(ok_data)
else:

print('user cancelled')

addField(label='', initial='', color='', choices=None, tip='', required=False, enabled=True)
Adds a (labelled) input field to the dialogue box, optional text color and tooltip.

If ‘initial’ is a bool, a checkbox will be created. If ‘choices’ is a list or tuple, a dropdown selector is created.
Otherwise, a text line entry box is created.

Returns a handle to the field (but not to the label).

addFixedField(label='', initial='', color='', choices=None, tip='')
Adds a field to the dialog box (like addField) but the field cannot be edited. e.g. Display experiment version.

show()

Presents the dialog and waits for the user to press OK or CANCEL.

If user presses OK button, function returns a list containing the updated values coming from each of the
input fields created. Otherwise, None is returned.

Returns
self.data

validate()

Make sure that required fields have a value.

10.17. psychopy.gui - create dialogue boxes 850

PsychoPy - Psychology software for Python, Release 2023.2.3

10.17.3 fileOpenDlg()

psychopy.gui.fileOpenDlg(tryFilePath='', tryFileName='', prompt='Select file to open', allowed=None)
A simple dialogue allowing read access to the file system.

Parameters
tryFilePath: string

default file path on which to open the dialog

tryFileName: string
default file name, as suggested file

prompt: string (default “Select file to open”)
can be set to custom prompts

allowed: string (available since v1.62.01)
a string to specify file filters. e.g. “Text files (*.txt) ;; Image files (*.bmp *.gif)” See https://
www.riverbankcomputing.com/static/Docs/PyQt4/qfiledialog.html #getOpenFileNames for
further details

If tryFilePath or tryFileName are empty or invalid then current path and empty names are used to start search.

If user cancels, then None is returned.

10.17.4 fileSaveDlg()

psychopy.gui.fileSaveDlg(initFilePath='', initFileName='', prompt='Select file to save', allowed=None)
A simple dialogue allowing write access to the file system. (Useful in case you collect an hour of data and then
try to save to a non-existent directory!!)

Parameters
initFilePath: string

default file path on which to open the dialog

initFileName: string
default file name, as suggested file

prompt: string (default “Select file to open”)
can be set to custom prompts

allowed: string
a string to specify file filters. e.g. “Text files (*.txt) ;; Image files (*.bmp *.gif)” See https:
//www.riverbankcomputing.com/static/Docs/PyQt4/qfiledialog.html #getSaveFileName for
further details

If initFilePath or initFileName are empty or invalid then current path and empty names are used to start search.

If user cancels the None is returned.

10.17. psychopy.gui - create dialogue boxes 851

https://www.riverbankcomputing.com/static/Docs/PyQt4/qfiledialog.html
https://www.riverbankcomputing.com/static/Docs/PyQt4/qfiledialog.html
https://www.riverbankcomputing.com/static/Docs/PyQt4/qfiledialog.html
https://www.riverbankcomputing.com/static/Docs/PyQt4/qfiledialog.html

PsychoPy - Psychology software for Python, Release 2023.2.3

10.18 psychopy.info - functions for getting information about the sys-
tem

This module has tools for fetching data about the system or the current Python process. Such info can be useful for
understanding the context in which an experiment was run.

class psychopy.info.RunTimeInfo(author=None, version=None, win=None, refreshTest='grating',
userProcsDetailed=False, verbose=False)

Returns a snapshot of your configuration at run-time, for immediate or archival use.

Returns a dict-like object with info about PsychoPy, your experiment script, the system & OS, your window and
monitor settings (if any), python & packages, and openGL.

If you want to skip testing the refresh rate, use ‘refreshTest=None’

Example usage: see runtimeInfo.py in coder demos.

Parameters
• win (Window, False or None) – What window to use for refresh rate testing (if any) and

settings. None -> temporary window using defaults; False -> no window created, used, nor
profiled; a Window() instance you have already created one.

• author (str or None) – None will try to autodetect first __author__ in sys.argv[0],
whereas a str being user-supplied author info (of an experiment).

• version (str or None) – None try to autodetect first __version__ in sys.argv[0] or str
being the user-supplied version info (of an experiment).

• verbose (bool) – Show additional information. Default is False.

• refreshTest (str, bool or None) – True or ‘grating’ = assess refresh average, median,
and SD of 60 win.flip()s, using visual.getMsPerFrame() ‘grating’ = show a visual during the
assessment; True = assess without a visual. Default is ‘grating’.

• userProcsDetailed (bool) – Get details about concurrent user’s processes (command,
process-ID). Default is False.

Returns
• A flat dict (but with several groups based on key names)

• psychopy (version, rush() availability) – psychopyVersion, psychopyHaveExtRush, git
branch and current commit hash if available

• experiment (author, version, directory, name, current time-stamp, SHA1) – digest, VCS info
(if any, svn or hg only), experimentAuthor, experimentVersion, . . .

• system (hostname, platform, user login, count of users,) – user process info (count, cmd +
pid), flagged processes systemHostname, systemPlatform, . . .

• window ((see output; many details about the refresh rate, window,) – and monitor; units are
noted) windowWinType, windowWaitBlanking, . . .windowRefreshTimeSD_ms, . . . win-
dowMonitor.<details>, . . .

• python (version of python, versions of key packages) – (wx, numpy, scipy, matplotlib, pyglet,
pygame) pythonVersion, pythonScipyVersion, . . .

• openGL (version, vendor, rendering engine, plus info on whether) – several extensions are
present openGLVersion, . . . , openGLextGL_EXT_framebuffer_object, . . .

10.18. psychopy.info - functions for getting information about the system 852

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

_setCurrentProcessInfo(verbose=False, userProcsDetailed=False)
What other processes are currently active for this user?

_setExperimentInfo(author, version, verbose)
Auto-detect __author__ and __version__ in sys.argv[0] (= the # users’s script)

_setPythonInfo()

External python packages, python details

_setSystemInfo()

System info

_setWindowInfo(win, verbose=False, refreshTest='grating', usingTempWin=True)
Find and store info about the window: refresh rate, configuration info.

psychopy.info._getHgVersion(filename)
Tries to discover the mercurial (hg) parent and id of a file.

Not thoroughly tested; untested on Windows Vista, Win 7, FreeBSD

Author
• 2010 written by Jeremy Gray

psychopy.info._getSha1hexDigest(thing, isfile=False)
Returns base64 / hex encoded sha1 digest of str(thing), or of a file contents. Return None if a file is requested
but no such file exists

Author
• 2010 Jeremy Gray; updated 2011 to be more explicit,

• 2012 to remove sha.new()

>>> _getSha1hexDigest('1')
'356a192b7913b04c54574d18c28d46e6395428ab'
>>> _getSha1hexDigest(1)
'356a192b7913b04c54574d18c28d46e6395428ab'

psychopy.info._getSvnVersion(filename)
Tries to discover the svn version (revision #) for a file.

Not thoroughly tested; untested on Windows Vista, Win 7, FreeBSD

Author
• 2010 written by Jeremy Gray

psychopy.info._getUserNameUID()

Return user name, UID.

UID values can be used to infer admin-level: -1=undefined, 0=full admin/root, >499=assume non-admin/root
(>999 on debian-based)

Author
• 2010 written by Jeremy Gray

psychopy.info.getMemoryUsage()

Get the memory (RAM) currently used by this Python process, in M.

psychopy.info.getRAM()

Return system’s physical RAM & available RAM, in M.

10.18. psychopy.info - functions for getting information about the system 853

PsychoPy - Psychology software for Python, Release 2023.2.3

10.19 psychopy.layout - For working with vectors and points

Classes and functions for working with coordinates systems.

10.19.1 Overview

Vector(value, units, win) Class representing a vector.
Position(value, units[, win]) Class representing a position vector.
Size(value, units[, win]) Class representing a size.
Vertices(verts[, obj, size, pos, units, ...]) Class representing an array of vertices.

10.19.2 Details

class psychopy.layout.Vector(value, units, win)
Class representing a vector.

A vector is a mathematical construct that specifies a length (or magnitude) and direction within a given coordinate
system. This class provides methods to manipulate vectors and convert them between coordinates systems.

This class may be used to assist in positioning stimuli on a screen.

Parameters
• value (ArrayLike) – Array of vector lengths along each dimension of the space the vector

is within. Vectors are specified as either 1xN for single vectors, and Nx2 or Nx3 for multiple
vectors.

• units (str or None) – Units which value has been specified in. Applicable values are
‘pix’, ‘deg’, ‘degFlat’, ‘degFlatPos’, ‘cm’, ‘pt’, ‘norm’, ‘height’, or None.

• win (~psychopy.visual.Window or None) – Window associated with this vector. This value
must be specified if you wish to map vectors to coordinate systems that require additional
information about the monitor the window is being displayed on.

Examples

Create a new vector object using coordinates specified in pixel (‘pix’) units:

my_vector = Vector([256, 256], 'pix')

Multiple vectors may be specified by supplying a list of vectors:

my_vector = Vector([[256, 256], [640, 480]], 'pix')

Operators can be used to compare the magnitudes of vectors:

mag_is_same = vec1 == vec2 # same magnitude
mag_is_greater = vec1 > vec2 # one greater than the other

1xN vectors return a boolean value while Nx2 or Nx3 arrays return N-length arrays of boolean values.

10.19. psychopy.layout - For working with vectors and points 854

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

property cm

Values in units of ‘cm’ (centimeters).

copy()

Create a copy of this object

property deg

Values in units of ‘deg’ (degrees of visual angle).

property degFlat

Values in units of ‘degFlat’ (degrees of visual angle corrected for screen curvature).

When dealing with positions/sizes in isolation; ‘deg’, ‘degFlat’ and ‘degFlatPos’ are synonymous - as the
conversion is done at the vertex level.

property degFlatPos

Values in units of ‘degFlatPos’.

When dealing with positions/sizes in isolation; ‘deg’, ‘degFlat’ and ‘degFlatPos’ are synonymous - as the
conversion is done at the vertex level.

property dimensions

How many dimensions (x, y, z) are specified?

property direction

Direction of vector (i.e. angle between vector and the horizontal plane).

property height

Value in units of ‘height’ (normalized to the height of the window).

property magnitude

Magnitude of vector (i.e. length of the line from vector to (0, 0) in pixels).

property monitor

The monitor used for calculations within this object (~psychopy.monitors.Monitor).

property norm

Value in units of ‘norm’ (normalized device coordinates).

property pix

Values in units of ‘pix’ (pixels).

property pt

Vector coordinates in ‘pt’ (points).

Points are commonly used in print media to define text sizes. One point is equivalent to 1/72 inches, or
around 0.35 mm.

set(value, units, win=None)

validate(value, units)
Validate input values.

Ensures the values are in the correct format.

Returns
Parameters value and units.

Return type
tuple

10.19. psychopy.layout - For working with vectors and points 855

https://docs.python.org/3/library/stdtypes.html#tuple

PsychoPy - Psychology software for Python, Release 2023.2.3

class psychopy.layout.Position(value, units, win=None)
Class representing a position vector.

This class is used to specify the location of a point within some coordinate system (e.g., (x, y)).

Parameters
• value (ArrayLike) – Array of coordinates representing positions within a coordinate sys-

tem. Positions are specified in a similar manner to ~psychopy.layout.Vector as either 1xN
for single vectors, and Nx2 or Nx3 for multiple positions.

• units (str or None) – Units which value has been specified in. Applicable values are
‘pix’, ‘deg’, ‘degFlat’, ‘degFlatPos’, ‘cm’, ‘pt’, ‘norm’, ‘height’, or None.

• win (~psychopy.visual.Window or None) – Window associated with this position. This value
must be specified if you wish to map positions to coordinate systems that require additional
information about the monitor the window is being displayed on.

property cm

Values in units of ‘cm’ (centimeters).

copy()

Create a copy of this object

property deg

Values in units of ‘deg’ (degrees of visual angle).

property degFlat

Values in units of ‘degFlat’ (degrees of visual angle corrected for screen curvature).

When dealing with positions/sizes in isolation; ‘deg’, ‘degFlat’ and ‘degFlatPos’ are synonymous - as the
conversion is done at the vertex level.

property degFlatPos

Values in units of ‘degFlatPos’.

When dealing with positions/sizes in isolation; ‘deg’, ‘degFlat’ and ‘degFlatPos’ are synonymous - as the
conversion is done at the vertex level.

property dimensions

How many dimensions (x, y, z) are specified?

property direction

Direction of vector (i.e. angle between vector and the horizontal plane).

property height

Value in units of ‘height’ (normalized to the height of the window).

property magnitude

Magnitude of vector (i.e. length of the line from vector to (0, 0) in pixels).

property monitor

The monitor used for calculations within this object (~psychopy.monitors.Monitor).

property norm

Value in units of ‘norm’ (normalized device coordinates).

property pix

Values in units of ‘pix’ (pixels).

10.19. psychopy.layout - For working with vectors and points 856

https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

property pt

Vector coordinates in ‘pt’ (points).

Points are commonly used in print media to define text sizes. One point is equivalent to 1/72 inches, or
around 0.35 mm.

set(value, units, win=None)

validate(value, units)
Validate input values.

Ensures the values are in the correct format.

Returns
Parameters value and units.

Return type
tuple

class psychopy.layout.Size(value, units, win=None)
Class representing a size.

Parameters
• value (ArrayLike) – Array of values representing size axis-aligned bounding box within

a coordinate system. Sizes are specified in a similar manner to ~psychopy.layout.Vector as
either 1xN for single vectors, and Nx2 or Nx3 for multiple positions.

• units (str or None) – Units which value has been specified in. Applicable values are
‘pix’, ‘deg’, ‘degFlat’, ‘degFlatPos’, ‘cm’, ‘pt’, ‘norm’, ‘height’, or None.

• win (~psychopy.visual.Window or None) – Window associated with this size object. This
value must be specified if you wish to map sizes to coordinate systems that require additional
information about the monitor the window is being displayed on.

property cm

Values in units of ‘cm’ (centimeters).

copy()

Create a copy of this object

property deg

Values in units of ‘deg’ (degrees of visual angle).

property degFlat

Values in units of ‘degFlat’ (degrees of visual angle corrected for screen curvature).

When dealing with positions/sizes in isolation; ‘deg’, ‘degFlat’ and ‘degFlatPos’ are synonymous - as the
conversion is done at the vertex level.

property degFlatPos

Values in units of ‘degFlatPos’.

When dealing with positions/sizes in isolation; ‘deg’, ‘degFlat’ and ‘degFlatPos’ are synonymous - as the
conversion is done at the vertex level.

property dimensions

How many dimensions (x, y, z) are specified?

property direction

Direction of vector (i.e. angle between vector and the horizontal plane).

10.19. psychopy.layout - For working with vectors and points 857

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

property height

Value in units of ‘height’ (normalized to the height of the window).

property magnitude

Magnitude of vector (i.e. length of the line from vector to (0, 0) in pixels).

property monitor

The monitor used for calculations within this object (~psychopy.monitors.Monitor).

property norm

Value in units of ‘norm’ (normalized device coordinates).

property pix

Values in units of ‘pix’ (pixels).

property pt

Vector coordinates in ‘pt’ (points).

Points are commonly used in print media to define text sizes. One point is equivalent to 1/72 inches, or
around 0.35 mm.

set(value, units, win=None)

validate(value, units)
Validate input values.

Ensures the values are in the correct format.

Returns
Parameters value and units.

Return type
tuple

class psychopy.layout.Vertices(verts, obj=None, size=None, pos=None, units=None, flip=None,
anchor=None)

Class representing an array of vertices.

Parameters
• verts (ArrayLike) – Array of coordinates specifying the locations of vertices.

• obj (object or None) –

• size (ArrayLike or None) – Scaling factors for vertices along each dimension.

• pos (ArrayLike or None) – Offset for vertices along each dimension.

• units (str or None) – Units which verts has been specified in. Applicable values are
‘pix’, ‘deg’, ‘degFlat’, ‘degFlatPos’, ‘cm’, ‘pt’, ‘norm’, ‘height’, or None.

• flip (ArrayLike or None) – Array of boolean values specifying which dimensions to
flip/mirror. Mirroring is applied prior to any other transformation.

• anchor (str or None) – Anchor location for vertices, specifies the origin for the vertices.

property anchor

Anchor location (str).

Possible values are on of ‘top’, ‘bottom’, ‘left’, ‘right’, ‘center’. Combinations of these values may also be
specified (e.g., ‘top_center’, ‘center-right’, ‘topleft’, etc. are all valid).

10.19. psychopy.layout - For working with vectors and points 858

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

property anchorAdjust

Map anchor values to numeric vertices adjustments.

property cm

Get absolute positions of vertices in ‘cm’ units.

property deg

Get absolute positions of vertices in ‘deg’ units.

property degFlat

Get absolute positions of vertices in ‘degFlat’ units.

property flip

1x2 array for flipping vertices along each axis; set as True to flip or False to not flip (ArrayLike).

If set as a single value, will duplicate across both axes. Accessing the protected attribute (._flip) will give
an array of 1s and -1s with which to multiply vertices.

property flipHoriz

Apply horizontal mirroring (bool)?

property flipVert

Apply vertical mirroring (bool)?

getas(units)

property height

Get absolute positions of vertices in ‘height’ units.

property norm

Get absolute positions of vertices in ‘norm’ units.

property pix

Get absolute positions of vertices in ‘pix’ units.

property pos

Positional offset of the vertices (~psychopy.layout.Vector or ArrayLike).

setas(value, units)

property size

Scaling factors for vertices (~psychopy.layout.Vector or ArrayLike).

property units

Units which the vertices are specified in (str).

10.20 psychopy.logging - control what gets logged

Provides functions for logging error and other messages to one or more files and/or the console, using python’s own
logging module. Some warning messages and error messages are generated by PsychoPy itself. The user can generate
more using the functions in this module.

There are various levels for logged messages with the following order of importance: ERROR, WARNING, DATA,
EXP, INFO and DEBUG.

When setting the level for a particular log target (e.g. LogFile) the user can set the minimum level that is required for
messages to enter the log. For example, setting a level of INFO will result in INFO, EXP, DATA, WARNING and
ERROR messages to be recorded but not DEBUG messages.

10.20. psychopy.logging - control what gets logged 859

PsychoPy - Psychology software for Python, Release 2023.2.3

By default, PsychoPy will record messages of WARNING level and above to the console. The user can silence that by
setting it to receive only CRITICAL messages, (which PsychoPy doesn’t use) using the commands:

from psychopy import logging
logging.console.setLevel(logging.CRITICAL)

class psychopy.logging.LogFile(f=None, level=30, filemode='a', logger=None, encoding='utf8')
A text stream to receive inputs from the logging system

Create a log file as a target for logged entries of a given level

Parameters
• f:

this could be a string to a path, that will be created if it doesn’t exist. Alternatively this
could be a file object, sys.stdout or any object that supports .write() and .flush() methods

• level:
The minimum level of importance that a message must have to be logged by this target.

• filemode: ‘a’, ‘w’
Append or overwrite existing log file

setLevel(level)
Set a new minimal level for the log file/stream

write(txt)
Write directly to the log file (without using logging functions). Useful to send messages that only this file
receives

class psychopy.logging._Logger(format='%(t).4f \t%(levelname)s \t%(message)s')
Maintains a set of log targets (text streams such as files of stdout)

self.targets is a list of dicts {‘stream’:stream, ‘level’:level}

The string-formatted elements %(xxxx)f can be used, where each xxxx is an attribute of the LogEntry. e.g. t,
t_ms, level, levelname, message

addTarget(target)
Add a target, typically a LogFile to the logger

flush()

Process all current messages to each target

log(message, level, t=None, obj=None)
Add the message to the log stack at the appropriate level

If no relevant targets (files or console) exist then the message is simply discarded.

removeTarget(target)
Remove a target, typically a LogFile from the logger

psychopy.logging.addLevel(level, levelName)
Associate ‘levelName’ with ‘level’.

This is used when converting levels to text during message formatting.

psychopy.logging.critical(message)
Send the message to any receiver of logging info (e.g. a LogFile) of level log.CRITICAL or higher

10.20. psychopy.logging - control what gets logged 860

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.logging.data(msg, t=None, obj=None)
Log a message about data collection (e.g. a key press)

usage::
log.data(message)

Sends the message to any receiver of logging info (e.g. a LogFile) of level log.DATA or higher

psychopy.logging.debug(msg, t=None, obj=None)
Log a debugging message (not likely to be wanted once experiment is finalised)

usage::
log.debug(message)

Sends the message to any receiver of logging info (e.g. a LogFile) of level log.DEBUG or higher

psychopy.logging.error(message)
Send the message to any receiver of logging info (e.g. a LogFile) of level log.ERROR or higher

psychopy.logging.exp(msg, t=None, obj=None)
Log a message about the experiment (e.g. a new trial, or end of a stimulus)

usage::
log.exp(message)

Sends the message to any receiver of logging info (e.g. a LogFile) of level log.EXP or higher

psychopy.logging.fatal(msg, t=None, obj=None)
log.critical(message) Send the message to any receiver of logging info (e.g. a LogFile) of level log.CRITICAL
or higher

psychopy.logging.flush(logger=<psychopy.logging._Logger object>)
Send current messages in the log to all targets

psychopy.logging.getLevel(level)
Return the textual representation of logging level ‘level’.

If the level is one of the predefined levels (CRITICAL, ERROR, WARNING, INFO, DEBUG) then you get the
corresponding string. If you have associated levels with names using addLevelName then the name you have
associated with ‘level’ is returned.

If a numeric value corresponding to one of the defined levels is passed in, the corresponding string representation
is returned.

Otherwise, the string “Level %s” % level is returned.

psychopy.logging.info(msg, t=None, obj=None)
Log some information - maybe useful, maybe not

usage::
log.info(message)

Sends the message to any receiver of logging info (e.g. a LogFile) of level log.INFO or higher

psychopy.logging.log(msg, level, t=None, obj=None)
Log a message

usage::
log(msg, level, t=t, obj=obj)

Log the msg, at a given level on the root logger

10.20. psychopy.logging - control what gets logged 861

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.logging.setDefaultClock(clock)
Set the default clock to be used to reference all logging times. Must be a psychopy.core.Clock object. Beware
that if you reset the clock during the experiment then the resets will be reflected here. That might be useful if
you want your logs to be reset on each trial, but probably not.

psychopy.logging.warn(msg, t=None, obj=None)
log.warning(message)

Sends the message to any receiver of logging info (e.g. a LogFile) of level log.WARNING or higher

psychopy.logging.warning(message)
Sends the message to any receiver of logging info (e.g. a LogFile) of level log.WARNING or higher

10.20.1 flush()

psychopy.logging.flush(logger=<psychopy.logging._Logger object>)
Send current messages in the log to all targets

10.20.2 setDefaultClock()

psychopy.logging.setDefaultClock(clock)
Set the default clock to be used to reference all logging times. Must be a psychopy.core.Clock object. Beware
that if you reset the clock during the experiment then the resets will be reflected here. That might be useful if
you want your logs to be reset on each trial, but probably not.

10.21 psychopy.microphone - Capture and analyze sound

(Available as of version 1.74.00; Advanced features available as of 1.77.00)

Deprecated Use Microphone for new projects.

10.21.1 Overview

AudioCapture() allows easy audio recording and saving of arbitrary sounds to a file (wav format). AudioCapture will
likely be replaced entirely by AdvAudioCapture in the near future.

AdvAudioCapture() can do everything AudioCapture does, and also allows onset-marker sound insertion and de-
tection, loudness computation (RMS audio “power”), and lossless file compression (flac). The Builder microphone
component now uses AdvAudioCapture by default.

10.21.2 Audio Capture

psychopy.microphone.switchOn(sampleRate=48000, outputDevice=None, bufferSize=None)
You need to switch on the microphone before use, which can take several seconds. The only time you can specify
the sample rate (in Hz) is during switchOn().

Considerations on the default sample rate 48kHz:

10.21. psychopy.microphone - Capture and analyze sound 862

PsychoPy - Psychology software for Python, Release 2023.2.3

DVD or video = 48,000
CD-quality = 44,100 / 24 bit
human hearing: ~15,000 (adult); children & young adult higher
human speech: 100-8,000 (useful for telephone: 100-3,300)
Google speech API: 16,000 or 8,000 only
Nyquist frequency: twice the highest rate, good to oversample a bit

pyo’s downsamp() function can reduce 48,000 to 16,000 in about 0.02s (uses integer steps sizes). So recording
at 48kHz will generate high-quality archival data, and permit easy downsampling.

outputDevice, bufferSize: set these parameters on the pyoSndServer
before booting; None means use pyo’s default values

class psychopy.microphone.AdvAudioCapture(name='advMic', filename='', saveDir='', sampletype=0,
buffering=16, chnl=0, stereo=True, autoLog=True)

Class extends AudioCapture, plays marker sound as a “start” indicator.

Has method for retrieving the marker onset time from the file, to allow calculation of vocal RT (or other sound-
based RT).

See Coder demo > input > latencyFromTone.py

Parameters

name :
Stem for the output file, also used in logging.

filename :
optional file name to use; default = ‘name-onsetTimeEpoch.wav’

saveDir :
Directory to use for output .wav files. If a saveDir is given, it will return ‘saveDir/file’. If no saveDir, then
return abspath(file)

sampletype
[bit depth] pyo recording option: 0=16 bits int, 1=24 bits int; 2=32 bits int

buffering
[pyo argument] Controls the buffering argument for pyo if necessary

chnl
[int (default=0)] which audio input channel to record (default=0)

stereo
[bool or nChannels (default = True)] how many channels to record

compress(keep=False)
Compress using FLAC (lossless compression).

getLoudness()

Return the RMS loudness of the saved recording.

getMarkerInfo()

Returns (hz, duration, volume) of the marker sound. Custom markers always return 0 hz (regardless of the
sound).

10.21. psychopy.microphone - Capture and analyze sound 863

PsychoPy - Psychology software for Python, Release 2023.2.3

getMarkerOnset(chunk=128, secs=0.5, filename='')
Return (onset, offset) time of the first marker within the first secs of the saved recording.

Has approx ~1.33ms resolution at 48000Hz, chunk=64. Larger chunks can speed up processing times, at a
sacrifice of some resolution, e.g., to pre-process long recordings with multiple markers.

If given a filename, it will first set that file as the one to work with, and then try to detect the onset marker.

playMarker()

Plays the current marker sound. This is automatically called at the start of recording, but can be called
anytime to insert a marker.

playback(block=True, loops=0, stop=False, log=True)
Plays the saved .wav file, as just recorded or resampled. Execution blocks by default, but can return imme-
diately with block=False.

loops : number of extra repetitions; 0 = play once

stop : True = immediately stop ongoing playback (if there is one), and return

record(sec, filename='', block=False)
Starts recording and plays an onset marker tone just prior to returning. The idea is that the start of the tone
in the recording indicates when this method returned, to enable you to sync a known recording onset with
other events.

resample(newRate=16000, keep=True, log=True)
Re-sample the saved file to a new rate, return the full path.

Can take several visual frames to resample a 2s recording.

The default values for resample() are for Google-speech, keeping the original (presumably recorded at
48kHz) to archive. A warning is generated if the new rate not an integer factor / multiple of the old rate.

To control anti-aliasing, use pyo.downsamp() or upsamp() directly.

reset(log=True)
Restores to fresh state, ready to record again

setFile(filename)
Sets the name of the file to work with.

setMarker(tone=19000, secs=0.015, volume=0.03, log=True)
Sets the onset marker, where tone is either in hz or a custom sound.

The default tone (19000 Hz) is recommended for auto-detection, as being easier to isolate from speech
sounds (and so reliable to detect). The default duration and volume are appropriate for a quiet setting such
as a lab testing room. A louder volume, longer duration, or both may give better results when recording
loud sounds or in noisy environments, and will be auto-detected just fine (even more easily). If the hardware
microphone in use is not physically near the speaker hardware, a louder volume is likely to be required.

Custom sounds cannot be auto-detected, but are supported anyway for presentation purposes. E.g., a record-
ing of someone saying “go” or “stop” could be passed as the onset marker.

stop(log=True)
Interrupt a recording that is in progress; close & keep the file.

Ends the recording before the duration that was initially specified. The same file name is retained, with the
same onset time but a shorter duration.

The same recording cannot be resumed after a stop (it is not a pause), but you can start a new one.

10.21. psychopy.microphone - Capture and analyze sound 864

PsychoPy - Psychology software for Python, Release 2023.2.3

uncompress(keep=False)
Uncompress from FLAC to .wav format.

10.21.3 Speech recognition

Google’s speech to text API is no longer available. AT&T, IBM, and Wit.ai have a similar (paid) service.

10.21.4 Misc

Functions for file-oriented Discrete Fourier Transform and RMS computation are also provided.

psychopy.microphone.wav2flac(path, keep=True, level=5)
Lossless compression: convert .wav file (on disk) to .flac format.

If path is a directory name, convert all .wav files in the directory.

keep to retain the original .wav file(s), default True.

level is compression level: 0 is fastest but larger,
8 is slightly smaller but much slower.

psychopy.microphone.flac2wav(path, keep=True)
Uncompress: convert .flac file (on disk) to .wav format (new file).

If path is a directory name, convert all .flac files in the directory.

keep to retain the original .flac file(s), default True.

psychopy.microphone.getDft(data, sampleRate=None, wantPhase=False)
Compute and return magnitudes of numpy.fft.fft() of the data.

If given a sample rate (samples/sec), will return (magn, freq). If wantPhase is True, phase in radians is also
returned (magn, freq, phase). data should have power-of-2 samples, or will be truncated.

psychopy.microphone.getRMS(data)
Compute and return the audio power (“loudness”).

Uses numpy.std() as RMS. std() is same as RMS if the mean is 0, and .wav data should have a mean of 0. Returns
an array if given stereo data (RMS computed within-channel).

data can be an array (1D, 2D) or filename; .wav format only. data from .wav files will be normalized to -1..+1
before RMS is computed.

10.22 psychopy.misc - miscellaneous routines for converting units etc

Wrapper for all miscellaneous functions and classes from psychopy.tools

psychopy.misc has gradually grown very large and the underlying code for its functions are distributed in multiple files.
You can still (at least for now) import the functions here using from psychopy import misc but you can also import them
from the tools sub-modules.

10.22. psychopy.misc - miscellaneous routines for converting units etc 865

PsychoPy - Psychology software for Python, Release 2023.2.3

10.22.1 From psychopy.tools.filetools

toFile(filename, data) Save data (of any sort) as a pickle file.
fromFile(filename[, encoding]) Load data from a psydat, pickle or JSON file.
mergeFolder(src, dst[, pattern]) Merge a folder into another.

10.22.2 From psychopy.tools.colorspacetools

dkl2rgb(dkl[, conversionMatrix]) Convert from DKL color space (Derrington, Krauskopf
& Lennie) to RGB.

dklCart2rgb(LUM, LM, S[, conversionMatrix]) Like dkl2rgb except that it uses cartesian coords
(LM,S,LUM) rather than spherical coords for DKL (elev,
azim, contr).

rgb2dklCart(picture[, conversionMatrix]) Convert an RGB image into Cartesian DKL space.
hsv2rgb(hsv_Nx3) Convert from HSV color space to RGB gun values.
lms2rgb(lms_Nx3[, conversionMatrix]) Convert from cone space (Long, Medium, Short) to

RGB.
rgb2lms(rgb_Nx3[, conversionMatrix]) Convert from RGB to cone space (LMS).
dkl2rgb(dkl[, conversionMatrix]) Convert from DKL color space (Derrington, Krauskopf

& Lennie) to RGB.

10.22.3 From psychopy.tools.coordinatetools

cart2pol(x, y[, units]) Convert from cartesian to polar coordinates.
cart2sph (z, y, x) Convert from cartesian coordinates (x,y,z) to spherical

(elevation, azimuth, radius).
pol2cart(theta, radius[, units]) Convert from polar to cartesian coordinates.
sph2cart(*args) Convert from spherical coordinates (elevation, azimuth,

radius) to cartesian (x,y,z).

10.22.4 From psychopy.tools.monitorunittools

convertToPix(vertices, pos, units, win) Takes vertices and position, combines and converts to
pixels from any unit

cm2pix(cm, monitor) Convert size in cm to size in pixels for a given Monitor
object.

cm2deg(cm, monitor[, correctFlat]) Convert size in cm to size in degrees for a given Monitor
object

deg2cm(degrees, monitor[, correctFlat]) Convert size in degrees to size in pixels for a given Mon-
itor object.

deg2pix(degrees, monitor[, correctFlat]) Convert size in degrees to size in pixels for a given Mon-
itor object

pix2cm(pixels, monitor) Convert size in pixels to size in cm for a given Monitor
object

pix2deg(pixels, monitor[, correctFlat]) Convert size in pixels to size in degrees for a given Mon-
itor object

10.22. psychopy.misc - miscellaneous routines for converting units etc 866

PsychoPy - Psychology software for Python, Release 2023.2.3

10.22.5 From psychopy.tools.imagetools

array2image(a) Takes an array and returns an image object (PIL).
image2array(im) Takes an image object (PIL) and returns a numpy array.
makeImageAuto(inarray) Combines float_uint8 and image2array operations ie.

10.22.6 From psychopy.tools.plottools

plotFrameIntervals(intervals) Plot a histogram of the frame intervals.

10.22.7 From psychopy.tools.typetools

float_uint8(inarray) Converts arrays, lists, tuples and floats ranging -1:1 into
an array of Uint8s ranging 0:255

uint8_float(inarray) Converts arrays, lists, tuples and UINTs ranging 0:255
into an array of floats ranging -1:1

float_uint16(inarray) Converts arrays, lists, tuples and floats ranging -1:1 into
an array of Uint16s ranging 0:2^16

10.22.8 From psychopy.tools.unittools

radians radians(x, /, out=None, *, where=True, cast-
ing='same_kind', order='K', dtype=None, subok=True[,
signature, extobj])

degrees degrees(x, /, out=None, *, where=True, cast-
ing='same_kind', order='K', dtype=None, subok=True[,
signature, extobj])

10.23 psychopy.monitors - for those that don’t like Monitor Center

Most users won’t need to use the code here. In general the Monitor Centre interface is sufficient and monitors setup that
way can be passed as strings to Window s. If there is some aspect of the normal calibration that you wish to override.
eg:

from psychopy import visual, monitors
mon = monitors.Monitor('SonyG55')#fetch the most recent calib for this monitor
mon.setDistance(114)#further away than normal?
win = visual.Window(size=[1024,768], monitor=mon)

You might also want to fetch the Photometer class for conducting your own calibrations

10.23. psychopy.monitors - for those that don’t like Monitor Center 867

PsychoPy - Psychology software for Python, Release 2023.2.3

10.23.1 Monitor

class psychopy.monitors.Monitor(name, width=None, distance=None, gamma=None, notes=None,
useBits=None, verbose=True, currentCalib=None, autoLog=True)

Creates a monitor object for storing calibration details. This will be loaded automatically from disk if the monitor
name is already defined (see methods).

Many settings from the stored monitor can easily be overridden either by adding them as arguments during the
initial call.

arguments:
• width, distance, gamma are details about the calibration

• notes is a text field to store any useful info

• useBits True, False, None

• verbose True, False, None

• currentCalib is a dictionary object containing various
fields for a calibration. Use with caution since the dictionary may not contain all the necessary fields
that a monitor object expects to find.

eg:

myMon = Monitor('sony500', distance=114) Fetches the info on the sony500 and overrides its usual dis-
tance to be 114cm for this experiment.

These can be saved to the monitor file using save() or not (in which case the changes will be lost)

_loadAll()

Fetches the calibrations for this monitor from disk, storing them as self.calibs

copyCalib(calibName=None)
Stores the settings for the current calibration settings as new monitor.

delCalib(calibName)
Remove a specific calibration from the current monitor. Won’t be finalised unless monitor is saved

gammaIsDefault()

Determine whether we’re using the default gamma values

getCalibDate()

As a python date object (convert to string using calibTools.strFromDate

getDKL_RGB(RECOMPUTE=False)
Returns the DKL->RGB conversion matrix. If one has been saved this will be returned. Otherwise, if
power spectra are available for the monitor a matrix will be calculated.

getDistance()

Returns distance from viewer to the screen in cm, or None if not known

getGamma()

Returns just the gamma value (not the whole grid)

getGammaGrid()

Gets the min,max,gamma values for the each gun

10.23. psychopy.monitors - for those that don’t like Monitor Center 868

PsychoPy - Psychology software for Python, Release 2023.2.3

getLMS_RGB(recompute=False)
Returns the LMS->RGB conversion matrix. If one has been saved this will be returned. Otherwise (if
power spectra are available for the monitor) a matrix will be calculated.

getLevelsPost()

Gets the measured luminance values from last calibration TEST

getLevelsPre()

Gets the measured luminance values from last calibration

getLinearizeMethod()

Gets the method that this monitor is using to linearize the guns

getLumsPost()

Gets the measured luminance values from last calibration TEST

getLumsPre()

Gets the measured luminance values from last calibration

getMeanLum()

Returns the mean luminance of the screen if explicitly stored

getNotes()

Notes about the calibration

getPsychopyVersion()

Returns the version of PsychoPy that was used to create this calibration

getSizePix()

Returns the size of the current calibration in pixels, or None if not defined

getSpectra()

Gets the wavelength values from the last spectrometer measurement (if available)

usage:
• nm, power = monitor.getSpectra()

getUseBits()

Was this calibration carried out with a bits++ box

getWidth()

Of the viewable screen in cm, or None if not known

lineariseLums(desiredLums, newInterpolators=False, overrideGamma=None)
Equivalent of linearizeLums().

linearizeLums(desiredLums, newInterpolators=False, overrideGamma=None)
lums should be uncalibrated luminance values (e.g. a linear ramp) ranging 0:1

newCalib(calibName=None, width=None, distance=None, gamma=None, notes=None, useBits=False,
verbose=True)

create a new (empty) calibration for this monitor and makes this the current calibration

save()

Save the current calibrations to disk.

This will write a json file to the monitors subfolder of your PsychoPy configuration folder (typically ~/.psy-
chopy3/monitors on Linux and macOS, and %APPDATA%psychopy3monitors on Windows).

10.23. psychopy.monitors - for those that don’t like Monitor Center 869

PsychoPy - Psychology software for Python, Release 2023.2.3

saveMon()

Equivalent of save().

setCalibDate(date=None)
Sets the current calibration to have a date/time or to the current date/time if none given. (Also returns the
date as set)

setCurrent(calibration=-1)
Sets the current calibration for this monitor. Note that a single file can hold multiple calibrations each stored
under a different key (the date it was taken)

The argument is either a string (naming the calib) or an integer eg:

myMon.setCurrent('mainCalib') fetches the calibration named mainCalib. You can name
calibrations what you want but PsychoPy will give them names of date/time by default. In Monitor
Center you can ‘copy. . . ’ a calibration and give it a new name to keep a second version.

calibName = myMon.setCurrent(0) fetches the first calibration (alphabetically) for this mon-
itor

calibName = myMon.setCurrent(-1) fetches the last alphabetical calibration for this mon-
itor (this is default). If default names are used for calibrations (ie date/time stamp) then this will
import the most recent.

setDKL_RGB(dkl_rgb)
Sets the DKL->RGB conversion matrix for a chromatically calibrated monitor (matrix is a 3x3 num array).

setDistance(distance)
To the screen (cm)

setGamma(gamma)
Sets the gamma value(s) for the monitor. This only uses a single gamma value for the three guns, which is
fairly approximate. Better to use setGammaGrid (which uses one gamma value for each gun)

setGammaGrid(gammaGrid)
Sets the min,max,gamma values for the each gun

setLMS_RGB(lms_rgb)
Sets the LMS->RGB conversion matrix for a chromatically calibrated monitor (matrix is a 3x3 num array).

setLevelsPost(levels)
Sets the last set of luminance values measured AFTER calibration

setLevelsPre(levels)
Sets the last set of luminance values measured during calibration

setLineariseMethod(method)
Sets the method for linearising 0 uses y=a+(bx)^gamma 1 uses y=(a+bx)^gamma 2 uses linear interpolation
over the curve

setLumsPost(lums)
Sets the last set of luminance values measured AFTER calibration

setLumsPre(lums)
Sets the last set of luminance values measured during calibration

setMeanLum(meanLum)

Records the mean luminance (for reference only)

10.23. psychopy.monitors - for those that don’t like Monitor Center 870

PsychoPy - Psychology software for Python, Release 2023.2.3

setNotes(notes)
For you to store notes about the calibration

setPsychopyVersion(version)
To store the version of PsychoPy that this calibration used

setSizePix(pixels)
Set the size of the screen in pixels x,y

setSpectra(nm, rgb)
Sets the phosphor spectra measured by the spectrometer

setUseBits(usebits)
DEPRECATED: Use the new hardware classes to control these devices

setWidth(width)
Of the viewable screen (cm)

10.23.2 GammaCalculator

class psychopy.monitors.GammaCalculator(inputs=(), lums=(), gamma=None, bitsIN=8, bitsOUT=8, eq=1)
Class for managing gamma tables

Parameters:
• inputs (required)= values at which you measured screen luminance either

in range 0.0:1.0, or range 0:255. Should include the min and max of the monitor

Then give EITHER “lums” or “gamma”:

• lums = measured luminance at given input levels

• gamma = your own gamma value (single float)

• bitsIN = number of values in your lookup table

• bitsOUT = number of bits in the DACs

myTable.gammaModel myTable.gamma

fitGammaErrFun(params, x, y, minLum, maxLum)

Provides an error function for fitting gamma function

(used by fitGammaFun)

fitGammaFun(x, y)
Fits a gamma function to the monitor calibration data.

Parameters:
-xVals are the monitor look-up-table vals, either 0-255 or 0.0-1.0 -yVals are the measured luminances
from a photometer/spectrometer

10.23. psychopy.monitors - for those that don’t like Monitor Center 871

PsychoPy - Psychology software for Python, Release 2023.2.3

10.23.3 getAllMonitors()

psychopy.monitors.getAllMonitors()

Find the names of all monitors for which calibration files exist

10.23.4 getLumSeriesPR650()

psychopy.monitors.getLumSeriesPR650(lumLevels=8, winSize=(800, 600), monitor=None, gamma=1.0,
allGuns=True, useBits=False, autoMode='auto', stimSize=0.3,
photometer='COM1')

DEPRECATED (since v1.60.01): Use psychopy.monitors.getLumSeries() instead

10.23.5 getRGBspectra()

psychopy.monitors.getRGBspectra(stimSize=0.3, winSize=(800, 600), photometer='COM1')

usage:
getRGBspectra(stimSize=0.3, winSize=(800,600), photometer=’COM1’)

Params
• ‘photometer’ could be a photometer object or a serial port name on which a photometer

might be found (not recommended)

10.23.6 gammaFun()

psychopy.monitors.gammaFun(xx, minLum, maxLum, gamma, eq=1, a=None, b=None, k=None)
Returns gamma-transformed luminance values. y = gammaFun(x, minLum, maxLum, gamma)

a and b are calculated directly from minLum, maxLum, gamma

Parameters:
• xx are the input values (range 0-255 or 0.0-1.0)

• minLum = the minimum luminance of your monitor

• maxLum = the maximum luminance of your monitor (for this gun)

• gamma = the value of gamma (for this gun)

10.23.7 gammaInvFun()

psychopy.monitors.gammaInvFun(yy, minLum, maxLum, gamma, b=None, eq=1)
Returns inverse gamma function for desired luminance values. x = gammaInvFun(y, minLum, maxLum, gamma)

a and b are calculated directly from minLum, maxLum, gamma Parameters:
• xx are the input values (range 0-255 or 0.0-1.0)

• minLum = the minimum luminance of your monitor

• maxLum = the maximum luminance of your monitor (for this gun)

• gamma = the value of gamma (for this gun)

10.23. psychopy.monitors - for those that don’t like Monitor Center 872

PsychoPy - Psychology software for Python, Release 2023.2.3

• eq determines the gamma equation used;
eq==1[default]: yy = a + (b * xx)**gamma eq==2: yy = (a + b*xx)**gamma

10.23.8 makeDKL2RGB()

psychopy.monitors.makeDKL2RGB(nm, powerRGB)
Creates a 3x3 DKL->RGB conversion matrix from the spectral input powers

10.23.9 makeLMS2RGB()

psychopy.monitors.makeLMS2RGB(nm, powerRGB)
Creates a 3x3 LMS->RGB conversion matrix from the spectral input powers

10.24 psychopy.parallel - functions for interacting with the parallel
port

This module provides read / write access to the parallel port for Linux or Windows.

The Parallel class described below will attempt to load whichever parallel port driver is first found on your system
and should suffice in most instances. If you need to use a specific driver then, instead of using ParallelPort shown
below you can use one of the following as drop-in replacements, forcing the use of a specific driver:

• psychopy.parallel.PParallelInpOut

• psychopy.parallel.PParallelDLPortIO

• psychopy.parallel.PParallelLinux

Either way, each instance of the class can provide access to a different parallel port.

There is also a legacy API which consists of the routines which are directly in this module. That API assumes you only
ever want to use a single parallel port at once.

psychopy.parallel.ParallelPort

alias of PParallelLinux

10.24.1 Legacy functions

We would strongly recommend you use the class above instead: these are provided for backwards compatibility only.

parallel.setPortAddress()

Set the memory address or device node for your parallel port of your parallel port, to be used in subsequent
commands

Common port addresses:

LPT1 = 0x0378 or 0x03BC
LPT2 = 0x0278 or 0x0378
LPT3 = 0x0278

or for Linux::
/dev/parport0

10.24. psychopy.parallel - functions for interacting with the parallel port 873

PsychoPy - Psychology software for Python, Release 2023.2.3

This routine will attempt to find a usable driver depending on your platform

parallel.setData()

Set the data to be presented on the parallel port (one ubyte). Alternatively you can set the value of each pin (data
pins are pins 2-9 inclusive) using setPin()

Examples:

parallel.setData(0) # sets all pins low
parallel.setData(255) # sets all pins high
parallel.setData(2) # sets just pin 3 high (remember that pin2=bit0)
parallel.setData(3) # sets just pins 2 and 3 high

You can also convert base 2 to int v easily in python:

parallel.setData(int("00000011", 2)) # pins 2 and 3 high
parallel.setData(int("00000101", 2)) # pins 2 and 4 high

parallel.setPin(state)
Set a desired pin to be high (1) or low (0).

Only pins 2-9 (incl) are normally used for data output:

parallel.setPin(3, 1) # sets pin 3 high
parallel.setPin(3, 0) # sets pin 3 low

parallel.readPin()

Determine whether a desired (input) pin is high(1) or low(0).

Pins 2-13 and 15 are currently read here

10.25 psychopy.plugins - utilities for extending with plugins

10.25.1 Overview

scanPlugins() Scan the system for installed plugins.
listPlugins([which]) Get a list of installed or loaded PsychoPy plugins.
loadPlugin(plugin) Load a plugin to extend PsychoPy.
requirePlugin(plugin) Require a plugin to be already loaded.
isPluginLoaded(plugin) Check if a plugin has been previously loaded success-

fully by a loadPlugin() call.
startUpPlugins(plugins[, add, verify]) Specify which plugins should be loaded automatically

when a PsychoPy session starts.
isStartUpPlugin(plugin) Check if a plugin is registered to be loaded when Psy-

choPy starts.
pluginMetadata(plugin) Get metadata from a plugin package.
pluginEntryPoints(plugin[, parse]) Get the entry point mapping for a specified plugin.
computeChecksum(fpath[, method, writeOut]) Compute the checksum hash/key for a given package.

10.25. psychopy.plugins - utilities for extending with plugins 874

PsychoPy - Psychology software for Python, Release 2023.2.3

10.25.2 Details

psychopy.plugins.scanPlugins()

Scan the system for installed plugins.

This function scans installed packages for the current Python environment and looks for ones that specify Psy-
choPy entry points in their metadata. Afterwards, you can call listPlugins() to list them and loadPlugin()
to load them into the current session. This function is called automatically when PsychoPy starts, so you do not
need to call this unless packages have been added since the session began.

Returns
Number of plugins found during the scan. Calling listPlugins() will return the names of the found
plugins.

Return type
int

psychopy.plugins.listPlugins(which='all')
Get a list of installed or loaded PsychoPy plugins.

This function lists either all potential plugin packages installed on the system, those registered to be loaded
automatically when PsychoPy starts, or those that have been previously loaded successfully this session.

Parameters
which (str) – Category to list plugins. If ‘all’, all plugins installed on the system will be listed,
whether they have been loaded or not. If ‘loaded’, only plugins that have been previously loaded
successfully this session will be listed. If ‘startup’, plugins registered to be loaded when a Psy-
choPy session starts will be listed, whether or not they have been loaded this session. If ‘un-
loaded’, plugins that have not been loaded but are installed will be listed. If ‘failed’, returns a list
of plugin names that attempted to load this session but failed for some reason.

Returns
Names of PsychoPy related plugins as strings. You can load all installed plugins by passing list
elements to loadPlugin.

Return type
list

See also:

loadPlugin
Load a plugin into the current session.

Examples

Load all plugins installed on the system into the current session (assumes all plugins don’t require any additional
arguments passed to them):

for plugin in plugins.listPlugins():
plugins.loadPlugin(plugin)

If certain plugins take arguments, you can do this give specific arguments when loading all plugins:

pluginArgs = {'some-plugin': (('someArg',), {'setup': True, 'spam': 10})}
for plugin in plugins.listPlugins():

try:
(continues on next page)

10.25. psychopy.plugins - utilities for extending with plugins 875

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

args, kwargs = pluginArgs[plugin]
plugins.loadPlugin(plugin, *args, **kwargs)

except KeyError:
plugins.loadPlugin(plugin)

Check if a plugin package named plugin-test is installed on the system and has entry points into PsychoPy:

if 'plugin-test' in plugins.listPlugins():
print("Plugin installed!")

Check if all plugins registered to be loaded on startup are currently active:

if not all([p in listPlugins('loaded') for p in listPlugins('startup')]):
print('Please restart your PsychoPy session for plugins to take effect.')

psychopy.plugins.loadPlugin(plugin)
Load a plugin to extend PsychoPy.

Plugins are packages which extend upon PsychoPy’s existing functionality by dynamically importing code at
runtime, without modifying the existing installation files. Plugins create or redefine objects in the namespaces of
modules (eg. psychopy.visual) and unbound classes, allowing them to be used as if they were part of PsychoPy.
In some cases, objects exported by plugins will be registered for a particular function if they define entry points
into specific modules.

Plugins are simply Python packages,`loadPlugin` will search for them in directories specified in sys.path. Only
packages which define entry points in their metadata which pertain to PsychoPy can be loaded with this func-
tion. This function also permits passing optional arguments to a callable object in the plugin module to run any
initialization routines prior to loading entry points.

This function is robust, simply returning True or False whether a plugin has been fully loaded or not. If a plugin
fails to load, the reason for it will be written to the log as a warning or error, and the application will continue
running. This may be undesirable in some cases, since features the plugin provides may be needed at some point
and would lead to undefined behavior if not present. If you want to halt the application if a plugin fails to load,
consider using requirePlugin().

It is advised that you use this function only when using PsychoPy as a library. If using the builder or coder
GUI, it is recommended that you use the plugin dialog to enable plugins for PsychoPy sessions spawned by the
experiment runner. However, you can still use this function if you want to load additional plugins for a given
experiment, having their effects isolated from the main application and other experiments.

Parameters
plugin (str) – Name of the plugin package to load. This usually refers to the package or project
name.

Returns
True if the plugin has valid entry points and was loaded successfully. Also returns True if the
plugin was already loaded by a previous loadPlugin call this session, this function will have no
effect in this case. False is returned if the plugin defines no entry points specific to PsychoPy or
crashed (an error is logged).

Return type
bool

10.25. psychopy.plugins - utilities for extending with plugins 876

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PsychoPy - Psychology software for Python, Release 2023.2.3

Warning: Make sure that plugins installed on your system are from reputable sources, as they may contain
malware! PsychoPy is not responsible for undefined behaviour or bugs associated with the use of 3rd party
plugins.

See also:

listPlugins
Search for and list installed or loaded plugins.

requirePlugin
Require a plugin be previously loaded.

Examples

Load a plugin by specifying its package/project name:

loadPlugin('psychopy-hardware-box')

You can give arguments to this function which are passed on to the plugin:

loadPlugin('psychopy-hardware-box', switchOn=True, baudrate=9600)

You can use the value returned from loadPlugin to determine if the plugin is installed and supported by the
platform:

hasPlugin = loadPlugin('psychopy-hardware-box')
if hasPlugin:

initialize objects which require the plugin here ...

psychopy.plugins.requirePlugin(plugin)
Require a plugin to be already loaded.

This function can be used to ensure if a plugin has already been loaded and is ready for use, raising an exception
and ending the session if not.

This function compliments loadPlugin(), which does not halt the application if plugin fails to load. This allows
PsychoPy to continue working, giving the user a chance to deal with the problem (either by disabling or fixing
the plugins). However, requirePlugin() can be used to guard against undefined behavior caused by a failed
or partially loaded plugin by raising an exception before any code that uses the plugin’s features is executed.

Parameters
plugin (str) – Name of the plugin package to require. This usually refers to the package or
project name.

Raises
RuntimeError – Plugin has not been previously loaded this session.

See also:

loadPlugin
Load a plugin into the current session.

10.25. psychopy.plugins - utilities for extending with plugins 877

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError

PsychoPy - Psychology software for Python, Release 2023.2.3

Examples

Ensure plugin psychopy-plugin is loaded at this point in the session:

requirePlugin('psychopy-plugin') # error if not loaded

You can catch the error and try to handle the situation by:

try:
requirePlugin('psychopy-plugin')

except RuntimeError:
do something about it ...

psychopy.plugins.isPluginLoaded(plugin)
Check if a plugin has been previously loaded successfully by a loadPlugin() call.

Parameters
plugin (str) – Name of the plugin package to check if loaded. This usually refers to the package
or project name.

Returns
True if a plugin was successfully loaded and active, else False.

Return type
bool

See also:

loadPlugin
Load a plugin into the current session.

psychopy.plugins.startUpPlugins(plugins, add=True, verify=True)
Specify which plugins should be loaded automatically when a PsychoPy session starts.

This function edits psychopy.preferences.prefs.general['startUpPlugins'] and provides a means
to verify if entries are valid. The PsychoPy session must be restarted for the plugins specified to take effect.

If using PsychoPy as a library, this function serves as a convenience to avoid needing to explicitly call
loadPlugin() every time to use your favorite plugins.

Parameters
• plugins (str, list or None) – Name(s) of plugins to have load on startup.

• add (bool) – If True names of plugins will be appended to startUpPlugins unless a name
is already present. If False, startUpPlugins will be set to plugins, overwriting the previous
value. If add=False and plugins=[] or plugins=None, no plugins will be loaded in the next
session.

• verify (bool) – Check if plugins are installed and have valid entry points to PsychoPy.
Raises an error if any are not. This prevents undefined behavior arsing from invalid plugins
being loaded in the next session. If False, plugin names will be added regardless if they are
installed or not.

Raises
RuntimeError – If verify=True, any of plugins is not installed or does not have entry points to
PsychoPy. This is raised to prevent issues in future sessions where invalid plugins are written to
the config file and are automatically loaded.

10.25. psychopy.plugins - utilities for extending with plugins 878

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError

PsychoPy - Psychology software for Python, Release 2023.2.3

Warning: Do not use this function within the builder or coder GUI! Use the plugin dialog to specify which
plugins to load on startup. Only use this function when using PsychoPy as a library!

Examples

Adding plugins to load on startup:

startUpPlugins(['plugin1', 'plugin2'])

Clearing the startup plugins list, no plugins will be loaded automatically at the start of the next session:

plugins.startUpPlugins([], add=False)
or ..
plugins.startUpPlugins(None, add=False)

If passing None or an empty list with add=True, the present value of prefs.general[‘startUpPlugins’] will remain
as-is.

psychopy.plugins.isStartUpPlugin(plugin)
Check if a plugin is registered to be loaded when PsychoPy starts.

Parameters
plugin (str) – Name of the plugin package to check. This usually refers to the package or
project name.

Returns
True if a plugin is registered to be loaded when a PsychoPy session starts, else False.

Return type
bool

Examples

Check if a plugin was loaded successfully at startup:

pluginName = 'psychopy-plugin'
if isStartUpPlugin(pluginName) and isPluginLoaded(pluginName):

print('Plugin successfully loaded at startup.')

psychopy.plugins.pluginMetadata(plugin)
Get metadata from a plugin package.

Reads the package’s PKG_INFO and gets fields as a dictionary. Only packages that have valid entry points to
PsychoPy can be queried.

Parameters
plugin (str) – Name of the plugin package to retrieve metadata from.

Returns
Metadata fields.

Return type
dict

10.25. psychopy.plugins - utilities for extending with plugins 879

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.plugins.pluginEntryPoints(plugin, parse=False)
Get the entry point mapping for a specified plugin.

You must call scanPlugins before calling this function to get the entry points for a given plugin.

Note this function is intended for internal use by the PsychoPy plugin system only.

Parameters
• plugin (str) – Name of the plugin package to get advertised entry points.

• parse (bool) – Parse the entry point specifiers and convert them to fully-qualified names.

Returns
Dictionary of target groups/attributes and entry points objects.

Return type
dict

psychopy.plugins.computeChecksum(fpath, method='sha256', writeOut=None)
Compute the checksum hash/key for a given package.

Authors of PsychoPy plugins can use this function to compute a checksum hash and users can use it to check the
integrity of their packages.

Parameters
• fpath (str) – Path to the plugin package or file.

• method (str) – Hashing method to use, values are ‘md5’ or ‘sha256’. Default is ‘sha256’.

• writeOut (str) – Path to a text file to write checksum data to. If the file exists, the data will
be written as a line at the end of the file.

Returns
Checksum hash digested to hexadecimal format.

Return type
str

Examples

Compute a checksum for a package and write it to a file:

with open('checksum.txt', 'w') as f:
f.write(computeChecksum(

'/path/to/plugin/psychopy_plugin-1.0-py3.6.egg'))

10.26 psychopy.preferences - getting and setting preferences

You can set preferences on a per-experiment basis. For example, if you would like to use a specific audio library, but
don’t want to touch your user settings in general, you can import preferences and set the option audioLib accordingly:

from psychopy import prefs
prefs.hardware['audioLib'] = ['pyo']
from psychopy import sound

10.26. psychopy.preferences - getting and setting preferences 880

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PsychoPy - Psychology software for Python, Release 2023.2.3

!!IMPORTANT!! You must import the sound module AFTER setting the preferences. To check that you are getting
what you want (don’t do this in your actual experiment):

print sound.Sound

The output should be <class 'psychopy.sound.SoundPyo'> for pyo, or <class 'psychopy.sound.
SoundPygame'> for pygame.

You can find the names of the preferences sections and their different options here.

10.26.1 Preferences

Class for loading / saving prefs

class psychopy.preferences.Preferences

Users can alter preferences from the dialog box in the application, by editing their user preferences file (which
is what the dialog box does) or, within a script, preferences can be controlled like this:

import psychopy
psychopy.prefs.hardware['audioLib'] = ['ptb', 'pyo','pygame']
print(prefs)
prints the location of the user prefs file and all the current vals

Use the instance of prefs, as above, rather than the Preferences class directly if you want to affect the script that’s
running.

loadAll()

Load the user prefs and the application data

loadAppData()

Fetch app data config (unless this is a lib-only installation)

loadUserPrefs()

load user prefs, if any; don’t save to a file because doing so will break easy_install. Saving to files within
the psychopy/ is fine, eg for key-bindings, but outside it (where user prefs will live) is not allowed by
easy_install (security risk)

resetPrefs()

removes userPrefs.cfg, does not touch appData.cfg

restoreBadPrefs(cfg, result)
result = result of validate

saveAppData()

Save the various setting to the appropriate files (or discard, in some cases)

saveUserPrefs()

Validate and save the various setting to the appropriate files (or discard, in some cases)

validate()

Validate (user) preferences and reset invalid settings to defaults

10.26. psychopy.preferences - getting and setting preferences 881

PsychoPy - Psychology software for Python, Release 2023.2.3

10.27 psychopy.serial - functions for interacting with the serial port

is compatible with Chris Liechti’s pyserial package. You can use it like this:

import serial
ser = serial.Serial(0, 19200, timeout=1) # open first serial port
#ser = serial.Serial('/dev/ttyS1', 19200, timeout=1)#or something like this for Mac/Linux␣
→˓machines
ser.write('someCommand')
line = ser.readline() # read a '\n' terminated line
ser.close()

Ports are fully configurable with all the options you would expect of RS232 communications. See https://pyserial.
readthedocs.io for further details and documentation.

pyserial is packaged in the Standalone (Windows and Mac distributions), for manual installations you should install
this yourself.

10.28 psychopy.voicekey - Real-time sound processing

(Available as of version 1.83.00)

10.28.1 Overview

Hardware voice-keys are used to detect and signal acoustic properties in real time, e.g., the onset of a spoken word in
word-naming studies. provides two virtual voice-keys, one for detecting vocal onsets and one for vocal offsets.

All voice-keys can take their input from a file or from a microphone. Event detection is typically quite similar is both
cases.

The base class is very general, and is best thought of as providing a toolkit for developing a wide range of custom
voice-keys. It would be possible to develop a set of voice-keys, each optimized for detecting different initial phonemes.
Band-pass filtered data and zero-crossing counts are computed in real-time every 2ms.

10.28.2 Voice-Keys

class psychopy.voicekey.OnsetVoiceKey(sec=0, file_out='', file_in='', **config)
Class for speech onset detection.

Uses bandpass-filtered signal (100-3000Hz). When the voice key trips, the best voice-onset RT estimate is saved
as self.event_onset, in sec.

Parameters
sec:

duration to record in seconds

file_out:
name for output filename (for microphone input)

file_in:
name of input file for sound source (not microphone)

config: kwargs dict of parameters for configuration. defaults are:

10.27. psychopy.serial - functions for interacting with the serial port 882

https://github.com/pyserial/pyserial
https://pyserial.readthedocs.io
https://pyserial.readthedocs.io

PsychoPy - Psychology software for Python, Release 2023.2.3

‘msPerChunk’: 2; duration of each real-time analysis chunk, in ms

‘signaler’: default None

‘autosave’: True; False means manual saving to a file is still
possible (by calling .save() but not called automatically upon stopping

‘chnl_in’
[microphone channel;] see psychopy.sound.backend.get_input_devices()

‘chnl_out’: not implemented; output device to use

‘start’: 0, select section from a file based on (start, stop) time

‘stop’: -1, end of file (default)

‘vol’: 0.99, volume 0..1

‘low’: 100, Hz, low end of bandpass; can vary for M/F speakers

‘high’: 3000, Hz, high end of bandpass

‘threshold’: 10

‘baseline’: 0; 0 = auto-detect; give a non-zero value to use that

‘more_processing’: True; compute more stats per chunk including
bandpass; try False if 32-bit python can’t keep up

‘zero_crossings’: True

_do_chunk()

Core function to handle a chunk (= a few ms) of input.

There can be small temporal gaps between or within chunks, i.e., slippage. Adjust several parameters until
this is small: msPerChunk, and what processing is done within ._process().

A trigger (_chunktrig) signals that _chunktable has been filled and has set _do_chunk as the function to call
upon triggering. .play() the trigger again to start recording the next chunk.

_process(chunk)
Calculate and store basic stats about the current chunk.

This gets called every chunk – keep it efficient, esp 32-bit python

_set_baseline()

Set self.baseline = rms(silent period) using _baselinetable data.

Called automatically (via pyo trigger) when the baseline table is full. This is better than using chunks
(which have gaps between them) or the whole table (which can be very large = slow to work with).

_set_defaults()

Set remaining defaults, initialize lists to hold summary stats

_set_signaler()

Set the signaler to be called by trip()

_set_source()

Data source: file_in, array, or microphone

_set_tables()

Set up the pyo tables (allocate memory, etc).

One source -> three pyo tables: chunk=short, whole=all, baseline. triggers fill tables from self._source;
make triggers in .start()

10.28. psychopy.voicekey - Real-time sound processing 883

PsychoPy - Psychology software for Python, Release 2023.2.3

detect()

Trip if recent audio power is greater than the baseline.

join(sec=None)
Sleep for sec or until end-of-input, and then call stop().

save(ftype='', dtype='int16')
Save new data to file, return the size of the saved file (or None).

The file format is inferred from the filename extension, e.g., flac. This will be overridden by the ftype if
one is provided; defaults to wav if nothing else seems reasonable. The optional dtype (e.g., int16) can be
any of the sample types supported by pyo.

property slippage

Ratio of the actual (elapsed) time to the ideal time.

Ideal ratio = 1 = sample-perfect acquisition of msPerChunk, without any gaps between or within chunks.
1. / slippage is the proportion of samples contributing to chunk stats.

Type
Diagnostic

start(silent=False)
Start reading and processing audio data from a file or microphone.

property started

Boolean property, whether .start() has been called.

stop()

Stop a voice-key in progress.

Ends and saves the recording if using microphone input.

wait_for_event(plus=0)
Start, join, and wait until the voice-key trips, or it times out.

Optionally wait for some extra time, plus, before calling stop().

class psychopy.voicekey.OffsetVoiceKey(sec=10, file_out='', file_in='', delay=0.3, **kwargs)
Class to detect the offset of a single-word utterance.

Record and ends the recording after speech offset. When the voice key trips, the best voice-offset RT estimate is
saved as self.event_offset, in seconds.

Parameters
sec: duration of recording in the absence of speech or

other sounds.

delay: extra time to record after speech offset, default 0.3s.

The same methods are available as for class OnsetVoiceKey.

10.28. psychopy.voicekey - Real-time sound processing 884

PsychoPy - Psychology software for Python, Release 2023.2.3

10.28.3 Signal-processing functions

Several utility functions are available for real-time sound analysis.

psychopy.voicekey.smooth(data, win=16, tile=True)
Running smoothed average, via convolution over win window-size.

tile with the mean at start and end by default; otherwise replace with 0.

psychopy.voicekey.bandpass(data, low=80, high=1200, rate=44100, order=6)
Return bandpass filtered data.

psychopy.voicekey.rms(data)
Basic audio-power measure: root-mean-square of data.

Identical to std when the mean is zero; faster to compute just rms.

psychopy.voicekey.std(data)
Like rms, but also subtracts the mean (= slower).

psychopy.voicekey.zero_crossings(data)
Return a vector of length n-1 of zero-crossings within vector data.

1 if the adjacent values switched sign, or 0 if they stayed the same sign.

psychopy.voicekey.tone(freq=440, sec=2, rate=44100, vol=0.99)
Return a np.array suitable for use as a tone (pure sine wave).

psychopy.voicekey.apodize(data, ms=5, rate=44100)
Apply a Hanning window (5ms) to reduce a sound’s ‘click’ onset / offset.

10.28.4 Sound file I/O

Several helper functions are available for converting and saving sound data from several data formats (numpy arrays,
pyo tables) and file formats. All file formats that pyo supports are available, including wav, flac for lossless compression.
mp3 format is not supported (but you can convert to .wav using another utility).

psychopy.voicekey.samples_from_table(table, start=0, stop=-1, rate=44100)
Return samples as a np.array read from a pyo table.

A (start, stop) selection in seconds may require a non-default rate.

psychopy.voicekey.table_from_samples(samples, start=0, stop=-1, rate=44100)
Return a pyo DataTable constructed from samples.

A (start, stop) selection in seconds may require a non-default rate.

psychopy.voicekey.table_from_file(file_in, start=0, stop=-1)
Read data from files, any pyo format, returns (rate, pyo SndTable)

psychopy.voicekey.samples_from_file(file_in, start=0, stop=-1)
Read data from files, returns tuple (rate, np.array(.float64))

psychopy.voicekey.samples_to_file(samples, rate, file_out, fmt='', dtype='int16')
Write data to file, using requested format or infer from file .ext.

Only integer rate values are supported.

See http://ajaxsoundstudio.com/pyodoc/api/functions/sndfile.html

10.28. psychopy.voicekey - Real-time sound processing 885

http://ajaxsoundstudio.com/pyodoc/api/functions/sndfile.html

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.voicekey.table_to_file(table, file_out, fmt='', dtype='int16')
Write data to file, using requested format or infer from file .ext.

10.29 psychopy.web - Web methods

10.29.1 Test for access

psychopy.web.haveInternetAccess(forceCheck=False)
Detect active internet connection or fail quickly.

If forceCheck is False, will rely on a cached value if possible.

psychopy.web.requireInternetAccess(forceCheck=False)
Checks for access to the internet, raise error if no access.

10.29.2 Proxy set-up and testing

psychopy.web.setupProxy(log=True)
Set up the urllib proxy if possible.

The function will use the following methods in order to try and determine proxies:

1. standard urllib.request.urlopen (which will use any statically-defined http-proxy settings)

2. previous stored proxy address (in prefs)

3. proxy.pac files if these have been added to system settings

4. auto-detect proxy settings (WPAD technology)

Return type
True (success) or False (failure)

10.29. psychopy.web - Web methods 886

CHAPTER

ELEVEN

TIMING INFORMATION FOR PSYCHOPY

There is documentation about how to optimize timing in at Timing Issues and synchronisation

We recently ran a study testing the timing on a wide range of software packages, online and offline. The data for that
study are available below:

11.1 Mega-timing study data

Here are the data summaries for our paper, The timing mega-study: comparing a range of experiment generators, both
lab-based and online

You can read the full preprint of the paper at https://peerj.com/articles/9414/

11.1.1 Table2: lab-based timing data

This is a sortable version of Table2 from The timing mega-study: comparing a range of experiment generators, both
lab-based and online

Timing summaries of lab-based software by package and platform. The Var(iability) measures are the inter-trial
standard deviations of the various latencies for that configuration. The table is sorted by the mean of those variabilities
(Mean Var). The Lag/Bias measures are the mean latency values, for that configuration. In the case of audiovisual
sync, a negative bias indicates the audio lead the visual stimulus, a positive bias means the visual lead the audio. Each
of the values with a hyperlink will lead to a plot of the distribution of values leading to that summary value.

11.1.2 Table3: online timing data

This is a sortable version of Table3 from The timing mega-study: comparing a range of experiment generators, both
lab-based and online

Timing summaries of web-based software by package, platform, and browser. The Var(iability) measures are the
inter-trial standard deviations of the various latencies for that configuration. The table is sorted by the mean of those
variabilities (Mean Var). The Lag/Bias measures are the mean latency values, for that configuration. In the case of
audiovisual sync, a negative bias indicates the audio lead the visual stimulus, a positive bias means the visual lead the
audio. Each of the values with a hyperlink will lead to a plot of the distribution of values leading to that summary
value.

887

https://peerj.com/articles/9414/
https://peerj.com/articles/9414/
https://peerj.com/articles/9414/
https://peerj.com/articles/9414/
https://peerj.com/articles/9414/
https://peerj.com/articles/9414/
https://peerj.com/articles/9414/
https://peerj.com/articles/9414/

CHAPTER

TWELVE

TROUBLESHOOTING

Regrettably, occasionally has bugs. Running on all possible hardware and all platforms is a big ask. That said, a huge
number of bugs have been resolved by the fact that there are literally 1000s of people using the software that have
contributed either bug reports and/or fixes.

Below are some of the more common problems and their workarounds, as well as advice on how to get further help.

12.1 The application doesn’t start

You may find that you try to launch the application, the splash screen appears and then goes away and nothing more
happens. What this means is that an error has occurred during startup itself.

Commonly, the problem is that a preferences file is somehow corrupt. To fix that see Cleaning preferences and app
data, below.

If resetting the preferences files doesn’t help then we need to get to an error message in order to work out why the
application isn’t starting. The way to get that message depends on the platform (see below).

Windows users (starting from the Command Prompt):

1. Did you get an error message that “This application failed to start because the application configuration is in-
correct. Reinstalling the application may fix the problem”? If so that indicates you need to update your .NET
installation to SP1 .

2. open a Command Prompt (terminal):
1. go to the Windows Start menu

2. select Run. . . and type in cmd <Return>

3. paste the following into that window (Ctrl-V doesn’t work in Cmd.exe but you can right-click and select Paste):

"C:\Program Files\PsychoPy2\python.exe" -m psychopy.app.psychopyApp

4. when you hit <return> you will hopefully get a moderately useful error message that you can Contribute to the
Forum (mailing list)

Mac users:
1. open the Console app (open spotlight and type console)

2. if there are a huge number of messages there you might find it easiest to clear them (the brush icon) and
then start again to generate a new set of messages

888

http://www.microsoft.com/download/en/details.aspx?id=33
http://www.microsoft.com/download/en/details.aspx?id=33

PsychoPy - Psychology software for Python, Release 2023.2.3

12.2 I run a Builder experiment and nothing happens

An error message may have appeared in a dialog box that is hidden (look to see if you have other open windows
somewhere).

An error message may have been generated that was sent to output of the Coder view:
1. go to the Coder view (from the Builder>View menu if not visible)

2. if there is no Output panel at the bottom of the window, go to the View menu and select Output

3. try running your experiment again and see if an error message appears in this Output view

If you still don’t get an error message but the application still doesn’t start then manually turn off the viewing of
the Output (as below) and try the above again.

12.3 Manually turn off the viewing of output

Very occasionally an error will occur that crashes the application after the application has opened the Coder Output
window. In this case the error message is still not sent to the console or command prompt.

To turn off the Output view so that error messages are sent to the command prompt/terminal on startup, open your
appData.cfg file (see Cleaning preferences and app data), find the entry:

[coder]
showOutput = True

and set it to showOutput = False (note the capital ‘F’).

12.4 Use the source (Luke?)

comes with all the source code included. You may not think you’re much of a programmer, but have a go at reading
the code. You might find you understand more of it than you think!

To have a look at the source code do one of the following:
• when you get an error message in the Coder click on the hyperlinked error lines to see the relevant code

• on Windows
– go to <location of PsychoPy app>\Lib\site-packages\psychopy

– have a look at some of the files there

• on Mac
– right click the app and select Show Package Contents

– navigate to Contents/Resources/lib/pythonX.X/psychopy

12.2. I run a Builder experiment and nothing happens 889

PsychoPy - Psychology software for Python, Release 2023.2.3

12.5 Cleaning preferences and app data

Every time you shut down (by normal means) your current preferences and the state of the application (the location
and state of the windows) are saved to disk. If is crashing during startup you may need to edit those files or delete them
completely.

The exact location of those files varies by machine but on windows it will be something like %APPDATA%psychopy3
and on Linux/MacOS it will be something like ~/.psychopy3. You can find it running this in the commandline (if you
have multiple Python installations then make sure you change python to the appropriate one for :

python -c "from psychopy import prefs; print(prefs.paths['userPrefsDir'])"

Within that folder you will find userPrefs.cfg and appData.cfg. The files are simple text, which you should be able to
edit in any text editor.

If the problem is that you have a corrupt experiment file or script that is trying and failing to load on startup, you
could simply delete the appData.cfg file. Please also Contribute to the Forum (mailing list) a copy of the file that isn’t
working so that the underlying cause of the problem can be investigated (google first to see if it’s a known issue).

12.6 Errors with getting/setting the Gamma ramp

There are two common causes for errors getting/setting gamma ramps depending on whether you’re running Windows
or Linux (we haven’t seen these problems on Mac).

12.6.1 MS Windows bug in release 1903

In Windows release 1903 Microsoft added a bug that prevents getting/setting the gamma ramp. This only occurs in
certain scenarios, like when the screen orientation is in portrait, or when it is extended onto a second monitor, but it
does affect all versions of PsychoPy.

For the Windows bug the workarounds are as follows:

If you don’t need gamma correction then, as of 3.2.4, you can go to the preferences and set the defaultGammaFailPol-
icy to be be ‘warn’ (rather than ‘abort’) and then your experiment will still at least run, just without gamma correction.

If you do need gamma correction then there isn’t much that the team can do until Microsoft fixes the underlying bug.
You’ll need to do one of:

• Not using Window 1903 (e.g. revert the update) until a fix is listed on the status of the gamma bug

• Altering your monitor settings in Windows (e.g. turning off extended desktop) until it works . Unfortunately that
might mean you can’t use dual independent displays for vision science studies until Microsoft fix it.

12.6.2 Linux missing xorg.conf

On Linux some systems appear to be missing a configuration file and adding this back in and restarting should fix
things.

Create the following file (including the folders as needed):

/etc/X11/xorg.conf.d/20-intel.conf

and put the following text inside (assuming you have an intel card, which is where we’ve typically seen the issue crop
up):

12.5. Cleaning preferences and app data 890

https://docs.microsoft.com/en-us/windows/release-information/status-windows-10-1903#226msgdesc
https://docs.microsoft.com/en-us/windows/release-information/status-windows-10-1903#226msgdesc

PsychoPy - Psychology software for Python, Release 2023.2.3

Section "Device"
Identifier "Intel Graphics"
Driver "intel"

EndSection

For further information on the discussion of this (Linux) issue see
https://github.com/psychopy/psychopy/issues/2061

12.6. Errors with getting/setting the Gamma ramp 891

https://github.com/psychopy/psychopy/issues/2061

CHAPTER

THIRTEEN

ALERTS

The Alerts system is designed to provide you information of varying levels about things that may be a concern in your
study (but equally may not be - it depends on your study!). Alerts show up within with a code and that code should
take you here for detailed information about the root cause of the problem, the workarounds, and the type of study that
might be badly affected by this issue.

13.1 2xxx: Issues with units

These issue usually result in problems with stimuli not appearing (too fast, too small, off-screen) or being an unexpected
size or color.

13.1.1 2115: Stimulus size is bigger than the window dimensions

Synopsis

Your stimulus size exceeds the X or Y window dimensions. Stimuli sized greater than the window size will not be
completely visible.

Details

This issue is often caused by an inconsistency between the units of your stimulus and the values being requested. For
instance a size of 3, when the units are deg is sensible (3 degrees would be within the screen dimensions) but a size of
3 when the units are height would not be sensible (3 times bigger than the height of the screen).

PsychoPy versions affected

All versions.

892

PsychoPy - Psychology software for Python, Release 2023.2.3

Solutions

Check the size and the units of the stimulus carefully. You may also need to check the monitor calibration if you’re
using units that depend on the monitor size and resolution (like cm and deg).

13.1.2 2120: Stimulus size is smaller than 1 pixel

Synopsis

Stimuli size requested is smaller than 1 pixel on X and/or Y dimensions. Stimuli sized smaller than 1 pixel will not be
visible.

Details

This issue is often caused by an inconsistency between the units of your stimulus and the values being requested. For
instance a size of 0.1, when the units are height is sensible (1/10th the height of the screen) but a size of 0.1 when the
units are pix would not be sensible (1/10th of a pixel).

PsychoPy versions affected

All versions

Solutions

Check the size and the units of the stimulus carefully. You may also need to check the monitor calibration if you’re
using units that depend on the monitor size and resolution (like cm and deg).

13.1.3 2155: Stimulus position is beyond the bounds of the window

Synopsis

Your stimulus position exceeds the X or Y window dimensions. Stimuli centered beyond the window will not be
completely visible.

Details

This issue is often caused by an inconsistency between the units of your stimulus and the values being requested. For
instance a position of (3, 0), when the units are deg is sensible (3 degrees to the right of the screen center) but a position
of (3, 0) when the units are height would not be sensible (3 times the height of the screen to the right of the center).

13.1. 2xxx: Issues with units 893

PsychoPy - Psychology software for Python, Release 2023.2.3

PsychoPy versions affected

All versions

Solutions

Check the position and the units of the stimulus carefully. You may also need to check the monitor calibration if you’re
using units that depend on the monitor size and resolution (like cm and deg).

13.2 3xxx: Issues with timing

There are many ways for timing to go wrong, and these alerts will warn you about some of them (but we do always
recommend that you test your timing carefully with hardware devices if precise timing is important to your study).

13.2.1 3110: Stimulus duration is less than one screen refresh

Synopsis

Your stimulus is scheduled to last for a duration that can’t be achieved with a normal 60 Hz monitor. Duration will
implicitly be round up (probably) to the next frame duration.

Requested start or stop times of visual components cannot be presented for times requested. Accurate presentation
times must be in increments of your screen refresh rate.

Details

Stimuli can only be presented for a fixed number of screen refreshes. If you screen has a refresh rate of 60 Hz (common
for standard monitors) then each screen refresh period lasts 1/60 s (roughly 16.6667 ms). That means you can present
your stimulus for 16.7 ms but not for, say, 5 ms because that would require the stimulus to be presented for half of one
screen refresh period.

PsychoPy versions affected

All versions.

Solutions

We recommend for brief stimuli that you simply specify your stimulus duration in terms of the number of frames it
should be presented (e.g. 1, 2, 3, for 16.7, 33.3 and 50 ms respectively). That reminds you of what is possible and
means that PsychoPy won’t have to guess about what to do when the desired duration isn’t achievable.

If you need stimuli to be presented for briefer durations than 16.7 ms then you should look into high-frame-rate displays
(100, 120 and 144 Hz displays are all available). There are also now vraiable-frame-rate monitors that can vary the
duration of each frame within limits. If you are already using a high- or variable-rate monitor then this alert may not
be relevant to you.

13.2. 3xxx: Issues with timing 894

PsychoPy - Psychology software for Python, Release 2023.2.3

13.2.2 3115: Stimulus duration is not possible on a standard monitor refresh

Synopsis

If using a 60Hz or 100Hz monitor, then for accurate presentation of visual stimuli, components must be presented in
valid multiples of screen refresh for 60 Hz or 100 Hz.

Details

When presenting stimuli at, say, 60 Hz you stimulus can be presented for 1 frame (1/60 s = 16.667 ms), 2 frames (2/60
s = 33.333 ms) but not for intervening periods (20 ms is not possible because the stimulus would have to be presented
for a little more than 1 frame, which isn’t physically possible on standard fixed-framerate monitors.

PsychoPy versions affected

All versions.

Solutions

We recommend for brief stimuli that you simply specify your stimulus duration in terms of the number of frames it
should be presented (e.g. 1, 2, 3, for 16.7, 33.3 and 50 ms respectively). That reminds you of what is possible and
means that PsychoPy won’t have to guess about what to do when the desired duration isn’t achievable.

If you need stimuli to be presented for briefer durations than 16.7 ms then you should look into high-frame-rate displays
(100, 120 and 144 Hz displays are all available). There are also now vraiable-frame-rate monitors that can vary the
duration of each frame within limits. If you are already using a high- or variable-rate monitor then this alert may not
be relevant to you.

13.3 4xxx: Issues with Builder experiments

Issues specifically around Builder experiments doing unexpected things.

13.3.1 4051: Experiment from future version

Synopsis

It looks like you’re trying to open an experiment built in a newer version of PsychoPy than you currently have installed.
This can cause problems, your experiment may run differently to how you expect or may not run at all.

Details

Between different version of PsychoPy, we make a number of changes to improve usability and performance, but which
mean that newer experiments may contain code which older versions do not know how to handle. We always try to
maintain “backwards compatibility” - so that experiments built in older versions run the same in newer versions. How-
ever, we cannot predict what changes we will make years down the line, so cannot guarantee “forwards compatibility” in
the same way. This means that experiments built on newer versions of PsychoPy may run differently on older versions,
or may not run at all.

13.3. 4xxx: Issues with Builder experiments 895

PsychoPy - Psychology software for Python, Release 2023.2.3

PsychoPy versions affected

Any

Solutions

To fix this, we recommend updating to the newest version of PsychoPy. Or, if you need an older version for other
reasons, you can set this specific experiment to run in a different version by changing the “Use Version” parameter in
Experiment Settings to the version it was created in (or a newer version).

13.3.2 4052: Experiment fixed to past version

Synopsis

It looks like your experiment is set to run in a version before 2021.1.0, the version of PsychoPy you have currently
installed is newer than this, so saving the experiment in your current version may add new types of parameters which
the version it is set to cannot interpret.

Details

Between different version of PsychoPy, we make a number of changes to improve usability and performance, but which
mean that newer experiments may contain code which older versions do not know how to handle. We always try to
maintain “backwards compatibility” - so that experiments built in older versions run the same in newer versions. How-
ever, we cannot predict what changes we will make years down the line, so cannot guarantee “forwards compatibility”
in the same way. This means that experiments built in the current version of PsychoPy but set to run in an older version
may not run as expected, or at all. This is a particular issue between 2020.2.10 and 2021.1.0 as between the two we
added several new types of parameter, meaning if you run in 2020.2 PsychoPy will not recognise them.

PsychoPy versions affected

>2021.1.0

Solutions

To fix this, we recommend setting the experiment version in the Experiment Settings menu to be 2021.1.0 or newer, as
these will have the ability to recognise the new parameter types.

13.3.3 4105: Component start time exceeds its stop time

Synopsis

A component start time/frame exceeds the stop time/frame. This means that the component starts after it is due to
finish and the stimulus will most likely not be shown at all.

13.3. 4xxx: Issues with Builder experiments 896

PsychoPy - Psychology software for Python, Release 2023.2.3

PsychoPy versions affected

All versions.

Solutions

Check your start and stop time carefully, including the units being used. For example your stimulus might be set to
start at a certain time (say 36 seconds) rather than frame number 36.

13.3.4 4115: Component start/stop in units of frames must be whole numbers

Synopsis

Component start and stop times/durations in frames must be given as whole numbers.

Details

Since it isn’t possible to start or stop a stimulus part-way through a screen refresh it would be unwise to request that
PsychoPy attempts that.

PsychoPy versions affected

All versions.

Solutions

Check your stimulus start/stop time and set to an integer value instead of a decimal value.

13.3.5 4120: Component stop duration with no start time

Synopsis

In order for stop time to be set as a duration, PsychoPy needs to know the time at which the component started. When
there’s no start time, stop time will be calculated from the duration as if start time were 0s.

Details

PsychoPy versions affected

> 2022.1.0

13.3. 4xxx: Issues with Builder experiments 897

PsychoPy - Psychology software for Python, Release 2023.2.3

Solutions

You can either add a start time to this component, or change the stop time to be set in a different way (e.g. time (s))

13.3.6 4125: Microphone component given blank stop time

Synopsis

Mircophone components can’t record forever - there is a “buffer” with a finite size which will eventually fill up. As
you requested for a Microphone component to continue recording forever (by leaving the Stop field blank), PsychoPy
has substituted in the maximum time which you Microphone can record for, given the size of its buffer and the sample
rate it records at.

Details

PsychoPy versions affected

>2023.1.0

Solutions

No action is needed! Your Mircophone component will record for as long as it is able. To silence this alert, simply
give your Microphone component a duration.

13.3.7 4205: Probable syntax error detected in your Python code

Synopsis

Python syntax error found in your code component.

Details

This may be spurious in that the code check may have failed to understand something that is a valid syntax (syntax in
Python can change according to version) but this will become clear if you run your experiment and it fails to run.

PsychoPy versions affected

All versions.

13.3. 4xxx: Issues with Builder experiments 898

PsychoPy - Psychology software for Python, Release 2023.2.3

Solutions

Check the code carefully at the indicated line and on the few lines above. Check especially for things like un-matched
parentheses or quote symbols.

13.3.8 4210: Probable syntax error detected in your JavaScript code

Synopsis

JavaScript syntax error found in your code component.

Details

This alert may be spurious in that the code check may have failed to understand something that is a valid syntax (syntax
in JavaScript can change according to version) but this will become clear if you run your experiment and it fails to run.

PsychoPy versions affected

All versions.

Solutions

Check the code carefully at the indicated line and on the few lines above. Check especially for things like un-matched
parentheses or quote symbols.

13.3.9 4305: Component is currently disabled in your experiment

Synopsis

You have a disabled Component in your experiment. This alert is created to inform users that disabled components will
not be written to your experiment script. This may not be intentional, and will therefore affect your desired outcome.

Details

Most likely you disabled the Component deliberately while testing things out, but this Alert is making sure you remem-
ber that it isn’t currently operational.

PsychoPy versions affected

>= 3.1.0

13.3. 4xxx: Issues with Builder experiments 899

PsychoPy - Psychology software for Python, Release 2023.2.3

Solutions

Re-enable the Component in the Builder view (component dialog boxes each have a “testing” tab: unselect the “Disable
component” setting there). Otherwise just ignore this Alert if you intended it to be disabled.

13.3.10 4310: Builder cannot check your parameter further

Synopsis

This alert is received when an integrity check has failed to calculate a parameter. Most commonly, this is because
a variable from code, or a conditions file, has been encountered, and the value of the variable is not available to the
integrity checking system.

Details

Longer description with optional links to further information

PsychoPy versions affected

>= 3.2.3

Solutions

This alert is for information only, and does not require any action.

13.3.11 4315: Invalid dollar sign syntax.

Synopsis

This alert is received when a dollar sign has been used incorrectly in a stimulus parameter.

Details

By putting a dollar sign at the beginning of a parameter value, you can indicate that the parameter should be interpreted
as code rather than as a string. However, a dollar sign should not appear anywhere else in the parameter value, unless it
is either: - After a # when the parameter is interpreted as code (meaning it will be commented out) - Immediately after
a ``, an escape character (escaped dollar signs are only valid when the parameter is not interpreted as code, or within
quotation marks if it is)

13.3. 4xxx: Issues with Builder experiments 900

PsychoPy - Psychology software for Python, Release 2023.2.3

PsychoPy versions affected

All

Solutions

If the dollar sign is a part of a string, you should add an escape character (`) immediately before it. If it is supposed to
be in a comment, it must appear after a `#. Otherwise, remove any dollar signs which are not at the very beginning of
the value.

13.3.12 4320: Non-local font.

Synopsis

This alert is received when a font has been specified which PsychoPy cannot find on your local machine.

Details

Google Fonts is a repository of thousands of free fonts, which PsychoPy is able to access on-the-fly, allowing you to use
any font within the Google Fonts library (fonts.google.com) as if it were installed on your machine. However, retrieving
this font requires PsychoPy to connect to the internet and send/receive some data, so we raised this alert to give you
some warning that this will happen. Font files are tiny, so in most cases this will not noticeable, however if you are on
a strictly metered connection or you are not connected to the internet at all then this may cause some issues.

PsychoPy versions affected

All

Solutions

If your computer is connected to the internet and you don’t have any limits on how much data you can send/receive,
then no action is needed! PsychoPy will happily go off and find this font for you. However, if you are running offline
or you have strict data limits, then you should install this font locally instead. Google Fonts can be downloaded for
free from fonts.google.com as .ttf files, once downloaded these can be copied to a memory stick and installed on any
machine you need by simply opening the file and clicking “Install”.

13.3.13 4325: Font not available

Synopsis

The font you requested could not be found in the weight and style you requested, this alert is to warn you that your
component will use Open Sans Regular (fonts.google.com/specimen/Open+Sans)

13.3. 4xxx: Issues with Builder experiments 901

PsychoPy - Psychology software for Python, Release 2023.2.3

Details

There are a few reasons why you might be receiving this alert: 1. The font you requested does not exist at all, there may
be a typo in the font name. 2. The font is one which is not installed on your local machine or available on Google Fonts.
3. The font you requested exists, but not in the style you requested (bold, italic, etc.). For example, if you requested the
font Raleway Dots (fonts.google.com/specimen/Raleway+Dots) in bold, you will always receive this error as this font
only exists in regular. 4. The font you requested exists on Google Fonts, but could not be retrieved, for example if you
are connected to the internet.

PsychoPy versions affected

All

Solutions

The first things to check are that the name of the font is spelled correctly, that the font exists and that you are connected
to the internet. You can check which fonts are installed on your machine through the Settings for your operating system,
you can check whether the font exists on Google Fonts by going to fonts.google.com and searching for it. If the font
exists, you can check (either on Google Fonts or your operating system’s font manager) what weights and styles it exists
in. If bold is ticked in Builder, then the requested font weight is 700 (Bold), if not then the requested weight is 400
(Regular). You can set the font weight more precisely by supplying a numeric font weight to the component rather than
just True or False, for example if you wanted the font to be Extra-Light you could supply the value 200.

13.3.14 4330: Recording device not found

Synopsis

The recording device specified in your Microphone component could not be found on your current machine, so when
writing the Python code for this experiment to run, the default device will be used instead.

Details

When writing Python code for Microphone components, PsychoPy needs to know the numeric index of its recording
device. If the device isn’t connected, then this information isn’t available, so the Python code is written with the default
device index instead.

PsychoPy versions affected

> 2021.2.0

13.3. 4xxx: Issues with Builder experiments 902

PsychoPy - Psychology software for Python, Release 2023.2.3

Solutions

The information in your .psyexp file won’t be changed, just the compiled Python file. If you open the same .psyexp file
on a machine with the device connected, the Python code generated will contain that device’s index, so if you’re just
testing the experiment on a different machine to the one it will run on then you can ignore this alert.

13.3.15 4335: Component or routine not implemented in Python

Synopsis

This component is not yet implemented in Python, meaning that it will do nothing in local experiments.

Details

You are receiving this alert as you are compiling an experiment to JavaScript, but the experiment contains a component
which only works in JavaScript.

PsychoPy versions affected

> 2022.1.0

Solutions

No action required.

13.3.16 4340: Component or routine not implemented in JavaScript

Synopsis

This component is not yet implemented in JavaScript, meaning that it will do nothing in online experiments.

Details

You are receiving this alert as you are compiling an experiment to JavaScript, but the experiment contains a component
which only works in Python.

PsychoPy versions affected

> 2022.1.0

13.3. 4xxx: Issues with Builder experiments 903

PsychoPy - Psychology software for Python, Release 2023.2.3

Solutions

No action required.

13.3.17 4405: Textbox and keyboard conflict

Synopsis

As editable Textbox components and Keyboard components both listen for key presses, the two can often come into
conflict and cause problems.

Details

As editable Textbox components and Keyboard components both listen for key presses, the two can often come into
conflict and cause problems. For example, if a Keyboard component is listening for Enter to end the routine, what
happens when the participant presses Enter to start a new line?

PsychoPy versions affected

> 2020.1.0

Solutions

In general, we recommend ending routines containing editable textboxes using a Button, Mouse or ROI component
rather than Keyboard. If you are trying to gather keyboard responses as well as text input, consider splitting the two
into separate routines to avoid conflicts.

13.3.18 4505: Eyetracking not configured

Synopsis

Experiment includes components or routines which use eyetracking, but no eye tracker is configured.

Details

In order for an Eyetracker Record, Eyetracker Calibrate or Eyetracker Validate routine to work, there needs to be an
eyetracker set up in Experiment Settings.

PsychoPy versions affected

>2021.2

13.3. 4xxx: Issues with Builder experiments 904

PsychoPy - Psychology software for Python, Release 2023.2.3

Solutions

Either remove any eyetracking components and routines from the experiment flow or set up an eyetracker in the Eye-
tracker tab of Experiment Settings. If you are testing an eye tracking experiment but do not have an eye tracker con-
nected, you can use MouseGaze to simulate eye movements with the mouse.

13.3.19 4510: Eyetracker not calibrated

Synopsis

The experiment is set up to use an eye tracker, but there is no calibration routine in the experiment flow.

Details

In order to get accurate readings, an eye tracker needs to know what points on the screen correspond to what eye
movements. It learns this during a “calibration” routine - in which the participant looks at different points on the screen
whose positions are known to the eye tracker. While an eyetracker can sometimes guess, readings will be much more
accurate if the eyetracker has been calibrated.

PsychoPy versions affected

>2021.2

Solutions

Either set the Eyetracker setting in Experiment Settings to be None (no eye tracking) or MouseGaze (use the mouse as
if it were an eye tracker) so that no calibration is needed, or add a calibration routine to the experiment flow. You can
find the button to create a calibration routine in the Eyetracking section of the Components panel and can add it to the
flow via the Add Routine button.

13.3.20 4520: Animation params not used

Synopsis

Some eyetrackers do not support animations between target stimuli in their calibration routine, so although you have
enabled animation in your calibration routine, due to the limitations of the eyetracker you are using any settings for
animation will not be used.

Details

PsychoPy versions affected

> 2021.2.0

13.3. 4xxx: Issues with Builder experiments 905

PsychoPy - Psychology software for Python, Release 2023.2.3

Solutions

If you are only using the current eyetracker to test an experiment and will be using one which supports target animations,
then you don’t need to do anything. This alert will stop appearing when you use the other eyetracker.

Otherwise, you just need to be aware that the settings you’ve specified for animation will not have any effect.

13.3.21 4530: Auto pace param not used

Synopsis

Some eyetrackers do not support manual pacing for calibration, as pacing is always handled automatically. If you have
set “Auto-Pacing” to False while using one of these eyetrackers, this setting will be ignored.

Details

PsychoPy versions affected

> 2021.2.0

Solutions

If you are only using the current eyetracker to test an experiment and will be using one which supports manual pacing,
then you don’t need to do anything. This alert will stop appearing when you use the other eyetracker.

Otherwise, you just need to be aware that pacing will be automatic.

13.3.22 4540: Eyetracking requires window to be fullscreen

Synopsis

Eyetracking requires the expriment window to be fullscreen, otherwise the coordinates returned by the eyetracker won’t
line up with the coordinates of stimuli within your experiment

Details

PsychoPy versions affected

> 2021.2.0

Solutions

In Experiment Settings, make sure that “Full-screen window” is checked.

13.3. 4xxx: Issues with Builder experiments 906

PsychoPy - Psychology software for Python, Release 2023.2.3

13.3.23 4545: Eyetracking requires a monitor config

Synopsis

In order for eyetracking measurements to be accurate, the eyetracker needs to know about the monitor you are using -
how wide is it? How tall? What is its resolution? This is so that it can translate eye movements (in degrees of visual
angle) into usable data (in height, pix, etc. units). Without this information, the eyetracker can only guess and will
therefore give only approximate data.

Details

PsychoPy versions affected

> 2021.2.0

Solutions

Using the Monitor Centre, configure your monitor settings.

13.3.24 4550: Input -> Keyboard Backend not set to ‘ioHub’

Synopsis

Experiment is configured to use an eye tracker but Input -> Keyboard Backend experiment setting is set to ‘PsychTool-
box’.

Details

Eye trackers run using ioHub, which also handles Keyboard events, so Input -> Keyboard Backend experiment setting
should be ‘ioHub’.

PsychoPy versions affected

>=2022.1

Solutions

Switch the Input -> Keyboard Backend experiment setting to use ‘ioHub’

13.3. 4xxx: Issues with Builder experiments 907

PsychoPy - Psychology software for Python, Release 2023.2.3

13.3.25 4605: Transcription service not compatible online

Synopsis

Some audio transcription services can only be run online, some can only be run locally and some can be run either way.

If you are receiving this alert, it means that the audio transcription service you selected is one which either only works
locally, but you are trying to run your experiment online, or it is not supported at all.

Details

PsychoPy versions affected

>2021.2.0

Solutions

To silence this alert, choose a transcription service which can be run online, such as Google or Azure.

13.3.26 4610: Transcription service not compatible locally

Synopsis

Some audio transcription services can only be run online, some can only be run locally and some can be run either way.

If you are receiving this alert, it means that the audio transcription service you selected is one which only works online,
but you are trying to run your experiment locally, or it is not supported at all.

Details

PsychoPy versions affected

>2021.2.0

Solutions

To silence this alert, choose a transcription service which can be run online, such as the built-in transcriber.

13.3.27 4615: API key not found

Synopsis

If you’re receiving this alert, it means you have selected an audio transcriber which requires an API key to function but
have not supplied an API key in preferences.

13.3. 4xxx: Issues with Builder experiments 908

PsychoPy - Psychology software for Python, Release 2023.2.3

Details

Some audio transcribers work fine without a key, they’re just a publicly available Python or JavaScript function which
runs using your own computer’s processing power, but others use algorithms which are either confidential or require
huge amounts of processing power. This means that they need to be run on a server, often one which you’ve paid to
access. If you have such a subscription, then your chosen transcription service will have provided you with an “API
key” - this is a unique code, like a password, which tells their server who you are. If you are using such a transcription
service within PsychoPy, then PsychoPy needs to be able to use your API key to request transcription.

PsychoPy versions affected

> 2021.2.0

Solutions

In PsychoPy, go to File -> Preferences -> General. Here you will find some preferences starting with transcrKey - in
the one matching your choice of transcription service, copy and paste the API key you were given when you subscribed
to that service.

13.3.28 4705: Column name from conditions file clashes with variable name

Synopsis

The name of a column in your conditions file already exists in this experiment.

Details

The name of a column in your conditions file already exists in this experiment. This means that either the existing
variable will be overwritten by the value of this parameter, or that this parameter will be overwritten by the existing
variable.

PsychoPy versions affected

All

Solutions

Please choose a different column name.

13.3. 4xxx: Issues with Builder experiments 909

CHAPTER

FOURTEEN

FREQUENTLY ASKED QUESTIONS (FAQS)

14.1 Why is the bits++ demo not working?

So far supports bits++ only in the bits++ mode (rather than mono++ or color++). In this mode, a code (the T-lock code)
is written to the lookup table on the bits++ device by drawing a line at the top of the window. The most likely reason
that the demo isn’t working for you is that this line is not being detected by the device, and so the lookup table is not
being modified. Most of these problems are actually nothing to do with /per se/, but to do with your graphics card and
the CRS bits++ box itself.

There are a number of reasons why the T-lock code is not being recognised:

• the bits++ device is in the wrong mode. Open the utility that CRS supply and make sure you’re in the right mode.
Try resetting the bits++ (turn it off and on).

• the T-lock code is not fully on the screen. If you create a window that’s too big for the screen or badly positioned
then the code will be broken/not visible to the device.

• the T-lock code is on an ‘odd’ pixel.

• the graphics card is doing some additional filtering (win32). Make sure you turn off any filtering in the advanced
display properties for your graphics card

• the gamma table of the graphics card is not set to be linear (but this should normally be handled by , so don’t
worry so much about it).

• you’ve got a Mac that’s performing temporal dithering (new Macs, around 2009). Apple have come up with a
new, very annoying idea, where they continuously vary the pixel values coming out of the graphics card every
frame to create additional intermediate colours. This will break the T-lock code on 1/2-2/3rds of frames.

14.2 Why is my stimulus not showing?

If your stimulus in PsychoPy isn’t displaying and there’s no error message, consider these often overlooked factors:

Units Setting:
The units used for your stimulus (e.g., pixels, height, norm) can significantly impact its display. If the units are set
incorrectly, the stimulus might be too small or positioned off-screen. For example, specifying a stimulus size in pixels
when your experiment uses height units could result in an inappropriately scaled stimulus.

Duplicate Variable Names in Conditions File:
Using the same name for a variable in your conditions file and a component in your experiment can lead to conflicts.
For instance, if you have an image component named ‘image’ and also a column in your conditions file named ‘image’,
PsychoPy may get confused when trying to present the ‘image’ variable. This doesn’t typically generate an error, but

910

PsychoPy - Psychology software for Python, Release 2023.2.3

it can result in your stimulus not being displayed as expected. To avoid this, ensure that your variable names in the
conditions file are unique and not identical to any of your component names.

14.3 My experiment is crashing - how do I know where the problem
is?

If your experiment in PsychoPy is crashing, the most effective way to identify the issue is by checking the Runner
window. This window displays real-time logs and error messages while your experiment runs. Follow these steps to
use the Runner window for troubleshooting:

Run Your Experiment: Start your experiment as you normally would. If it crashes, the Runner window will capture
and display relevant error messages.

Locate the Error Message: In the Runner window, look for messages that are marked as errors. These are typically
highlighted in red for visibility and will usually contain details about the nature of the problem.

Understand the Error Message: The error message will often indicate where in your script or routine the problem
occurred. It can provide clues such as the line number in your code or the specific component in your routine that
caused the crash.

Using the last_app_load.log file: The last_app_load.log file in PsychoPy is a log file that records information about
the software’s operations and events, particularly during the startup or loading phase of the application. It can be really
useful if the error message you’re receiving isn’t too helpful, or if your experiment is causing the whole app to crash.
It can be found by:

Windows: - Opening a File Explorer window and typing %AppData% in the address bar. Open the folder called
psychopy3 which should reveal the last_app_load.log file. You can open this in any text editor. Mac: - Open a Terminal
and type cat ~/.psychopy3/last_app_load.log

Suggested Troubleshooting Steps:
• Syntax Errors: If the issue is a syntax error in your code, the error message will typically point to the exact line

or command that needs correction.

• Resource Issues: If the error relates to missing files or resources, ensure all required files are in the correct
location and properly linked in your script.

• Logical Errors: For logical errors, where the syntax is correct but the experiment does not behave as expected,
re-check the logic of your code or experiment flow.

• Consult Documentation and Community: If the error message is unclear or you are unable to resolve the issue,
consult the PsychoPy documentation for further guidance. ‘The PsychoPy forum <https://discourse.psychopy.
org>`_ can also be a valuable resource for seeking help from other users who might have faced similar issues.

14.4 Can run my experiment with sub-millisecond timing?

This question is common enough and complex enough to have a section of the manual all of its own. See Timing Issues
and synchronisation

14.3. My experiment is crashing - how do I know where the problem is? 911

https://discourse.psychopy.org
https://discourse.psychopy.org

PsychoPy - Psychology software for Python, Release 2023.2.3

14.5 Why am I getting a variable not defined error?

Receiving a “variable not defined” error in PsychoPy is a common issue, often resulting from a few specific causes.
Here are some points to consider when troubleshooting this error:

Capital Letters and Spaces in Variable Names: Check your variable names for capital letters and spaces. PsychoPy
is case-sensitive, meaning that “VariableName” and “variablename” are treated as different variables. Also, spaces in
variable names are not allowed, so ensure your variable names are continuous strings.

Variable Scope - ‘Set Every Repeat’:
Ensure that your variables are set to update at the correct time. If a variable changes every trial, it should be set to
‘set every repeat’ in the component settings. This ensures the variable updates its value with each iteration of your
experiment’s loop, rather than right at the start of your experiment where it might not have been defined yet.

Defining Variables in the ‘Begin Experiment’ Tab:
A common mistake is placing code that relies on variables from condition files in the ‘Begin Experiment’ tab instead
of the ‘Begin Routine’ tab. Variables read from condition files should typically be used in the ‘Begin Routine’ tab, as
they are not yet available at the experiment’s start (‘Begin Experiment’). Placing such code in the ‘Begin Experiment’
tab will result in a “variable not defined” error, as the variable has not been read in yet.

Loop and Routine Configuration:
Check if you’ve forgotten to wrap a loop around a routine or attach condition files correctly. Loops in PsychoPy are
used to repeat a routine with different conditions. If your experiment expects a variable from a conditions file but the
loop isn’t set up correctly, PsychoPy won’t be able to find the variable.

14.6 Will updating PsychoPy break my existing experiments?

Updating PsychoPy is generally a positive step towards enhancing your experimental setup, and it’s unlikely to break
your existing experiments, especially if you are using the Builder. Here’s why:

Control Over Versioning with ‘Use Version’ Setting: PsychoPy gives you control over which version you run your
experiment with, thanks to the ‘Use Version’ setting in the experiment settings. This feature allows you to specify
a particular version of PsychoPy for each experiment, ensuring compatibility and stability, even after updating the
software.

Advantages of Using Builder: Experiments created with PsychoPy’s Builder are especially robust against version
updates. The Builder’s graphical interface abstracts much of the underlying code, making experiments less prone to
issues related to code changes in new versions. This means your experiments are more likely to run smoothly, even
after an update.

Benefits of Updating: Updating PsychoPy brings you the latest features, performance improvements, and bug fixes,
enhancing the overall functionality and user experience. New versions often include optimized components, new ca-
pabilities, and improved efficiency, which can significantly benefit your experimental design and data collection.

Continued Compatibility and Testing: While updates aim for backward compatibility, it’s good practice to test your
experiments after updating. This ensures everything runs as expected. The community and developers continually
work to maintain compatibility across versions, so you can update with confidence.

Enhanced Performance and Features: Each update to PsychoPy not only aims to fix known issues but also introduces
new functionalities that can make your experiment design more efficient and effective. Leveraging these new features
can lead to more sophisticated experimental designs and smoother execution.

14.5. Why am I getting a variable not defined error? 912

CHAPTER

FIFTEEN

RESOURCES (E.G. FOR TEACHING)

There are a number of further resources to help learn/teach about PsychoPy.

If you also have PsychoPy materials/course then please let us know so that we can link to them from here too!

15.1 Workshops

We are currently running virtual workshops in several formats, see our workshops pages for details

15.2 Youtube tutorials

• There is our YouTube PsychoPy playlist showing how to build basic experiments in the Builder interface.

• Jason Ozubko has added a series of great PsychoPy Builder video tutorials too

• Damien Mannion added a similarly great series of PsychoPy programming videos on YouTube

• . . . and a searching YouTube for PsychoPy reveals many more!

913

https://uk.sagepub.com/en-gb/eur/building-experiments-in-psychopy/book273700
https://workshops.psychopy.org/
https://www.youtube.com/playlist?list=PLFB5A1BE51964D587
https://www.youtube.com/playlist?list=PL-KTa_GY7VEMehFKqnBgIg48KqbKwSj-a
https://www.youtube.com/playlist?list=PLuqBA9VDSXk7Z06RtJ6Gh6Y5YznVrFrK6
https://www.youtube.com/results?search_query=psychopy

PsychoPy - Psychology software for Python, Release 2023.2.3

15.3 Materials for Builder

The most comprehensive guide is the book Building Experiments in PsychoPy by Peirce, Hirst, and MacAskill.
The book is suitable for a wide range of needs and skill sets, with 3 sections for:

• The Beginner (suitable for undergraduate teaching)

• The Professional (more detail for creating more precise studies)

• The Specialist (with info about specialist needs such as studies in fMRI, EEG, . . .)

At School of Psychology, University of Nottingham, PsychoPy is now used for all first year practical class teaching.
The classes that comprise that first year course are provided below. They were created partially with funding from the
former Higher Education Academy Psychology Network. Note that the materials here will be updated frequently as
they are further developed (e.g. to update screenshots etc) so make sure you have the latest version of them!

There’s a set of tools for teaching psychophysics using PsychoPy and a PsychoPysics poster from VSS. Thanks James
Ferwerda

15.4 Materials for Coder

• Please see the page on officialWorkshops for further details on coming to an intensive residential Python work-
shop in Nottingham.

• Marco Bertamimi’s book, Programming Illusions for Everyone is a fun way to learn about stimulus rendering in
PsychoPy by learning how to create visual illusions

• Programming for Psychology in Python - Vision Science has lessons and screencasts on PsychoPy (by Damien
Mannion, UNSW Australia).

15.5 Previous events

• ECEM, August 2013 : Python for eye-tracking workshop with (Sol Simpson, Michael MacAskill and Jon Peirce).

• VSS

15.3. Materials for Builder 914

https://uk.sagepub.com/en-gb/eur/building-experiments-in-psychopy/book273700
http://www.nottingham.ac.uk/psychology
https://github.com/jamesferwerda/PsychoPysics
https://github.com/jamesferwerda/PsychoPysics/blob/master/ferwerda18_vss_poster.key.pdf
https://jamesferwerda.wordpress.com
https://jamesferwerda.wordpress.com
https://www.springer.com/gb/book/9783319640655
http://www.djmannion.net/programming_vision
http://www.djmannion.net/
http://www.djmannion.net/

CHAPTER

SIXTEEN

FOR DEVELOPERS

The best place to discuss ideas in depth is probably the dedicated developers section of the forum

For developers the best way to use is to install a version to your own copy of python (preferably 3.8 or 3.9 but we try
to support a reasonable range). Make sure you have all the dependencies, including the extra suggested packages for
developers.

Don’t install . Instead fetch a copy of the git repository and add this to the python path using a .pth file. Other users of
the computer might have their own standalone versions installed without your repository version touching them.

16.1 Using the repository

Any code that you want to be included into is done via Git in the GitHub repository. There’s something of a learning
curve to this, but it’s common to development in many other packages.

For developers experienced with Git from other projects the only things you need to note are:

• the PsychoPy Git Flow for branches (which does not have a master or main but two branches, dev and release).
Please use the `release` branch as the base for bug fixes and the `dev` branch for feature development.

• the format of PsychoPy commit messages is important so that we can see what changes have been made from a
quick view of the git log

If your copy of the repository comes from before we used the 2-trunk GitFlow then you may also want to read the
Converting to the 2-trunk flow section to update your repository to the new structure.

If you’re new to git and/or contributing to open-source projects then you may want to go through as below:

• start at Setting up your repository first time

• fixBugs

• Working on a new feature

• Making a pull request

915

https://discourse.psychopy.org/c/dev/10

PsychoPy - Psychology software for Python, Release 2023.2.3

16.1.1 PsychoPy Git Flow

Unlike many projects, the PsychoPy repository has TWO main branches, dev and release (since Feb 2021). The design
is similar to the GitFlow workflow except that we do not have anything named master (that is effectively now called
release).

The system is designed to support our release pattern, with “feature releases” 2 or 3 times per year and bug-fix releases
several times for each feature release. Major changes to the code, that potentially include new bugs, should not be
included in bug-fix releases. So then the two main branches are as follows.

The dev branch: is for work that is going to be held back for the next feature release. Only fix bugs here if they are
related to other un-released code or if the fixes require substantial code changes that might introduce new bugs. Those
larger fixes will probably be held back for the next feature release. Simple bug fixes that get based on the dev branch
might be hard to reincorporate back into the release branch .

The release branch: is for fixes that need to be included in the next release. It includes code changes that do not
knowingly break/change existing experiments, and are small enough that we can be relatively confident that they do not
introduce new bugs. Do not use this trunk for substantial pieces of development where new bugs might be introduced.

Fig. 16.1: Git Flow used by the PsychoPy project, with 2 main trunks for ‘dev’ and ‘release’. Bug fixes should be based
on the release branch while new features or substantial code changes are built on the dev branch

Always create a branch for the work you are doing and take that branch from the tip of either dev or release.

Around a major (feature) release the two trunks will generally become synchronised.

16.1.2 PsychoPy commit messages

Informative commit messages are really useful when we have to go back through the repository finding the time that a
particular change to the code occurred. Precede your message with one or more of the following:

• BF : bug fix

• FF : ‘feature’ fix. This is for fixes to code that hasn’t been released

• RF : refactoring

• NF : new feature

16.1. Using the repository 916

https://nvie.com/posts/a-successful-git-branching-model/

PsychoPy - Psychology software for Python, Release 2023.2.3

• ENH : enhancement (improvement to existing code)

• DOC: for all kinds of documentation-related commits

• TEST : for adding or changing tests

When making commits that fall into several commit categories (e.g., BF and TEST), please make separate commits
for each category and avoid concatenating commit message prefixes. E.g., please do not use BF/TEST, because this
will affect how commit messages are sorted when we pull in fixes for each release.

NB: The difference between BF and FF is that BF indicates a fix that is appropriate for back-porting to earlier versions,
whereas FF indicates a fix to code that has not been released, and so cannot be back-ported.

So, a good commit message looks something like this. Note a) the commit title tells us what was fixed, the message
tells us how that was achieved and includes a link to the GitHub issue if possible.

BF: fixed the updating of the stimulus position when units='deg'

The problem turned out to be that we had a typo in the attribute name

fixes GH-12323 [causes that GitHub issue to be closed and links them]

16.1.3 Setting up your repository first time

When you first start using the repo there are a few additional steps that you won’t need to do afterwards.

Create your own fork of the central repository

Go to github, create an account and make a fork of the psychopy repository You can change your fork in any way you
choose without it affecting the central project. You can also share your fork with others, including the central project.

Fetch a local copy

Install git on your computer. Create and upload an ssh key to your github account - this is necessary for you to push
changes back to your fork of the project at github.

Then, in a folder of your choosing fetch your fork:

$ git clone git@github.com:USER/psychopy.git
$ cd psychopy
$ git remote add upstream git://github.com/psychopy/psychopy.git

The last line connects your copy (with read access) to the central server so you can easily fetch any updates to the central
repository.

16.1. Using the repository 917

https://www.github.com
https://github.com/psychopy/psychopy
https://book.git-scm.com/book/en/v2/Getting-Started-Installing-Git

PsychoPy - Psychology software for Python, Release 2023.2.3

Run using your local repo copy

Now that you’ve fetched the latest version of psychopy using git, you should run this version in order to try out
yours/others latest improvements. To use your github version all the time you should install that as a “developer”
install so that the files stay in this location and as they get updated that is reflected in the installed version. This differs
from a standard install where the files get copied to Python’s site-packages and then changes you make have no effect
until you install again. To run the developer install choose one of:

python -m pip install -e . # to include the dependencies
python -m pip install -e --no-deps . # to skip installing the dependencies

Run git version for just one session (Linux and Mac only): If you want to switch between a standard install and a
development version from git you can choose to only temporarily run the git version. Open a terminal and set a
temporary python path to your psychopy git folder:

$ export PYTHONPATH=/path/to/local/git/folder/

To check that worked you should open python in the terminal and try to import psychopy and see if it’s the version you
expected:

$ python
Python 3.8.10 (v3.8.10:3d8993a744, May 3 2021, 08:55:58)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import psychopy
>>> print(psychopy.__version__)
2021.1.0
>>>

16.1.4 Fixing bugs and making minor improvements

To fix a bug in the main code, checkout the release trunk, create and checkout a new branch, then commit and push to
your repo:

$ git checkout release
$ git checkout -b hotfix-whatAreYouFixing

<do coding here and commits here>
$ git push origin release

Remember to use good commitMessage for your changes.

16.1.5 Working on a new feature

All substantial changes should be made on their own branch, coming from the dev trunk. Don’t mix quick fixes with
substantial changes with quick fixes (or with substantial changes on another topic). All changes should have their own
branch so that we can then pick which ones we want to include and when.

To create a new branch:

$ git checkout dev # start from the tip of the dev trunk
$ git pull upstream dev # make sure we're up to date before we start
$ git checkout -b feature-somethingNew # create and checkout our new branch

(continues on next page)

16.1. Using the repository 918

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

<do coding here and commits here>
$ git push origin feature-somethingNew

Remember to use good commitMessage for your changes.

Once you’ve folded your new code back into your master and pushed it back to your github fork then it’s time to Making
a pull request.

16.1.6 Making a pull request

Once you’ve pushed your branch to your repository you can make a pull request from GitHub. If you go to your GitHub
page for the repo it should be presenting you with a message explaining that there is new activity on the branch you just
pushed, and that yo umight want to create a Pull Request. It’s fairly simple form there. The rules about good commit
messages don’t even really reply to the Pull request itself, because it can be changed later more easily.

16.1.7 Converting to the 2-trunk flow

If you have an older copy of the repository with a master branch then you will need to follow these steps to get back
in sync with the new PsychoPy Git Flow:. If you don’t yet have a fork then don’t worry - just go to Setting up your
repository first time.

1. Update your fork on GitHub (if you haven’t done that already): Visit
https://github.com/<yourUsername>/psychopy/branches and select the pen next to master to rename it as
release

2. Update your local branches to match the remote release trunk:

git branch -m master release # rename your local master to be release
git fetch origin # fetch the branches from your own remote
git branch -u origin/release release # set your renamed release to track origin/
→˓release

3a. EITHER If you don’t have a dev branch on your origin fork (i.e. first time you switch):

git fetch upstream # to get the dev branch from there
git checkout -b dev --track upstream/dev # create and checkout local dev from upstream
git push -u origin dev

3b. OR If you already have a dev branch on your personal fork (e.g. you’ve converted another machine already):

git fetch origin # to get the dev branch from origin
git checkout -b dev --track origin/dev # create and checkout local dev from upstream

16.1. Using the repository 919

PsychoPy - Psychology software for Python, Release 2023.2.3

16.2 Adding documentation

There are several ways to add documentation, all of them useful: doc strings, comments in the code, and demos to
show an example of actual usage. To further explain something to end-users, you can create or edit a .rst file that will
automatically become formatted for the web, and eventually appear on www.psychopy.org.

You make a new file under psychopy/docs/source/, either as a new file or folder or within an existing one.

To test that your doc source code (.rst file) does what you expect in terms of formatting for display on the web, you can
simply do something like (this is my actual path, unlikely to be yours):

$ cd /Users/jgray/code/psychopy/docs/
$ make html

Do this within your docs directory (requires sphinx to be installed, try “pip install sphinx” if it’s not working). That
will add a build/html sub-directory.

Then you can view your new doc in a browser, e.g., for me:

file:///Users/jgray/code/psychopy/docs/build/html/

Push your changes to your github repository (using a “DOC:” commit message) and let Jon know, e.g. with a pull
request.

16.3 Adding a new Builder Component

Builder Components are auto-detected and displayed to the experimenter as icons (in the right-most panel of the Builder
interface panel). This makes it straightforward to add new ones.

All you need to do is create a list of parameters that the Component needs to know about (that will automatically appear
in the Component’s dialog) and a few pieces of code specifying what code should be called at different points in the
script (e.g. beginning of the Routine, every frame, end of the study etc. . .). Many of these will come simply from
subclassing the _base or _visual Components.

To get started, Working on a new feature for the development of this component. (If this doesn’t mean anything to you
then see Using the repository)

You’ll mainly be working in the directory . . . /psychopy/experiment/components/. Take a look at several existing Com-
ponents (such as image.py), and key files including _base.py and _visual.py.

There are three main steps, the first being by far the most involved.

16.3.1 1. Create the file defining the component: newcomp.py

It’s most straightforward to model a new Component on one of the existing ones. Be prepared to specify what your
Component needs to do at several different points in time: the first trial, every frame, at the end of each routine, and at
the end of the experiment. In addition, you may need to sacrifice some complexity in order to keep things streamlined
enough for a Builder (see e.g., ratingscale.py).

Your new Component class (in your file newcomp.py) should inherit from BaseComponent (in _base.py), VisualCom-
ponent (in _visual.py), or KeyboardComponent (in keyboard.py). You may need to rewrite some or all some of these
methods, to override default behavior:

16.2. Adding documentation 920

file:///Users/jgray/code/psychopy/docs/build/html/

PsychoPy - Psychology software for Python, Release 2023.2.3

class NewcompComponent(BaseComponent): # or (VisualComponent)
def __init__(...):

super(NewcompComponent, self).__init__(...)
...

def writeInitCode(self, buff):
def writeRoutineStartCode(self, buff):
def writeFrameCode(self, buff):
def writeRoutineEndCode(self, buff):

Calling super() will create the basic default set of params that almost every component will need: name, startVal, start-
Type, etc. Some of these fields may need to be overridden (e.g., durationEstim in sound.py). Inheriting from Visual-
Component (which in turn inherits from BaseComponent) adds default visual params, plus arranges for Builder scripts
to import psychopy.visual. If your component will need other libs, call self.exp.requirePsychopyLib([‘neededLib’])
(see e.g., parallelPort.py).

At the top of a component file is a dict named _localized. It contains mappings that allow a strict separation of internal
string values (= used in logic, never displayed) from values used for display in the Builder interface (= for display only,
possibly translated, never used in logic). The .hint and .label fields of params[‘someParam’] should always be set to
a localized value, either by using a dict entry such as _localized[‘message’], or via the globally available translation
function, _(‘message’). Localized values must not be used elsewhere in a component definition.

Very occasionally, you may also need to edit settings.py, which writes out the set-up code for the whole experiment
(e.g., to define the window). For example, this was necessary for the ApertureComponent, to pass allowStencil=True
to the window creation.

Your new Component writes code into a buffer that becomes an executable python file, xxx_lastrun.py (where xxx is
whatever the experimenter specifies when saving from the Builder, xxx.psyexp). You will do a bunch of this kind of
call in your newcomp.py file:

buff.writeIndented(your_python_syntax_string_here)

You have to manage the indentation level of the output code, see experiment.IndentingBuffer().

xxx_lastrun.py is the file that gets built when you run xxx.psyexp from the Builder. So you will want to look at
xxx_lastrun.py frequently when developing your component.

Name-space
There are several internal variables (i.e. names of Python objects) that have a specific, hardcoded meaning within
xxx_lastrun.py. You can expect the following to be there, and they should only be used in the original way (or something
will break for the end-user, likely in a mysterious way):

win # the window
t # time within the trial loop, referenced to `trialClock`
x, y # mouse coordinates, but only if the experimenter uses a mouse component

Handling of variable names is under active development, so this list may well be out of date. (If so, you might consider
updating it or posting a note to the Discourse developer forum.)

Preliminary testing suggests that there are 600-ish names from numpy or numpy.random, plus the following:

['KeyResponse', '__builtins__', '__doc__', '__file__', '__name__', '__package__',
→˓'buttons', 'core', 'data', 'dlg', 'event', 'expInfo', 'expName', 'filename', 'gui',
→˓'logFile', 'os', 'psychopy', 'sound', 't', 'visual', 'win', 'x', 'y']

Yet other names get derived from user-entered names, like trials –> thisTrial.

Params

16.3. Adding a new Builder Component 921

PsychoPy - Psychology software for Python, Release 2023.2.3

self.params is a key construct that you build up in __init__. You need name, startTime, duration, and several other
params to be defined or you get errors. ‘name’ should be of type ‘code’.

The Param() class is defined in psychopy.app.builder.experiment.Param(). A very useful thing that Params know is
how to create a string suitable for writing into the .py script. In particular, the __str__ representation of a Param will
format its value (.val) based on its type (.valType) appropriately. This means that you don’t need to check or handle
whether the user entered a plain string, a string with a code trigger character ($), or the field was of type code in the
first place. If you simply request the str() representation of the param, it is formatted correctly.

To indicate that a param (eg, thisParam) should be considered as an advanced feature, set its category to advanced:
self.params[‘thisParam’].categ = ‘Advanced’. Then the GUI shown to the experimenter will automatically place it on
the ‘Advanced’ tab. Other categories work similarly (Custom, etc).

During development, it can sometimes be helpful to save the params into the xxx_lastrun.py file as comments, so you
can see what is happening:

def writeInitCode(self,buff):
for debugging during Component development:
buff.writeIndented("# self.params for aperture:\n")
for p in self.params:

try: buff.writeIndented("# %s: %s <type %s>\n" % (p, self.params[p].val, self.
→˓params[p].valType))

except: pass

A lot more detail can be inferred from existing components.

Making things loop-compatible looks interesting – see keyboard.py for an example, especially code for saving data at
the end.

16.3.2 Notes & gotchas

syntax errors in new_comp.py:
The app will fail to start if there are syntax error in any of the components that are auto-detected.
Just correct them and start the app again.

param[].val:
If you have a boolean variable (e.g., my_flag) as one of your params, note that self.param[“my_flag”]
is always True (the param exists –> True). So in a boolean context you almost always want the .val
part, e.g., if self.param[“my_flag”].val:.

However, you do not always want .val. Specifically, in a string/unicode context (= to trigger the self-
formatting features of Param()s), you almost always want “%s” % self.param[‘my_flag’], without
.val. Note that it’s better to do this via “%s” than str() because str(self.param[“my_flag”]) coerces
things to type str (squashing unicode) whereas %s works for both str and unicode.

Travis testing
Before submitting a pull request with the new component, you should regenerate the componsTem-
plate.txt file. This is a text file that lists the attributes of all of the user interface settings and options
in the various components. It is used during the Travis automated testing process when a pull request
is submitted to GitHub, allowing the detection of errors that may have been caused in refactoring.
Your new component needs to have entries added to this file if the Travis testing is going to pass
successfully.

To re-generate the file, cd to this directory . . . /psychopy/tests/test_app/test_builder/ and run:

`python genComponsTemplate.py --out`

16.3. Adding a new Builder Component 922

PsychoPy - Psychology software for Python, Release 2023.2.3

This will over-write the existing file so you might want to make a copy in case the process fails.
Compatibility issues: As at May 2018, that script is not yet Python 3 compatible, and on a Mac you
might need to use pythonw.

16.3.3 2. Icon: newcomp.png

Using your favorite image software, make an icon for your Component with a descriptive name, e.g., newcomp.png.
Dimensions = 48 × 48. Put it in the components directory.

In newcomp.py, have a line near the top:

iconFile = path.join(thisFolder, 'newcomp.png')

16.3.4 3. Documentation: newcomp.rst

Just make a descriptively-named text file that ends in .rst (“restructured text”), and put
it in psychopy/docs/source/builder/components/ . It will get auto-formatted and end up at
https://www.psychopy.org/builder/components/newcomp.html

16.4 Style-guide for coder demos

Each coder demo is intended to illustrate a key feature (or two), especially in ways that show usage in practice, and go
beyond the description in the API. The aim is not to illustrate every aspect, but to get people up to speed quickly, so
they understand how basic usage works, and could then play around with advanced features.

As a newcomer to , you are in a great position to judge whether the comments and documentation are clear enough or not.
If something is not clear, you may need to ask a contributor for a description; email psychopy-dev@googlegroups.com.

Here are some style guidelines, written for the OpenHatch event(s) but hopefully useful after that too. These are
intended specifically for the coder demos, not for the internal code-base (although they are generally quite close).

The idea is to have clean code that looks and works the same way across demos, while leaving the functioning mostly
untouched. Some small changes to function might be needed (e.g., to enable the use of ‘escape’ to quit), but typically
only minor changes like this.

• Generally, when you run the demo, does it look good and help you understand the feature? Where might there
be room for improvement? You can either leave notes in the code in a comment, or include them in a commit
message.

• Standardize the top stuff to have 1) a shebang with python, 2) utf-8 encoding, and 3) a comment:

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""Demo name, purpose, description (1-2 sentences, although some demos need more␣
→˓explanation).
"""

For the comment / description, it’s a good idea to read and be informed by the relevant parts of the API (see https:
//psychopy.org/api/api.html), but there’s no need to duplicate that text in your comment. If you are unsure, please post
to the dev list psychopy-dev@googlegroups.com.

• Follow PEP-8 mostly, some exceptions:

16.4. Style-guide for coder demos 923

mailto:psychopy-dev@googlegroups.com
https://psychopy.org/api/api.html
https://psychopy.org/api/api.html
mailto:psychopy-dev@googlegroups.com

PsychoPy - Psychology software for Python, Release 2023.2.3

– current convention is to use camelCase for variable names, so don’t convert those to underscores

– 80 char columns can spill over a little. Try to keep things within 80 chars most of the time.

– do allow multiple imports on one line if they are thematically related (e.g., import os, sys, glob).

– inline comments are ok (because the code demos are intended to illustrate and explain usage in some detail,
more so than typical code).

• Check all imports:

– remove any unnecessary ones

– replace import time with from psychopy import core. Use core.getTime() (= ms since the script started) or
core.getAbsTime() (= seconds, unix-style) instead of time.time(), for all time-related functions or methods
not just time().

– add from __future__ import division, even if not needed. And make sure that doing so does not break the
demo!

• Fix any typos in comments; convert any lingering British spellings to US, e.g., change colour to color

• Prefer if <boolean>: as a construct instead of if <boolean> == True:. (There might not be any to change).

• If you have to choose, opt for more verbose but easier-to-understand code instead of clever or terse formulations.
This is for readability, especially for people new to python. If you are unsure, please add a note to your commit
message, or post a question to the dev list psychopy-dev@googlegroups.com.

• Standardize variable names:

– use win for the visual.Window(), and so win.flip()

• Provide a consistent way for a user to exit a demo using the keyboard, ideally enable this on every visual frame:
use if len(event.getKeys([‘escape’]): core.quit(). Note: if there is a previous event.getKeys() call, it can slurp up
the ‘escape’ keys. So check for ‘escape’ first.

• Time-out after 10 seconds, if there’s no user response and a timeout is appropriate for the demo (and a longer
time-out might be needed, e.g., for ratingScale.py):

demoClock = core.clock() # is demoClock's time is 0.000s at this point
...
if demoClock.getTime() > 10.:

core.quit()

• Most demos are not full screen. For any that are full-screen, see if it can work without being full screen. If it has
to be full-screen, add some text to say that pressing ‘escape’ will quit.

• If displaying log messages to the console seems to help understand the demo, here’s how to do it:

from psychopy import logging
...
logging.console.setLevel(logging.INFO) # or logging.DEBUG for even more stuff

• End a script with win.close() (assuming the script used a visual.Window), and then core.quit() even though it’s
not strictly necessary

16.4. Style-guide for coder demos 924

mailto:psychopy-dev@googlegroups.com

PsychoPy - Psychology software for Python, Release 2023.2.3

16.5 Adding a new Menu Item

Adding a new menu-item to the Builder (or Coder) is relatively straightforward, but there are several files that need to
be changed in specific ways.

16.5.1 1. makeMenus()

The code that constructs the menus for the Builder is within a method named makeMenus(), within class
builder.BuilderFrame(). Decide which submenu your new command fits under, and look for that section (e.g., File,
Edit, View, and so on). For example, to add an item for making the Routine panel items larger, I added two lines within
the View menu, by editing the makeMenus() method of class BuilderFrame within psychopy/app/builder/builder.py
(similar for Coder):

self.viewMenu.Append(self.IDs.tbIncrRoutineSize, _("&Routine Larger\t%s") %self.app.keys[
→˓'largerRoutine'], _("Larger routine items"))
wx.EVT_MENU(self, self.IDs.tbIncrRoutineSize, self.routinePanel.increaseSize)

Note the use of the translation function, _(), for translating text that will be displayed to users (menu listing, hint).

16.5.2 2. wxIDs.py

A new item needs to have a (numeric) ID so that wx can keep track of it. Here, the number is self.IDs.tbIncrRoutineSize,
which I had to define within the file psychopy/app/wxIDs.py:

tbIncrRoutineSize=180

It’s possible that, instead of hard-coding it like this, it’s better to make a call to wx.NewIdRef() – wx will take care of
avoiding duplicate IDs, presumably.

16.5.3 3. Key-binding prefs

I also defined a key to use to as a keyboard short-cut for activating the new menu item:

self.app.keys['largerRoutine']

The actual key is defined in a preference file. Because psychopy is multi-platform, you need to add info to four different
.spec files, all of them being within the psychopy/preferences/ directory, for four operating systems (Darwin, FreeBSD,
Linux, Windows). For Darwin.spec (meaning macOS), I added two lines. The first line is not merely a comment: it
is also automatically used as a tooltip (in the preferences dialog, under key-bindings), and the second being the actual
short-cut key to use:

increase display size of Routines
largerRoutine = string(default='Ctrl++') # on Mac Book Pro this is good

This means that the user has to hold down the Ctrl key and then press the + key. Note that on Macs, ‘Ctrl’ in the spec
is automatically converted into ‘Cmd’ for the actual key to use; in the .spec, you should always specify things in terms
of ‘Ctrl’ (and not ‘Cmd’). The default value is the key-binding to use unless the user defines another one in her or his
preferences (which then overrides the default). Try to pick a sensible key for each operating system, and update all four
.spec files.

16.5. Adding a new Menu Item 925

PsychoPy - Psychology software for Python, Release 2023.2.3

16.5.4 4. Your new method

The second line within makeMenus() adds the key-binding definition into wx’s internal space, so that when the key is
pressed, wx knows what to do. In the example, it will call the method self.routinePanel.increaseSize, which I had to
define to do the desired behavior when the method is called (in this case, increment an internal variable and redraw the
routine panel at the new larger size).

16.5.5 5. Documentation

To let people know that your new feature exists, add a note about your new feature in the CHANGELOG.txt, and
appropriate documentation in .rst files.

16.6 Creating Plugins for

Plugins provide a means for developers to extend , adding new features and customizations without directly modifying
the installation. Read usingplugins for more information about plugins before proceeding on this page.

16.6.1 How plugins work

The plugin system in functions as a dynamic importer, which imports additional executable code from plugin packages
then patches them into an active session at runtime. This is done by calling the psychopy.plugins.loadPlugin()
function and passing the project name of the desired plugin to it. Once loadPlugin() returns, imported objects
are immediately accessible. Any changes made to with plugins do not persist across sessions, meaning if Python is
restarted, will return to its default behaviour unless loadPlugin() is called again.

Installed plugins for are discoverable on the system using package metadata. The metadata of the package defines “entry
points” which tells the plugin loader where within PsychoPy’s namespace to place objects exported by the plugin. The
loader also ensures plugins are compatible with the Python environment (ie. operating system, CPU architecture, and
Python version). Any Python package can define entry points, allowing developers to add functionality to without
needing to create a separate plugin project.

16.6.2 Plugin packages

A plugin has a similar structure to Python package, see the official Packaging Python Projects (https://packaging.
python.org/tutorials/packaging-projects) guide for details.

Naming plugin packages

Standalone plugins, which are packages that exist only to extend should adhere to the following naming convention
to make plugins discernible from any other package in public repositories. Plugin project names should always be
prefixed with psychopy with individual words separated with a - or _ symbol (i.e. psychopy-quest-procedure or psy-
chopy_quest_procedure are valid). What you chose to name the package is up to you, but keep it concise and informa-
tive.

Note: The plugin system does not use project names to identify plugins, rather relying on package metadata to identify
if a package has entry points pertinent to . Therefore, projects do not need to be named a particular way to still be used
as plugins. This allows packages which are not primarily used with to extend it, without the need for a separate plugin
package. It also allows a single package to be used as a plugin for multiple projects unrelated to .

16.6. Creating Plugins for 926

https://packaging.python.org/tutorials/packaging-projects
https://packaging.python.org/tutorials/packaging-projects

PsychoPy - Psychology software for Python, Release 2023.2.3

The module or sub-package which defines the objects which entry points refer to should be some variant of the name
to prevent possible namespace conflicts. For instance, we would name our module psychopy_quest_procedure if our
project was called psychopy-quest-procedure.

Specifying entry points

Entry points reference objects in a plugin module that will attach to itself. Packages advertise their entry points by
having them in their metadata. How entry points are defined and added to package metadata is described in the section
Dynamic Discovery of Services and Plugins of the documentation for setuptools.

When loading a specified plugin, the plugin loader searches for a distribution matching the given project name, then
gets the entry point mapping from its metadata. Any entry point belonging to groups whose names start with psychopy
is loaded. Group names are fully-qualified names of modules or unbound classes within PsychoPy’s namespace to
create links to the associated entry points in the plugin module/package.

As an example, using entry point groups and specifiers, we can add a class called MyStim defined in the plugin module
psychopy_plugin to appear in psychopy.visual when the plugin is loaded. To do this, we use the following dictionary
when defining entry point metadata with the setup() function in the plugin project’s setup.py file:

setup(
...
entry_points={'psychopy.visual': 'MyStim = psychopy_plugin:MyStim'},
...

)

Note: Plugins can load and assign entry points to names anywhere in PsychoPy’s namespace. However, plugin
developers should place them where they make most sense. In the last example, we put MyStim in psychopy.visual
because that’s where users would expect to find it if it was part of the base installation.

If we have additional classes we’d like to add to psychopy.visual, entry entry points for that group can be given as a list
of specifiers:

setup(
...
entry_points={
'psychopy.visual': ['MyStim = psychopy_plugin:MyStim',

'MyStim2 = psychopy_plugin:MyStim2']
},
...

)

For more complex (albeit contrived) example to demonstrate how to modify unbound class attributes (ie. methods and
properties), say we have a plugin which provides a custom interface to some display hardware called psychopy-display
that needs to alter the existing flip() method of the psychopy.visual.Window class to work. Furthermore, we
want to add a class to psychopy.hardware called DisplayControl to give the user a way of setting up and configuring
the display. Entry points for both objects are defined in the plugin’s psychopy_display module. To get the effect we
want, we specify entry points using the following:

setup(
...
entry_points={

'psychopy.visual.Window': ['flip = psychopy_display:flip'],
(continues on next page)

16.6. Creating Plugins for 927

https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

'psychopy.hardware': ['DisplayControl = psychopy_display:DisplayControl']},
...

)

After calling loadPlugin('psychopy-display'), the user will be able to create instances of psychopy.
hardware.DisplayControl and new instances of psychopy.visual.Window will have the modified flip()
method.

The __register__ attribute

Plugin modules can define a optional attribute named __register__ which specifies a callable object. The purpose
of __register__ is to allow the module to perform tasks before loading entry points based on arguments passed to
it by the plugin loader. The arguments passed to the target of __register__, come from the **kwargs given to
loadPlugins(). The value of this attribute can be a string of the name or a reference to a callable object (ie. function
or method).

Note: The __register__ attribute should only ever be used for running routines pertinent to setting up entry points.
The referenced object is only called on a module once per session.

As an example, consider a case where an entry point is defined as doThis in plugin python-foobar. There are two
possible behaviors which are foo and bar that dothis can have. We can implement both behaviors in separate functions,
and use arguments passed to the __register__ target to assign which to use to as the entry point:

__register__ = 'register'

doThis = None

def foo():
return 'foo'

def bar():
return 'bar'

def register(**kwargs):
global dothis
option = kwargs.get('option', 'foo')
if option == 'bar':

dothis = bar
else:

dothis = foo

When the user calls loadPlugin('python-foobar', option='bar'), the plugin will assign function bar()` to
doThis. If option is not specified or given as ‘foo’, the behavior of doThis will be that of foo().

16.6. Creating Plugins for 928

PsychoPy - Psychology software for Python, Release 2023.2.3

16.6.3 Plugin example project

This section will demonstrate how to create a plugin project and package it for distribution. For this example, we will
create a plugin called psychopy-rect-area which adds a method to the psychopy.visual.Rect stimulus class called
getArea() that returns the area of the shape when called.

Project files

First, we need to create a directory called psychopy-rect-area which all our Python packages and code will reside.
Inside that directory, we create the following files and directories:

psychopy-rect-area/
psychopy_rect_area/

__init__.py
MANIFEST.in
README.md
setup.py

The implementation for the getArea() method will be defined in a file called psychopy_rect_area/__init__.py,
it should contain the following:

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""Plugin entry points for `psychopy-rect-area`."""

def get_area(self):
"""Compute the area of a `Rect` stimulus in `units`.

Returns

float

Area in units^2.

"""
return self.size[0] * self.size[1]

Note: The get_area() function needs to have self as the first argument because were are going to assign it as class
method. All class methods get a reference to the class as the first argument. You can name this whatever you like (eg.
cls).

The setup.py script is used to generate an installable plugin package. This should contain something like the follow-
ing:

#!/usr/bin/env python
-*- coding: utf-8 -*-
from setuptools import setup

setup(name='psychopy-rect-area',
version='1.0',
description='Compute the area of a Rect stimulus.',
long_description='',

(continues on next page)

16.6. Creating Plugins for 929

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

url='http://repo.example.com',
author='Nobody',
author_email='nobody@example.com',
license='GPL3',
classifiers=[

'Development Status :: 4 - Beta',
'License :: OSI Approved :: GLP3 License',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3'

],
keywords='psychopy stimulus',
packages=['psychopy_rect_area'],
install_requires=['psychopy'],
include_package_data=True,
entry_points={

'psychopy.visual.Rect': ['getArea = psychopy_rect_area:get_area']
},
zip_safe=False)

Looking at entry_pointswe can see that were assigning psychopy_rect_area.get_area to psychopy.visual.
Rect.getArea. Attributes assigned to entry points should follow the naming conventions of (camel case), however
plugins are free to use internally whatever style the author chooses (eg. PEP8). You should also use appropriate
classifiers for your plugin, a full list can be found here (https://pypi.org/pypi?%3Aaction=list_classifiers).

You can also specify install_requires to indicate which versions of PsychPy are compatible with your plugin. Visit
https://packaging.python.org/discussions/install-requires-vs-requirements/ for more information.

One should also include a README.md file which provides detailed information about the plugin. This file can be read
and passed to the long_description argument of setup() in setup.py if desired by inserting the following into the
setup script:

from setuptools import setup

def get_readme_text():
with open('README.md') as f:

return f.read()

setup(
...
long_description=get_readme_text(),
...

)

Finally, we need specify README.md in our MANIFEST.in file to tell the packaging system to include the file when
packaging. Simply put the following line in MANIFEST.in:

README.md

16.6. Creating Plugins for 930

https://pypi.org/pypi?%3Aaction=list_classifiers
https://packaging.python.org/discussions/install-requires-vs-requirements/

PsychoPy - Psychology software for Python, Release 2023.2.3

Building packages

plugin packages are built like any other Python package. We can build a wheel distribution by calling the following
console command:

python setup.py sdist bdist_wheel

The resulting .whl files will appear in directory psychopy-rect-area/dist. The generated packages can be installed with
pip or uploaded to the Python Package Index. for more information about building and uploading packages, visit:
https://packaging.python.org/tutorials/packaging-projects/

If uploaded to PyPI, other users can install your plugin by entering the following into their command prompt:

python -m pip install psychopy-rect-area

Using the plugin

Once installed the plugin can be activated by using the psychopy.plugins.loadPlugin() function. This function should
be called after the import statements in your script:

from psychopy import visual, core, plugins
plugins.loadPlugin('psychopy-demo-plugin') # load the plugin

After calling loadPlugin(), all instances of Rect will have the method getArea():

rectStim = visual.Rect(win)
rectArea = rectStim.getArea()

16.6.4 Plugins as patches

A special use case of plugins is to apply and distribute “patches”. Using entry points to override module and class
attributes, one can create patches to fix minor bugs in extant installations between releases, or backport fixes and
features to older releases (that support plugins) that cannot be upgraded for some reason. Patches can be distributed
like any other Python package, and can be installed and applied uniformly across multiple installations.

Plugins can also patch other plugins that have been previously loaded by loadPlugin() calls. This is done by defining
entry points to module and class attributes that have been created by a previously loaded plugin.

Creating patches

As an example, consider a fictional scenario where a bug was introduced in a recent release of by a hardware vendor
updating their drivers. As a result, PsychoPy’s builtin support for their devices provided by the psychopy.hardware.
Widget class is now broken. You notice that it has been fixed in a pending release of , and that it involves a single change
to the getData() method of the psychopy.hardware.Widget class to get it working exactly as before. However,
you cannot wait for the next release because you are in the middle of running scheduled experiments, even worse, you
have dozens of test stations using the hardware.

In this case, you can create a plugin to not only fix the bug, but apply it across multiple existing installations to save
the day. Creating a package for our patch is no different than a regular plugin (see the Plugin example project section
for more information), so you go about creating a project for a plugin called psychopy-hotfix which defines the working
version of the getData() method in a sub-module called psychopy_hotfix like this:

16.6. Creating Plugins for 931

https://pypi.org/
https://packaging.python.org/tutorials/packaging-projects/

PsychoPy - Psychology software for Python, Release 2023.2.3

method copy and pasted from the bug fix commit
def getData(self):

"""This function reads data from the device."""
code here ...

In the setup.py file of the plugin package, specify the entry points like this to override the defective method in our
installations:

setup(
name='psychopy-hotfix'
...
entry_points={

'psychopy.hardware.Widget': ['getData = psychopy_patch:getData']
},
...

)

That’s it, just build a distributable package and install it on all the systems affected by the bug.

Applying patches

Whether you create your own patch, or obtain one provided by the community, they are applied using the loadPlugin()
function after installing them. Experiment scripts will need to have the following lines added under the import state-
ments at the top of the file for the plugin to take effect (but it’s considerably less work than manually patching in the
code across many separate installations):

import psychopy.plugin as plugin
plugin.loadPlugin('psychopy-patch')

After loadPlugin is called, the behaviour of the getData() method of any instances of the psychopy.hardware.
Widget class will change to the correct one.

Once a new release of comes out with the patch incorporated into it and your installations are upgraded, you can remove
the above lines.

16.6.5 Creating window backends

Custom backends for the Window class can be implemented in plugins, allowing one to create windows using frame-
works other than Pyglet, GLFW, and PyGame that can be enabled using the appropriate winType argument.

A plugin can add a winType by specifying class and module entry points for psychopy.visual.backends. If the
entry point is a subclass of psychopy.visual.backends.BaseBackend and has winTypeName defined, it will be
automatically registered and can be used as a winType by instances of psychopy.visual.Window.

Note: If a module is given as an entry point, the whole module will be added to backends and any class within it that
is a subclass of BaseBackend and defines winTypeName will be registered. This allows one to add multiple window
backends to with a single plugin module.

16.6. Creating Plugins for 932

PsychoPy - Psychology software for Python, Release 2023.2.3

Example

For example, say we have a backend class called CustomBackend defined in module custom_backend in the plugin
package psychopy-custom-backend. We can tell the plugin loader to register it to be used when a Window instance is
created with winType='custom' by adding the winTypeName class attribute to CustomBackend:

class CustomBackend(BaseBackend):
winTypeName = 'custom'
...

Note: If winTypeName is not defined, the entry points will still get added to backends but users will not be able to
use it directly by specifying winType.

We define the entry point for our custom backend in setup.py as:

setup(
...
entry_points={
`'psychopy.visual.backends': 'custom_backend = custom_backend'},
...

)

Optionally, we can point to the backend class directly:

setup(
...
entry_points={

'psychopy.visual.backends':
'custom_backend = custom_backend:CustomBackend'},

...
)

After the plugin is installed and loaded, we can use our backend for creating windows by specifying winType as
winTypeName:

loadPlugin('psychopy-custom-backend')
win = Window(winType='custom')

16.7 Contributing to the Test Suite

16.7.1 Why do we need a test suite?

With any bit of software, no matter how perfect the code seems as you’re writing it, there will be bugs. We use a test
suite to make sure that we find as many of those bugs as we can before users do, it’s always better to catch them in
development than to have them mess up someone’s experiment once the software is out in the wild. Remember - when
a user finds a bug, they react like this:

. . . but when the test suite finds a bug, developers react like this:

The more bugs the test suite finds, the better!

16.7. Contributing to the Test Suite 933

PsychoPy - Psychology software for Python, Release 2023.2.3

Fig. 16.2: “Starship Troopers” (TriStar Pictures; Touchstone Pictures)

Fig. 16.3: “Birds In A Nest” (Robert Lynch)

16.7.2 How does it work?

The test suite uses a Python module called [pytest](https://pypi.org/project/pytest/) to run tests on various parts of the
code. These tests work by calling functions, initialising objects and generally trying to use as much of the code in the
PsychoPy repo as possible - then, if an uncaught error is hit at any point, pytest will spit out some informative text on
what went wrong. This means that, if the test suite can run without error, then the software can do everything done in
the test suite without error.

To mark something as a test, it needs three things:

1. It must be somewhere in the folder psychopy/psychopy/tests

2. It must contain the word test in its name (i.e. the class name and function names) 4. It must be executable
in code, a function or a method

So, for example, if you were to make a test for the visual.Rect class, you might call the file test_rect.py and put it in
psychopy/psychopy/tests/test_all_visual, and the file might look like this:

from psychopy import visual # used to draw stimuli

def test_rect():
Test that we can create a window and a rectangle without error
win = visual.Window()
rect = visual.Rect(win)
Check that they draw without error
rect.draw()
win.flip()
End test
win.close()

16.7. Contributing to the Test Suite 934

https://pypi.org/project/pytest/

PsychoPy - Psychology software for Python, Release 2023.2.3

16.7.3 Using assert

Sometimes there’s more to a bit of code than just running without error - we need to check not just that it doesn’t
crash, but that the output is as expected. The assert function allows us to do this. Essentially, assert will throw an
AssertionError if the first input is False, with the text of this error determined by the second input. So, for example:

assert 2 < 1, "2 is not less than 1"

will raise:

AssertionError: 2 is not less than 1

In essence, an assert call is the same as saying:

if condition == False:
raise AssertionError(msg)

What this means is that we can raise an error if a value is not what we expect it to be, which will cause the test to fail
if the output of a function is wrong, even if the function ran without error.

You could use assert within the test_rect example like so:

Set the rectangle's fill color
rect.colorSpace = 'rgb'
rect.fillColor = (1, -1, -1)
Check that the rgb value of its fill color is consistent with what we set
assert rect._fillColor == colors.Color('red'), f"Was expecting rect._fillColor to have␣
→˓an rgb value of '(1, -1, -1)', but instead it was '{rect._fillColor.rgb}'"

Meaning that, if something was wrong with visual.Rect such that setting its fillColor attribute didn’t set the rgb value
of its fill color correctly, this test would raise an AssertionError and would print both the expected and actual values.
This process of comparing actual outputs against expected outputs is known as “end-to-end” (e2e) testing, while simply
supplying values to see if they cause an error is called “unit” testing.

16.7.4 Using classes

In addition to individual methods, you can also create a class for tests. This approach is useful when you want to avoid
making loads of objects for each test, as you can simple create an object once and then refer back to it. For example:

class TestRect:
""" A class to test the Rect class """
@classmethod
def setup_class(self):

""" Initialise the rectangle and window objects """
Create window
self.win = visual.Window()
Create rect
self.rect = visual.Rect(self.win)

def test_color(self):
""" Test that the color or a rectangle sets correctly """
Set the rectangle's fill color
self.rect.colorSpace = 'rgb'

(continues on next page)

16.7. Contributing to the Test Suite 935

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

self.rect.fillColor = (1, -1, -1)
Check that the rgb value of its fill color is consistent with what we set
assert self.rect._fillColor == colors.Color('red'), f"Was expecting rect._

→˓fillColor to have an rgb value of '(1, -1, -1)'," \
f" but instead it was '{self.rect._

→˓fillColor.rgb}'"

Of course, you could create a window and a rectangle for each function and it would work just the same, but only
creating one means the test suite doesn’t have as much to do so it will run faster. Test classes work the same as any
other class definition, except that rather than __init__, the constructor function should be setup_class, and this should
be marked as a @classmethod as in the example above.

Exercise

Practicing writing tests? Try extending the above class to test if a created rectangle has 4 vertices.

16.7.5 Running tests in PyCharm

One of the really useful features on PyCharm is its ability to run tests with just a click. If you have pytest installed, then
any valid test will have a green play button next to its name, in the line margins:

Clicking this button will start all the necessary processes to run this test, just like it would run in our test suite. This
button also appears next to test classes, clicking the run button next to the class name will create an instance of that
class, then run each of its methods which are valid tests.

16.7.6 Test utils

The test suite comes with some handy functions and variables to make testing easier, all of which can be accessed by
importing psychopy.tests.utils.

Paths

The test utils module includes the following paths:

• TESTS_PATH : A path to the root tests folder

• TESTS_DATA_PATH : A path to the data folder within the tests folder - here is where all screenshots, example
conditions files, etc. for use by the test suite are stored

16.7. Contributing to the Test Suite 936

PsychoPy - Psychology software for Python, Release 2023.2.3

Compare screenshot

This function allows you to compare the appearance of a visual.Window to an image file, raising an AssertionError if
they aren’t sufficiently similar. This takes three arguments:

• fileName : A path to the image you want to compare against

• win : The window you want to check

• crit (optional) : A measure of how lenient to be - this defaults to 5, but we advise increasing it to 20 for anything
involving fonts as these can vary between machines

If filename points to a file which doesn’t exist, then this function will instead save the window and assume true. Addi-
tionally, if the comparison fails, the window will be saved as the same path as filename, but with _local appended to
the name.

Compare pixel color

Sometimes, comparing an entire image may be excessive for what you want to check. For example, if you just want to
make sure that a fill color has applied, you could just compare the color of one pixel. This means there doesn’t need to
be a .png file in the PsychoPy repository, and the test suite also doesn’t have to load a entire image just to compare one
color. In these instances, it’s better to use utils.comparePixelColor. This function takes three arguments:

• screen : The window you want to check

• color : The color you expect the pixel to be (ideally, this should be a colors.Color object)

• coord (optional) : The coordinates of the pixel within the image which you’re wanting to compare (defaults to
(0, 0))

Contained within this function is an assert call - so if the two colors are not the same, it will raise an AssertionError
giving you information on both the target color and the pixel color.

Exemplars and tykes

While you’re welcome to lay out your tests however makes the most sense for that test, a useful format in some cases it
to define list`s of “exemplars” and “tykes” - `dict`s of attributes for use in a `for loop, to save yourself from manually
writing the same code over and over, with “exemplars” being very typical use cases which should definitely work as
a bare minimum, and “tykes” being edge cases which should work but are not necessarily likely to occur. Here’s an
example of this structure:

from psychopy import visual, colors # used to draw stimuli

class TestRect:
""" A class to test the Rect class """
@classmethod
def setup_class(self):

""" Initialise the rectangle and window objects """
Create window
self.win = visual.Window()
Create rect
self.rect = visual.Rect(self.win)

def test_color(self):
""" Test that the color or a rectangle sets correctly """

(continues on next page)

16.7. Contributing to the Test Suite 937

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

Set the rectangle's fill color
self.rect.colorSpace = 'rgb'
self.rect.fillColor = (1, -1, -1)
Check that the rgb value of its fill color is consistent with what we set
assert self.rect._fillColor == colors.Color('red'), f"Was expecting rect._

→˓fillColor to have an rgb value of '(1, -1, -1)'," \
f" but instead it was '{self.rect._

→˓fillColor.rgb}'"

def test_rect_colors(self):
"""Test a range of known exemplar colors as well as colors we know to be␣

→˓troublesome AKA tykes"""
Define exemplars
exemplars = [

{ # Red with a blue outline
'fill': 'red',
'border': 'blue',
'colorSpace': 'rgb',
'targetFill': colors.Color((1, -1, -1), 'rgb'),
'targetBorder': colors.Color((-1, -1, 1), 'rgb'),

},
{ # Blue with a red outline

'fill': 'blue',
'border': 'red',
'colorSpace': 'rgb',
'targetFill': colors.Color((-1, -1, 1), 'rgb'),
'targetBorder': colors.Color((1, -1, -1), 'rgb'),

},
]
Define tykes
tykes = [

{ # Transparent fill with a red border when color space is hsv
'fill': None,
'border': 'red',
'colorSpace': 'rgb',
'targetFill': colors.Color(None, 'rgb'),
'targetBorder': colors.Color((0, 1, 1), 'hsv'),

}
]
Iterate through all exemplars and tykes
for case in exemplars + tykes:

Set colors
self.rect.colorSpace = case['colorSpace']
self.rect.fillColor = case['fill']
self.rect.borderColor = case['border']
Check values are the same
assert self.rect._fillColor == case['targetFill'], f"Was expecting rect._

→˓fillColor to be '{case['targetFill']}', but instead it was '{self.rect._fillColor}'"
assert self.rect._borderColor == case['targetBorder'], f"Was expecting rect._

→˓borderColor to be '{case['targetBorder']}', but instead it was '{self.rect._
→˓borderColor}'"

16.7. Contributing to the Test Suite 938

PsychoPy - Psychology software for Python, Release 2023.2.3

16.7.7 Cleanup

After opening any windows, initialising objects or opening any part of the app, it’s important to do some cleanup
afterwards - otherwise these won’t close and the test suite will just keep running forever. This just means calling
.Close() on any wx.Frame`s, `.close() on any visual.Window`s, and using `del to get rid of any objects.

For functions, you can just do this at the end of the function, before it terminates. For classes, this needs to be done in a
method called teardown_class; as pytest will call this method when the tests have completed. This method also needs
to have a decorator marking it as a classfunction, like so:

from psychopy import visual

class ExampleTest:
def __init__(self):

Start an app
wx.App()
Create a frame
self.frame = wx.Frame()
Create a window
self.win = visual.Window()
Create an object
self.rect = visual.Rect(win)

@classmethod
def teardown_class(self):

Close the frame
self.frame.Close()
Close the window
self.win.close()
Delete the object
del self.rect

Exercise

Add a teardown_class method to your TestRect class.

16.7.8 CodeCov

CodeCov is a handy tool which runs the full test suite and keeps track of which lines of code are executed - giving
each file in the PsychoPy repo a percentage score for “coverage”. If more lines of code in that file are executed when
the test suite runs, then it has a higher coverage score. You can view the full coverage report for the repo [here](https:
//app.codecov.io/gh/psychopy/psychopy/).

Some areas of the code are more important than others, so it’s important not to make decisions purely based on what
most increases coverage, but coverage can act as a good indicator for what areas the test suite is lacking in. If you want
to make a test but aren’t sure what to do, finding a file or folder with a poor coverage score is a great place to start!

16.7. Contributing to the Test Suite 939

https://app.codecov.io/gh/psychopy/psychopy/
https://app.codecov.io/gh/psychopy/psychopy/

PsychoPy - Psychology software for Python, Release 2023.2.3

Solutions

Testing if a created rectangle has 4 vertices:

def test_rect(self):
""" Test that a rect object has 4 vertices """
assert len(self.rect.vertices) == 4, f"Was expecting 4 vertices in a Rect object,␣

→˓got {len(self.rect.vertices)}"

Adding a teardown_class method to your TestRect class:

class TestRect:
""" A class to test the Rect class """
@classmethod
def setup_class(self):

""" Initialise the rectangle and window objects """
Create window
self.win = visual.Window()
Create rect
self.rect = visual.Rect(self.win)

def test_color(self):
""" Test that the color or a rectangle sets correctly """
Set the rectangle's fill color
self.rect.colorSpace = 'rgb'
self.rect.fillColor = (1, -1, -1)
Check that the rgb value of its fill color is consistent with what we set
assert self.rect._fillColor == colors.Color('red'), f"Was expecting rect._

→˓fillColor to have an rgb value of '(1, -1, -1)'," \
f" but instead it was '{self.rect._

→˓fillColor.rgb}'"

def test_rect(self):
""" Test that a rect object has 4 vertices """
assert len(self.rect.vertices) == 4, f"Was expecting 4 vertices in a Rect object,

→˓ got {len(self.rect.vertices)}"

def test_rect_colors(self):
"""Test a range of known exemplar colors as well as colors we know to be␣

→˓troublesome AKA tykes"""
Define exemplars
exemplars = [

{ # Red with a blue outline
'fill': 'red',
'border': 'blue',
'colorSpace': 'rgb',
'targetFill': colors.Color((1, -1, -1), 'rgb'),
'targetBorder': colors.Color((-1, -1, 1), 'rgb'),

},
{ # Blue with a red outline

'fill': 'blue',
'border': 'red',
'colorSpace': 'rgb',

(continues on next page)

16.7. Contributing to the Test Suite 940

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

'targetFill': colors.Color((-1, -1, 1), 'rgb'),
'targetBorder': colors.Color((1, -1, -1), 'rgb'),

},
]
Define tykes
tykes = [

{ # Transparent fill with a red border when color space is hsv
'fill': None,
'border': 'red',
'colorSpace': 'rgb',
'targetFill': colors.Color(None, 'rgb'),
'targetBorder': colors.Color((0, 1, 1), 'hsv'),

}
]
Iterate through all exemplars and tykes
for case in exemplars + tykes:

Set colors
self.rect.colorSpace = case['colorSpace']
self.rect.fillColor = case['fill']
self.rect.borderColor = case['border']
Check values are the same
assert self.rect._fillColor == case['targetFill'], f"Was expecting rect._

→˓fillColor to be '{case['targetFill']}', but instead it was '{self.rect._fillColor}'"
assert self.rect._borderColor == case['targetBorder'], f"Was expecting rect._

→˓borderColor to be '{case['targetBorder']}', but instead it was '{self.rect._
→˓borderColor}'"

@classmethod
def teardown_class(self):

"""clean-up any objects, wxframes or windows opened by the test"""
Close the window
self.win.close()
Delete the object
del self.rect

Happy Coding Folks!!

16.7. Contributing to the Test Suite 941

CHAPTER

SEVENTEEN

EXPERIMENT FILE FORMAT (.PSYEXP)

The file format used to save experiments constructed in builder was created especially for the purpose, but is an open
format, using a basic xml form, that may be of use to other similar software. Indeed the builder itself could be used
to generate experiments on different backends (such as Vision Egg, PsychToolbox or PyEPL). The xml format of the
file makes it extremely platform independent, as well as moderately(?!) easy to read by humans. There was a further
suggestion to generate an XSD (or similar) schema against which psyexp files could be validated. That is a low priority
but welcome addition if you wanted to work on it(!) There is a basic XSD (XML Schema Definition) available in
psychopy/app/builder/experiment.xsd.

The simplest way to understand the file format is probably simply to create an experiment, save it and open the file in an
xml-aware editor/viewer (e.g. change the file extension from .psyexp to .xml and then open it in Firefox). An example
(from the stroop demo) is shown below.

The file format maps fairly obviously onto the structure of experiments constructed with the Builder interface. There
are general Settings for the experiment, then there is a list of Routines and a Flow that describes how these are combined.

As with any xml file the format contains object nodes which can have direct properties and also child nodes. For
instance the outermost node of the .psyexp file is the experiment node, with properties that specify the version of that
was used to save the file most recently and the encoding of text within the file (ascii, unicode etc.), and with child nodes
Settings, Routines and Flow.

17.1 Parameters

Many of the nodes described within this xml description of the experiment contain Param entries, representing different
parameters of that Component. Nearly all parameter nodes have a name property and a val property. The parameter
node with the name “advancedParams” does not have them. Most also have a valType property, which can take values
‘bool’, ‘code’, ‘extendedCode’, ‘num’, ‘str’ and an updates property that specifies whether this parameter is changing
during the experiment and, if so, whether it changes ‘every frame’ (of the monitor) or ‘every repeat’ (of the Routine).

17.2 Settings

The Settings node contains a number of parameters that, in , would normally be set in the Experiment settings dialog,
such as the monitor to be used. This node contains a number of Parameters that map onto the entries in that dialog.

942

https://groups.google.com/forum/?fromgroups=#!topic/psychopy-dev/j3XkZEYj_PQ

PsychoPy - Psychology software for Python, Release 2023.2.3

17.3 Routines

This node provides a sequence of xml child nodes, each of which describes a Routine. Each Routine contains a number
of children, each specifying a Component, such as a stimulus or response collecting device. In the Builder view, the
Routines obviously show up as different tabs in the main window and the Components show up as tracks within that
tab.

17.4 Components

Each Component is represented in the .psyexp file as a set of parameters, corresponding to the entries in the appropriate
component dialog box, that completely describe how and when the stimulus should be presented or how and when the
input device should be read from. Different Components have slightly different nodes in the xml representation which
give rise to different sets of parameters. For instance the TextComponent nodes has parameters such as colour and font,
whereas the KeyboardComponent node has parameters such as forceEndTrial and correctIf.

17.5 Flow

The Flow node is rather more simple. Its children simply specify objects that occur in a particular order in time. A
Routine described in this flow must exist in the list of Routines, since this is where it is fully described. One Routine
can occur once, more than once or not at all in the Flow. The other children that can occur in a Flow are LoopInitiators
and LoopTerminators which specify the start and endpoints of a loop. All loops must have exactly one initiator and
one terminator.

17.6 Names

For the experiment to generate valid code the name parameters of all objects (Components, Loops and Routines) must
be unique and contain no spaces. That is, an experiment can not have two different Routines called ‘trial’, nor even a
Routine called ‘trial’ and a Loop called ‘trial’.

The Parameter names belonging to each Component (or the Settings node) must be unique within that Component, but
can be identical to parameters of other Components or can match the Component name themselves. A TextComponent
should not, for example, have multiple ‘pos’ parameters, but other Components generally will, and a Routine called
‘pos’ would also be also permissible.

<PsychoPy2experiment version="1.50.04" encoding="utf-8">
<Settings>
<Param name="Monitor" val="testMonitor" valType="str" updates="None"/>
<Param name="Window size (pixels)" val="[1024, 768]" valType="code" updates="None"/>
<Param name="Full-screen window" val="True" valType="bool" updates="None"/>
<Param name="Save log file" val="True" valType="bool" updates="None"/>
<Param name="Experiment info" val="{'participant':'s_001', 'session':001}" valType=

→˓"code" updates="None"/>
<Param name="Show info dlg" val="True" valType="bool" updates="None"/>
<Param name="logging level" val="warning" valType="code" updates="None"/>
<Param name="Units" val="norm" valType="str" updates="None"/>
<Param name="Screen" val="1" valType="num" updates="None"/>

</Settings>
<Routines>

(continues on next page)

17.3. Routines 943

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

<Routine name="trial">
<TextComponent name="word">
<Param name="name" val="word" valType="code" updates="constant"/>
<Param name="text" val="thisTrial.text" valType="code" updates="set every repeat

→˓"/>
<Param name="colour" val="thisTrial.rgb" valType="code" updates="set every repeat

→˓"/>
<Param name="ori" val="0" valType="code" updates="constant"/>
<Param name="pos" val="[0, 0]" valType="code" updates="constant"/>
<Param name="times" val="[0.5,2.0]" valType="code" updates="constant"/>
<Param name="letterHeight" val="0.2" valType="code" updates="constant"/>
<Param name="colourSpace" val="rgb" valType="code" updates="constant"/>
<Param name="units" val="window units" valType="str" updates="None"/>
<Param name="font" val="Arial" valType="str" updates="constant"/>

</TextComponent>
<KeyboardComponent name="resp">
<Param name="storeCorrect" val="True" valType="bool" updates="constant"/>
<Param name="name" val="resp" valType="code" updates="None"/>
<Param name="forceEndTrial" val="True" valType="bool" updates="constant"/>
<Param name="times" val="[0.5,2.0]" valType="code" updates="constant"/>
<Param name="allowedKeys" val="['1','2','3']" valType="code" updates="constant"/>
<Param name="storeResponseTime" val="True" valType="bool" updates="constant"/>
<Param name="correctIf" val="resp.keys==str(thisTrial.corrAns)" valType="code"␣

→˓updates="constant"/>
<Param name="store" val="last key" valType="str" updates="constant"/>

</KeyboardComponent>
</Routine>
<Routine name="instruct">
<TextComponent name="instrText">
<Param name="name" val="instrText" valType="code" updates="constant"/>
<Param name="text" val=""Please press;
1 for red ink,
2 for green␣

→˓ink
3 for blue ink
(Esc will quit)

Any key to continue"" valType=
→˓"code" updates="constant"/>

<Param name="colour" val="[1, 1, 1]" valType="code" updates="constant"/>
<Param name="ori" val="0" valType="code" updates="constant"/>
<Param name="pos" val="[0, 0]" valType="code" updates="constant"/>
<Param name="times" val="[0, 10000]" valType="code" updates="constant"/>
<Param name="letterHeight" val="0.1" valType="code" updates="constant"/>
<Param name="colourSpace" val="rgb" valType="code" updates="constant"/>
<Param name="units" val="window units" valType="str" updates="None"/>
<Param name="font" val="Arial" valType="str" updates="constant"/>

</TextComponent>
<KeyboardComponent name="ready">
<Param name="storeCorrect" val="False" valType="bool" updates="constant"/>
<Param name="name" val="ready" valType="code" updates="None"/>
<Param name="forceEndTrial" val="True" valType="bool" updates="constant"/>
<Param name="times" val="[0, 10000]" valType="code" updates="constant"/>
<Param name="allowedKeys" val="" valType="code" updates="constant"/>
<Param name="storeResponseTime" val="False" valType="bool" updates="constant"/>
<Param name="correctIf" val="resp.keys==str(thisTrial.corrAns)" valType="code"␣

→˓updates="constant"/>
<Param name="store" val="last key" valType="str" updates="constant"/>

(continues on next page)

17.6. Names 944

PsychoPy - Psychology software for Python, Release 2023.2.3

(continued from previous page)

</KeyboardComponent>
</Routine>
<Routine name="thanks">
<TextComponent name="thanksText">
<Param name="name" val="thanksText" valType="code" updates="constant"/>
<Param name="text" val=""Thanks!"" valType="code" updates="constant"/>
<Param name="colour" val="[1, 1, 1]" valType="code" updates="constant"/>
<Param name="ori" val="0" valType="code" updates="constant"/>
<Param name="pos" val="[0, 0]" valType="code" updates="constant"/>
<Param name="times" val="[1.0, 2.0]" valType="code" updates="constant"/>
<Param name="letterHeight" val="0.2" valType="code" updates="constant"/>
<Param name="colourSpace" val="rgb" valType="code" updates="constant"/>
<Param name="units" val="window units" valType="str" updates="None"/>
<Param name="font" val="arial" valType="str" updates="constant"/>

</TextComponent>
</Routine>

</Routines>
<Flow>
<Routine name="instruct"/>
<LoopInitiator loopType="TrialHandler" name="trials">
<Param name="endPoints" val="[0, 1]" valType="num" updates="None"/>
<Param name="name" val="trials" valType="code" updates="None"/>
<Param name="loopType" val="random" valType="str" updates="None"/>
<Param name="nReps" val="5" valType="num" updates="None"/>
<Param name="trialList" val="[{'text': 'red', 'rgb': [1, -1, -1], 'congruent': 1,

→˓'corrAns': 1}, {'text': 'red', 'rgb': [-1, 1, -1], 'congruent': 0, 'corrAns': 1}, {
→˓'text': 'green', 'rgb': [-1, 1, -1], 'congruent': 1, 'corrAns': 2}, {'text': 'green',
→˓'rgb': [-1, -1, 1], 'congruent': 0, 'corrAns': 2}, {'text': 'blue', 'rgb': [-1, -1, 1],
→˓ 'congruent': 1, 'corrAns': 3}, {'text': 'blue', 'rgb': [1, -1, -1], 'congruent': 0,
→˓'corrAns': 3}]" valType="str" updates="None"/>

<Param name="trialListFile" val="/Users/jwp...troop/trialTypes.csv" valType="str"␣
→˓updates="None"/>
</LoopInitiator>
<Routine name="trial"/>
<LoopTerminator name="trials"/>
<Routine name="thanks"/>

</Flow>
</PsychoPy2experiment>

• Glossary

• genindex

17.6. Names 945

PYTHON MODULE INDEX

p
psychopy.clock, 166
psychopy.core, 163
psychopy.data, 793
psychopy.hardware, 534
psychopy.hardware.brainproducts, 537
psychopy.hardware.camera, 540
psychopy.hardware.crs, 549
psychopy.hardware.emulator, 584
psychopy.hardware.forp, 585
psychopy.hardware.joystick, 585
psychopy.hardware.keyboard, 534
psychopy.hardware.minolta, 590
psychopy.hardware.pr, 590
psychopy.hardware.qmix, 590
psychopy.info, 852
psychopy.iohub.client, 593
psychopy.iohub.client.keyboard, 600
psychopy.logging, 859
psychopy.misc, 865
psychopy.parallel, 873
psychopy.preferences, 881
psychopy.session, 170
psychopy.sound, 507
psychopy.tools, 657
psychopy.tools.colorspacetools, 657
psychopy.tools.coordinatetools, 664
psychopy.tools.filetools, 664
psychopy.tools.gltools, 666
psychopy.tools.imagetools, 768
psychopy.tools.mathtools, 715
psychopy.tools.monitorunittools, 760
psychopy.tools.movietools, 762
psychopy.tools.plottools, 768
psychopy.tools.systemtools, 770
psychopy.tools.typetools, 775
psychopy.tools.unittools, 776
psychopy.tools.viewtools, 778
psychopy.visual.filters, 845
psychopy.visual.windowframepack, 503
psychopy.visual.windowwarp, 504

946

INDEX

Symbols
_EOS() (psychopy.sound.backend_ptb.SoundPTB

method), 511
_EOS() (psychopy.sound.backend_sounddevice.SoundDeviceSound

method), 513
_Goggles() (psychopy.hardware.crs.bits.BitsPlusPlus

method), 550
_Goggles() (psychopy.hardware.crs.bits.BitsSharp

method), 561
_Logger (class in psychopy.logging), 860
_RTBoxDecodeResponse() (psy-

chopy.hardware.crs.bits.BitsSharp method),
561

_ResetClock() (psychopy.hardware.crs.bits.BitsPlusPlus
method), 551

_ResetClock() (psychopy.hardware.crs.bits.BitsSharp
method), 561

__init__() (psychopy.tools.gltools.ObjMeshInfo
method), 701

__init__() (psychopy.tools.gltools.QueryObjectInfo
method), 677

__init__() (psychopy.tools.gltools.VertexArrayInfo
method), 688

__init__() (psychopy.tools.gltools.VertexBufferInfo
method), 691

_addDeviceView() (psy-
chopy.iohub.client.ioHubConnection method),
599

_addRenderOnlyChar() (psychopy.visual.TextBox2
method), 435

_assertCameraReady() (psy-
chopy.hardware.camera.Camera method),
543

_assertMediaPlayer() (psy-
chopy.hardware.camera.Camera method),
543

_assignFlipTime() (psychopy.visual.Window method),
487

_assignFlipTime() (psy-
chopy.visual.nnlvs.VisualSystemHD method),
466

_assignFlipTime() (psychopy.visual.rift.Rift method),

361
_blitEyeBuffer() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
467

_calcEquilateralVertices() (psy-
chopy.visual.circle.Circle static method),
203

_calcEquilateralVertices() (psy-
chopy.visual.line.Line static method), 257

_calcEquilateralVertices() (psy-
chopy.visual.pie.Pie static method), 295

_calcEquilateralVertices() (psy-
chopy.visual.polygon.Polygon static method),
314

_calcEquilateralVertices() (psy-
chopy.visual.progress.Progress static method),
324

_calcEquilateralVertices() (psy-
chopy.visual.rect.Rect static method), 350

_calcEquilateralVertices() (psy-
chopy.visual.shape.ShapeStim static method),
402

_calcPosRendered() (psy-
chopy.visual.BufferImageStim method), 191

_calcPosRendered() (psychopy.visual.Form method),
218

_calcPosRendered() (psychopy.visual.GratingStim
method), 231

_calcPosRendered() (psychopy.visual.ImageStim
method), 243

_calcPosRendered() (psychopy.visual.MovieStim
method), 267

_calcPosRendered() (psychopy.visual.RadialStim
method), 333

_calcPosRendered() (psychopy.visual.TextBox2
method), 435

_calcPosRendered() (psychopy.visual.TextStim
method), 444

_calcPosRendered() (psychopy.visual.VlcMovieStim
method), 454

_calcPosRendered() (psychopy.visual.circle.Circle
method), 203

947

PsychoPy - Psychology software for Python, Release 2023.2.3

_calcPosRendered() (psychopy.visual.line.Line
method), 257

_calcPosRendered() (psychopy.visual.pie.Pie
method), 295

_calcPosRendered() (psy-
chopy.visual.polygon.Polygon method), 314

_calcPosRendered() (psy-
chopy.visual.progress.Progress method),
324

_calcPosRendered() (psychopy.visual.rect.Rect
method), 350

_calcPosRendered() (psy-
chopy.visual.shape.ShapeStim method), 402

_calcSizeRendered() (psy-
chopy.visual.BufferImageStim method), 191

_calcSizeRendered() (psychopy.visual.Form method),
218

_calcSizeRendered() (psychopy.visual.GratingStim
method), 231

_calcSizeRendered() (psychopy.visual.ImageStim
method), 243

_calcSizeRendered() (psychopy.visual.MovieStim
method), 267

_calcSizeRendered() (psychopy.visual.RadialStim
method), 333

_calcSizeRendered() (psychopy.visual.TextBox2
method), 435

_calcSizeRendered() (psychopy.visual.TextStim
method), 444

_calcSizeRendered() (psychopy.visual.VlcMovieStim
method), 454

_calcSizeRendered() (psychopy.visual.circle.Circle
method), 203

_calcSizeRendered() (psychopy.visual.line.Line
method), 257

_calcSizeRendered() (psychopy.visual.pie.Pie
method), 295

_calcSizeRendered() (psy-
chopy.visual.polygon.Polygon method), 314

_calcSizeRendered() (psy-
chopy.visual.progress.Progress method),
324

_calcSizeRendered() (psychopy.visual.rect.Rect
method), 350

_calcSizeRendered() (psy-
chopy.visual.shape.ShapeStim method), 402

_calcVertices() (psychopy.visual.pie.Pie method),
295

_calculateMinEdges() (psychopy.visual.circle.Circle
static method), 203

_calculateMinEdges() (psychopy.visual.line.Line
static method), 257

_calculateMinEdges() (psychopy.visual.pie.Pie static
method), 296

_calculateMinEdges() (psy-
chopy.visual.polygon.Polygon static method),
314

_calculateMinEdges() (psy-
chopy.visual.progress.Progress static method),
324

_calculateMinEdges() (psychopy.visual.rect.Rect
static method), 350

_calculateMinEdges() (psy-
chopy.visual.shape.ShapeStim static method),
402

_channelCheck() (psy-
chopy.sound.backend_ptb.SoundPTB method),
511

_channelCheck() (psy-
chopy.sound.backend_sounddevice.SoundDeviceSound
method), 513

_checkCodecSupported() (psychopy.sound.AudioClip
static method), 522

_checkFinished() (psychopy.data.PsiHandler
method), 820

_checkFinished() (psychopy.data.QuestHandler
method), 825

_checkMatchingSizes() (psychopy.visual.Window
method), 487

_checkMatchingSizes() (psy-
chopy.visual.nnlvs.VisualSystemHD method),
467

_checkMatchingSizes() (psychopy.visual.rift.Rift
method), 361

_checkPlaybackFinished() (psy-
chopy.sound.backend_ptb.SoundPTB method),
511

_cleanEditables() (psychopy.visual.Window method),
487

_cleanEditables() (psy-
chopy.visual.nnlvs.VisualSystemHD method),
467

_cleanEditables() (psychopy.visual.rift.Rift method),
361

_clip_range() (psychopy.hardware.joystick.XboxController
method), 586

_closeMedia() (psychopy.visual.VlcMovieStim
method), 454

_computeCorners() (psychopy.visual.BoundingBox
method), 181

_convertImage() (psy-
chopy.tools.movietools.MovieFileWriter
method), 764

_createDeviceList() (psy-
chopy.iohub.client.ioHubConnection method),
599

_createItemCtrls() (psychopy.visual.Form method),
218

Index 948

PsychoPy - Psychology software for Python, Release 2023.2.3

_createOutputArray() (psychopy.data.TrialHandler
method), 799

_createOutputArray() (psy-
chopy.data.TrialHandlerExt method), 810

_createOutputArrayData() (psy-
chopy.data.TrialHandler method), 799

_createOutputArrayData() (psy-
chopy.data.TrialHandlerExt method), 810

_createSequence() (psychopy.data.TrialHandler
method), 799

_createSequence() (psychopy.data.TrialHandlerExt
method), 810

_createTexture() (psychopy.visual.BufferImageStim
method), 191

_createTexture() (psychopy.visual.GratingStim
method), 231

_createTexture() (psychopy.visual.ImageStim
method), 243

_createTexture() (psychopy.visual.RadialStim
method), 333

_createVAO() (psychopy.visual.BoxStim method), 182
_createVAO() (psychopy.visual.ObjMeshStim method),

282
_createVAO() (psychopy.visual.PlaneStim method), 304
_createVAO() (psychopy.visual.SphereStim method),

417
_createVLCInstance() (psy-

chopy.visual.VlcMovieStim method), 454
_doFit() (psychopy.data.FitCumNormal method), 839
_doFit() (psychopy.data.FitLogistic method), 838
_doFit() (psychopy.data.FitNakaRushton method), 839
_doFit() (psychopy.data.FitWeibull method), 838
_do_chunk() (psychopy.voicekey.OnsetVoiceKey

method), 883
_download() (psychopy.hardware.camera.Camera

method), 543
_drawCtrls() (psychopy.visual.Form method), 218
_drawDecorations() (psychopy.visual.Form method),

218
_drawExternalDecorations() (psychopy.visual.Form

method), 218
_drawLUTtoScreen() (psy-

chopy.hardware.crs.bits.BitsPlusPlus method),
551

_drawLUTtoScreen() (psy-
chopy.hardware.crs.bits.BitsSharp method),
561

_drawRectangle() (psychopy.visual.MovieStim
method), 267

_drawRectangle() (psychopy.visual.VlcMovieStim
method), 455

_drawTrigtoScreen() (psy-
chopy.hardware.crs.bits.BitsPlusPlus method),
551

_drawTrigtoScreen() (psy-
chopy.hardware.crs.bits.BitsSharp method),
561

_endOfFlip() (psychopy.visual.Window method), 487
_endOfFlip() (psychopy.visual.nnlvs.VisualSystemHD

method), 467
_endOfFlip() (psychopy.visual.rift.Rift method), 361
_enqueueFrame() (psychopy.hardware.camera.Camera

method), 543
_extractStatusEvents() (psy-

chopy.hardware.crs.bits.BitsSharp method),
562

_freeBuffers() (psychopy.visual.MovieStim method),
267

_freeBuffers() (psychopy.visual.VlcMovieStim
method), 455

_getAllParamNames() (psy-
chopy.data.ExperimentHandler method),
794

_getDefaultSampleRate() (psy-
chopy.sound.backend_ptb.SoundPTB method),
511

_getDesiredRGB() (psychopy.visual.BoxStim method),
182

_getDesiredRGB() (psychopy.visual.BufferImageStim
method), 191

_getDesiredRGB() (psychopy.visual.Form method),
218

_getDesiredRGB() (psychopy.visual.GratingStim
method), 232

_getDesiredRGB() (psychopy.visual.ImageStim
method), 243

_getDesiredRGB() (psychopy.visual.MovieStim
method), 267

_getDesiredRGB() (psychopy.visual.ObjMeshStim
method), 282

_getDesiredRGB() (psychopy.visual.PlaneStim
method), 304

_getDesiredRGB() (psychopy.visual.RadialStim
method), 333

_getDesiredRGB() (psychopy.visual.SphereStim
method), 417

_getDesiredRGB() (psychopy.visual.TextBox2 method),
435

_getDesiredRGB() (psychopy.visual.TextStim method),
445

_getDesiredRGB() (psychopy.visual.circle.Circle
method), 203

_getDesiredRGB() (psychopy.visual.line.Line method),
257

_getDesiredRGB() (psychopy.visual.pie.Pie method),
296

_getDesiredRGB() (psychopy.visual.polygon.Polygon
method), 314

Index 949

PsychoPy - Psychology software for Python, Release 2023.2.3

_getDesiredRGB() (psychopy.visual.progress.Progress
method), 325

_getDesiredRGB() (psychopy.visual.rect.Rect method),
350

_getDesiredRGB() (psychopy.visual.shape.ShapeStim
method), 403

_getExtraInfo() (psychopy.data.ExperimentHandler
method), 794

_getFrame() (psychopy.visual.Window method), 487
_getFrame() (psychopy.visual.nnlvs.VisualSystemHD

method), 467
_getFrame() (psychopy.visual.rift.Rift method), 361
_getHgVersion() (in module psychopy.info), 853
_getHitboxParams() (psychopy.visual.Slider method),

412
_getItemHeight() (psychopy.visual.Form method),

218
_getItemRenderedWidth() (psychopy.visual.Form

method), 218
_getLineParams() (psychopy.visual.Slider method),

412
_getLoopInfo() (psychopy.data.ExperimentHandler

method), 794
_getMarkerParams() (psychopy.visual.Slider method),

412
_getPolyAsRendered() (psy-

chopy.visual.BufferImageStim method), 191
_getPolyAsRendered() (psychopy.visual.Form

method), 218
_getPolyAsRendered() (psychopy.visual.GratingStim

method), 232
_getPolyAsRendered() (psychopy.visual.ImageStim

method), 243
_getPolyAsRendered() (psychopy.visual.MovieStim

method), 267
_getPolyAsRendered() (psychopy.visual.RadialStim

method), 333
_getPolyAsRendered() (psychopy.visual.TextBox2

method), 435
_getPolyAsRendered() (psychopy.visual.TextStim

method), 445
_getPolyAsRendered() (psy-

chopy.visual.VlcMovieStim method), 455
_getPolyAsRendered() (psychopy.visual.circle.Circle

method), 203
_getPolyAsRendered() (psychopy.visual.line.Line

method), 258
_getPolyAsRendered() (psychopy.visual.pie.Pie

method), 296
_getPolyAsRendered() (psy-

chopy.visual.polygon.Polygon method), 314
_getPolyAsRendered() (psy-

chopy.visual.progress.Progress method),
325

_getPolyAsRendered() (psychopy.visual.rect.Rect
method), 350

_getPolyAsRendered() (psy-
chopy.visual.shape.ShapeStim method), 403

_getRegionOfFrame() (psychopy.visual.Window
method), 487

_getRegionOfFrame() (psy-
chopy.visual.nnlvs.VisualSystemHD method),
467

_getRegionOfFrame() (psychopy.visual.rift.Rift
method), 361

_getScrollOffset() (psychopy.visual.Form method),
218

_getSha1hexDigest() (in module psychopy.info), 853
_getStatusLog() (psy-

chopy.hardware.crs.bits.BitsSharp method),
562

_getSvnVersion() (in module psychopy.info), 853
_getTickParams() (psychopy.visual.Slider method),

412
_getUserNameUID() (in module psychopy.info), 853
_getWarpExtents() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
467

_granularRating() (psychopy.visual.Slider method),
412

_guessPriority() (psychopy.data.ExperimentHandler
method), 794

_inRange() (psychopy.visual.Form method), 219
_inWaiting() (psychopy.hardware.crs.bits.BitsSharp

method), 562
_intensity() (psychopy.data.QuestHandler method),

825
_intensityDec() (psychopy.data.PsiHandler method),

820
_intensityDec() (psychopy.data.QuestHandler

method), 825
_intensityDec() (psychopy.data.QuestPlusHandler

method), 830
_intensityDec() (psychopy.data.StairHandler

method), 816
_intensityInc() (psychopy.data.PsiHandler method),

820
_intensityInc() (psychopy.data.QuestHandler

method), 825
_intensityInc() (psychopy.data.QuestPlusHandler

method), 830
_intensityInc() (psychopy.data.StairHandler

method), 816
_isErrorReply() (psy-

chopy.iohub.client.ioHubConnection static
method), 600

_layout() (psychopy.visual.TextBox2 method), 435
_layoutY() (psychopy.visual.Form method), 219

Index 950

PsychoPy - Psychology software for Python, Release 2023.2.3

_loadAll() (psychopy.monitors.Monitor method), 868
_loadMtlLib() (psychopy.visual.ObjMeshStim

method), 282
_makeIndices() (psychopy.data.TrialHandler method),

800
_makeIndices() (psychopy.data.TrialHandlerExt

method), 811
_makeSlider() (psychopy.visual.Form method), 219
_makeTextBox() (psychopy.visual.Form method), 219
_movieFrameToTexture() (psy-

chopy.visual.BufferImageStim method), 191
_movieFrameToTexture() (psychopy.visual.ImageStim

method), 243
_onCursorKeys() (psychopy.visual.TextBox2 method),

435
_onEos() (psychopy.visual.VlcMovieStim method), 455
_onText() (psychopy.visual.TextBox2 method), 435
_openFFPyPlayer() (psy-

chopy.tools.movietools.MovieFileWriter
method), 764

_openMedia() (psychopy.visual.VlcMovieStim method),
455

_openOpenCV() (psychopy.tools.movietools.MovieFileWriter
method), 764

_pixelTransfer() (psychopy.visual.MovieStim
method), 267

_pixelTransfer() (psychopy.visual.VlcMovieStim
method), 455

_prepareMonoFrame() (psychopy.visual.rift.Rift
method), 362

_process() (psychopy.voicekey.OnsetVoiceKey
method), 883

_protectTrigger() (psy-
chopy.hardware.crs.bits.BitsPlusPlus method),
551

_protectTrigger() (psy-
chopy.hardware.crs.bits.BitsSharp method),
562

_releaseVLCInstance() (psy-
chopy.visual.VlcMovieStim method), 455

_renderFBO() (psychopy.visual.Window method), 487
_renderFBO() (psychopy.visual.nnlvs.VisualSystemHD

method), 467
_renderFBO() (psychopy.visual.rift.Rift method), 362
_reset() (psychopy.visual.Aperture method), 178
_resolveMSAA() (psychopy.visual.rift.Rift method), 362
_restoreTrigger() (psy-

chopy.hardware.crs.bits.BitsPlusPlus method),
551

_restoreTrigger() (psy-
chopy.hardware.crs.bits.BitsSharp method),
562

_sanitizeDirection() (psy-
chopy.visual.progress.Progress static method),

325
_selectWindow() (psychopy.visual.BoxStim method),

182
_selectWindow() (psychopy.visual.BufferImageStim

method), 192
_selectWindow() (psychopy.visual.Form method), 219
_selectWindow() (psychopy.visual.GratingStim

method), 232
_selectWindow() (psychopy.visual.ImageStim method),

244
_selectWindow() (psychopy.visual.MovieStim method),

267
_selectWindow() (psychopy.visual.ObjMeshStim

method), 282
_selectWindow() (psychopy.visual.PlaneStim method),

305
_selectWindow() (psychopy.visual.RadialStim

method), 334
_selectWindow() (psychopy.visual.SphereStim

method), 417
_selectWindow() (psychopy.visual.TextBox2 method),

435
_selectWindow() (psychopy.visual.TextStim method),

445
_selectWindow() (psychopy.visual.VlcMovieStim

method), 455
_selectWindow() (psychopy.visual.circle.Circle

method), 203
_selectWindow() (psychopy.visual.line.Line method),

258
_selectWindow() (psychopy.visual.pie.Pie method),

296
_selectWindow() (psychopy.visual.polygon.Polygon

method), 314
_selectWindow() (psychopy.visual.progress.Progress

method), 325
_selectWindow() (psychopy.visual.rect.Rect method),

350
_selectWindow() (psychopy.visual.shape.ShapeStim

method), 403
_sendExperimentInfo() (psy-

chopy.iohub.client.ioHubConnection method),
599

_sendSessionInfo() (psy-
chopy.iohub.client.ioHubConnection method),
599

_sendToHubServer() (psy-
chopy.iohub.client.ioHubConnection method),
599

_set() (psychopy.visual.BufferImageStim method), 192
_set() (psychopy.visual.Form method), 219
_set() (psychopy.visual.GratingStim method), 232
_set() (psychopy.visual.ImageStim method), 244
_set() (psychopy.visual.MovieStim method), 267

Index 951

PsychoPy - Psychology software for Python, Release 2023.2.3

_set() (psychopy.visual.RadialStim method), 334
_set() (psychopy.visual.TextBox2 method), 435
_set() (psychopy.visual.TextStim method), 445
_set() (psychopy.visual.VlcMovieStim method), 455
_set() (psychopy.visual.circle.Circle method), 204
_set() (psychopy.visual.line.Line method), 258
_set() (psychopy.visual.pie.Pie method), 296
_set() (psychopy.visual.polygon.Polygon method), 314
_set() (psychopy.visual.progress.Progress method), 325
_set() (psychopy.visual.rect.Rect method), 350
_set() (psychopy.visual.shape.ShapeStim method), 403
_setAperture() (psychopy.visual.Form method), 219
_setBorder() (psychopy.visual.Form method), 220
_setCurrent() (psychopy.visual.Window method), 487
_setCurrent() (psychopy.visual.nnlvs.VisualSystemHD

method), 467
_setCurrent() (psychopy.visual.rift.Rift method), 362
_setCurrentProcessInfo() (psy-

chopy.info.RunTimeInfo method), 852
_setDecorations() (psychopy.visual.Form method),

220
_setExperimentInfo() (psychopy.info.RunTimeInfo

method), 853
_setHeaders() (psychopy.hardware.crs.bits.BitsPlusPlus

method), 551
_setHeaders() (psychopy.hardware.crs.bits.BitsSharp

method), 562
_setPythonInfo() (psychopy.info.RunTimeInfo

method), 853
_setQuestion() (psychopy.visual.Form method), 220
_setRadialAtribute() (psychopy.visual.RadialStim

method), 334
_setResponse() (psychopy.visual.Form method), 220
_setScrollBar() (psychopy.visual.Form method), 220
_setSystemInfo() (psychopy.info.RunTimeInfo

method), 853
_setTextShaders() (psychopy.visual.TextStim

method), 445
_setWindowInfo() (psychopy.info.RunTimeInfo

method), 853
_set_baseline() (psychopy.voicekey.OnsetVoiceKey

method), 883
_set_defaults() (psychopy.voicekey.OnsetVoiceKey

method), 883
_set_signaler() (psychopy.voicekey.OnsetVoiceKey

method), 883
_set_source() (psychopy.voicekey.OnsetVoiceKey

method), 883
_set_tables() (psychopy.voicekey.OnsetVoiceKey

method), 883
_setupEyeBuffers() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
467

_setupFrameBuffer() (psychopy.visual.rift.Rift

method), 362
_setupGL() (psychopy.visual.Window method), 488
_setupGL() (psychopy.visual.nnlvs.VisualSystemHD

method), 467
_setupGL() (psychopy.visual.rift.Rift method), 362
_setupGamma() (psychopy.visual.Window method), 488
_setupGamma() (psychopy.visual.nnlvs.VisualSystemHD

method), 468
_setupGamma() (psychopy.visual.rift.Rift method), 362
_setupLensCorrection() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
468

_setupShaders() (psy-
chopy.hardware.crs.bits.BitsPlusPlus method),
551

_setupShaders() (psy-
chopy.hardware.crs.bits.BitsSharp method),
562

_setupTextureBuffers() (psychopy.visual.MovieStim
method), 267

_setupTextureBuffers() (psy-
chopy.visual.VlcMovieStim method), 455

_startHmdFrame() (psychopy.visual.rift.Rift method),
362

_startNewPass() (psychopy.data.MultiStairHandler
method), 835

_startOfFlip() (psychopy.visual.Window method),
488

_startOfFlip() (psy-
chopy.visual.nnlvs.VisualSystemHD method),
468

_startOfFlip() (psychopy.visual.rift.Rift method), 362
_startServer() (psy-

chopy.iohub.client.ioHubConnection method),
599

_statusBox() (psychopy.hardware.crs.bits.BitsSharp
method), 562

_statusDisable() (psy-
chopy.hardware.crs.bits.BitsSharp method),
563

_statusEnable() (psy-
chopy.hardware.crs.bits.BitsSharp method),
563

_statusLog() (psychopy.hardware.crs.bits.BitsSharp
method), 563

_syncDeviceState() (psy-
chopy.iohub.client.keyboard.Keyboard
method), 601

_terminate() (psychopy.data.MultiStairHandler
method), 835

_terminate() (psychopy.data.PsiHandler method), 820
_terminate() (psychopy.data.QuestHandler method),

825
_terminate() (psychopy.data.QuestPlusHandler

Index 952

PsychoPy - Psychology software for Python, Release 2023.2.3

method), 830
_terminate() (psychopy.data.StairHandler method),

816
_terminate() (psychopy.data.TrialHandler method),

800
_terminate() (psychopy.data.TrialHandler2 method),

804
_terminate() (psychopy.data.TrialHandlerExt

method), 811
_tesselate() (psychopy.visual.line.Line method), 258
_tesselate() (psychopy.visual.progress.Progress

method), 325
_tesselate() (psychopy.visual.shape.ShapeStim

method), 403
_updateEverything() (psychopy.visual.RadialStim

method), 334
_updateList() (psychopy.visual.BoxStim method), 182
_updateList() (psychopy.visual.BufferImageStim

method), 192
_updateList() (psychopy.visual.Form method), 220
_updateList() (psychopy.visual.GratingStim method),

232
_updateList() (psychopy.visual.ImageStim method),

244
_updateList() (psychopy.visual.MovieStim method),

267
_updateList() (psychopy.visual.ObjMeshStim

method), 282
_updateList() (psychopy.visual.PlaneStim method),

305
_updateList() (psychopy.visual.RadialStim method),

334
_updateList() (psychopy.visual.SphereStim method),

417
_updateList() (psychopy.visual.TextBox2 method), 435
_updateList() (psychopy.visual.TextStim method), 445
_updateList() (psychopy.visual.VlcMovieStim

method), 455
_updateList() (psychopy.visual.circle.Circle method),

204
_updateList() (psychopy.visual.line.Line method), 258
_updateList() (psychopy.visual.pie.Pie method), 296
_updateList() (psychopy.visual.polygon.Polygon

method), 314
_updateList() (psychopy.visual.progress.Progress

method), 325
_updateList() (psychopy.visual.rect.Rect method), 351
_updateList() (psychopy.visual.shape.ShapeStim

method), 403
_updateListShaders() (psy-

chopy.visual.BufferImageStim method), 192
_updateListShaders() (psychopy.visual.GratingStim

method), 232
_updateListShaders() (psychopy.visual.ImageStim

method), 244
_updateListShaders() (psychopy.visual.RadialStim

method), 334
_updateListShaders() (psychopy.visual.TextStim

method), 445
_updateMaskCoords() (psychopy.visual.RadialStim

method), 334
_updatePerfStats() (psychopy.visual.rift.Rift

method), 363
_updateProjectionMatrix() (psy-

chopy.visual.rift.Rift method), 363
_updateTextureCoords() (psy-

chopy.visual.RadialStim method), 334
_updateVertices() (psychopy.visual.Aperture

method), 178
_updateVertices() (psychopy.visual.BufferImageStim

method), 192
_updateVertices() (psychopy.visual.Form method),

220
_updateVertices() (psychopy.visual.GratingStim

method), 232
_updateVertices() (psychopy.visual.ImageStim

method), 244
_updateVertices() (psychopy.visual.MovieStim

method), 267
_updateVertices() (psychopy.visual.RadialStim

method), 334
_updateVertices() (psychopy.visual.TextBox2

method), 435
_updateVertices() (psychopy.visual.TextStim

method), 445
_updateVertices() (psychopy.visual.VlcMovieStim

method), 455
_updateVertices() (psychopy.visual.circle.Circle

method), 204
_updateVertices() (psychopy.visual.line.Line

method), 258
_updateVertices() (psychopy.visual.pie.Pie method),

296
_updateVertices() (psychopy.visual.polygon.Polygon

method), 314
_updateVertices() (psy-

chopy.visual.progress.Progress method),
325

_updateVertices() (psychopy.visual.rect.Rect
method), 351

_updateVertices() (psychopy.visual.shape.ShapeStim
method), 403

_updateVerticesBase() (psychopy.visual.RadialStim
method), 334

_upload() (psychopy.hardware.camera.Camera
method), 543

_waitToBeginHmdFrame() (psychopy.visual.rift.Rift
method), 363

Index 953

PsychoPy - Psychology software for Python, Release 2023.2.3

A
abort() (psychopy.data.ExperimentHandler method),

795
abortCurrentTrial() (psy-

chopy.data.MultiStairHandler method), 835
abortCurrentTrial() (psychopy.data.TrialHandler2

method), 804
accumQuat() (in module psychopy.tools.mathtools), 737
active (psychopy.sound.AudioDeviceStatus property),

532
Adaptive staircase, 31
add() (psychopy.clock.Clock method), 167
add() (psychopy.core.Clock method), 163
addAnnotation() (psychopy.data.ExperimentHandler

method), 795
addAnnotation() (psychopy.session.Session method),

171
addAudioToMovie() (in module psy-

chopy.tools.movietools), 767
addCharAtCaret() (psychopy.visual.TextBox2 method),

435
addData() (psychopy.data.ExperimentHandler method),

795
addData() (psychopy.data.MultiStairHandler method),

835
addData() (psychopy.data.PsiHandler method), 820
addData() (psychopy.data.QuestHandler method), 825
addData() (psychopy.data.QuestPlusHandler method),

830
addData() (psychopy.data.StairHandler method), 816
addData() (psychopy.data.TrialHandler method), 800
addData() (psychopy.data.TrialHandler2 method), 805
addData() (psychopy.data.TrialHandlerExt method),

811
addData() (psychopy.session.Session method), 172
addDataToExp() (psychopy.visual.Form method), 221
addEditable() (psychopy.visual.nnlvs.VisualSystemHD

method), 468
addEditable() (psychopy.visual.rift.Rift method), 363
addEditable() (psychopy.visual.Window method), 488
addExperiment() (psychopy.session.Session method),

172
addField() (psychopy.gui.Dlg method), 850
addFixedField() (psychopy.gui.Dlg method), 850
addFrame() (psychopy.tools.movietools.MovieFileWriter

method), 764
addKeyboardFromParams() (psychopy.session.Session

method), 172
addLevel() (in module psychopy.logging), 860
addLoop() (psychopy.data.ExperimentHandler method),

795
addOtherData() (psychopy.data.MultiStairHandler

method), 835

addOtherData() (psychopy.data.PsiHandler method),
820

addOtherData() (psychopy.data.QuestHandler
method), 825

addOtherData() (psychopy.data.QuestPlusHandler
method), 830

addOtherData() (psychopy.data.StairHandler method),
816

addResponse() (psychopy.data.MultiStairHandler
method), 835

addResponse() (psychopy.data.PsiHandler method),
820

addResponse() (psychopy.data.QuestHandler method),
825

addResponse() (psychopy.data.QuestPlusHandler
method), 831

addResponse() (psychopy.data.StairHandler method),
816

addTarget() (psychopy.logging._Logger method), 860
addTime() (psychopy.clock.Clock method), 167
addTime() (psychopy.clock.CountdownTimer method),

167
addTime() (psychopy.core.Clock method), 163
addTime() (psychopy.core.CountdownTimer method),

164
addTrialHandlerRecord() (psy-

chopy.iohub.client.ioHubConnection method),
597

AdvAudioCapture (class in psychopy.microphone), 863
alignHoriz (psychopy.visual.TextStim attribute), 445
alignment (psychopy.visual.TextBox2 property), 435
alignText (psychopy.visual.TextStim attribute), 445
alignTo() (in module psychopy.tools.mathtools), 735
alignTo() (psychopy.visual.RigidBodyPose method),

393
alignVert (psychopy.visual.TextStim attribute), 445
alpha (psychopy.colors.Color property), 791
ambientColor (psychopy.visual.BlinnPhongMaterial

property), 290
ambientColor (psychopy.visual.LightSource property),

253
ambientLight (psychopy.visual.nnlvs.VisualSystemHD

property), 468
ambientLight (psychopy.visual.rift.Rift property), 363
ambientLight (psychopy.visual.Window property), 488
ambientRGB (psychopy.visual.BlinnPhongMaterial prop-

erty), 290
ambientRGB (psychopy.visual.LightSource property),

253
amplifier (psychopy.hardware.brainproducts.RemoteControlServer

property), 538
anchor (psychopy.layout.Vertices property), 858
anchor (psychopy.visual.Aperture property), 178
anchor (psychopy.visual.BoxStim property), 182

Index 954

PsychoPy - Psychology software for Python, Release 2023.2.3

anchor (psychopy.visual.BufferImageStim property), 192
anchor (psychopy.visual.Form property), 221
anchor (psychopy.visual.GratingStim property), 232
anchor (psychopy.visual.ImageStim property), 244
anchor (psychopy.visual.MovieStim property), 268
anchor (psychopy.visual.ObjMeshStim property), 282
anchor (psychopy.visual.PlaneStim property), 305
anchor (psychopy.visual.RadialStim property), 334
anchor (psychopy.visual.SphereStim property), 417
anchor (psychopy.visual.TextBox2 property), 435
anchor (psychopy.visual.VlcMovieStim property), 455
anchorAdjust (psychopy.layout.Vertices property), 858
anchorHoriz (psychopy.visual.TextStim attribute), 445
anchorVert (psychopy.visual.TextStim attribute), 445
angle_x (psychopy.iohub.devices.eyetracker.FixationStartEvent

attribute), 631
angle_x (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 617, 628
angle_x (psychopy.iohub.devices.eyetracker.SaccadeStartEvent

attribute), 634
angle_y (psychopy.iohub.devices.eyetracker.FixationStartEvent

attribute), 631
angle_y (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 617, 628
angle_y (psychopy.iohub.devices.eyetracker.SaccadeStartEvent

attribute), 634
angleTo() (in module psychopy.tools.mathtools), 722
angularCycles (psychopy.visual.RadialStim attribute),

334
angularPhase (psychopy.visual.RadialStim attribute),

334
angularRes (psychopy.visual.RadialStim attribute), 334
antialias (psychopy.visual.TextStim attribute), 445
Aperture (class in psychopy.visual), 177
apodize() (in module psychopy.voicekey), 885
append() (psychopy.sound.AudioClip method), 523
applyEyeTransform() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
468

applyEyeTransform() (psychopy.visual.rift.Rift
method), 363

applyEyeTransform() (psychopy.visual.Window
method), 488

applyMatrix() (in module psychopy.tools.mathtools),
750

applyQuat() (in module psychopy.tools.mathtools), 738
array2image() (in module psychopy.tools.imagetools),

715
articulate() (in module psychopy.tools.mathtools),

731
asMono() (psychopy.sound.AudioClip method), 523
aspect (psychopy.visual.nnlvs.VisualSystemHD prop-

erty), 469
aspect (psychopy.visual.rift.Rift property), 364

aspect (psychopy.visual.Window property), 489
aspectRatio (psychopy.visual.BufferImageStim prop-

erty), 192
aspectRatio (psychopy.visual.ImageStim property), 244
aspirate() (psychopy.hardware.qmix.Pump method),

591
at (psychopy.visual.RigidBodyPose property), 393
attach() (in module psychopy.tools.gltools), 680
attachObjectARB() (in module psychopy.tools.gltools),

671
attachShader() (in module psychopy.tools.gltools), 671
attenuation (psychopy.visual.LightSource property),

253
AudioClip (class in psychopy.sound), 522
AudioDeviceInfo (class in psychopy.sound), 529
AudioDeviceStatus (class in psychopy.sound), 531
audioLatencyMode (psychopy.sound.Microphone prop-

erty), 518
audioLib (psychopy.sound.AudioDeviceInfo property),

530
audioLib (psychopy.sound.AudioDeviceStatus prop-

erty), 532
authorize() (psychopy.hardware.camera.Camera

method), 544
autoDraw (psychopy.visual.Aperture attribute), 178
autoDraw (psychopy.visual.BufferImageStim attribute),

192
autoDraw (psychopy.visual.circle.Circle attribute), 204
autoDraw (psychopy.visual.Form attribute), 221
autoDraw (psychopy.visual.GratingStim attribute), 232
autoDraw (psychopy.visual.ImageStim attribute), 244
autoDraw (psychopy.visual.line.Line attribute), 258
autoDraw (psychopy.visual.MovieStim attribute), 268
autoDraw (psychopy.visual.pie.Pie attribute), 296
autoDraw (psychopy.visual.polygon.Polygon attribute),

315
autoDraw (psychopy.visual.progress.Progress attribute),

325
autoDraw (psychopy.visual.RadialStim attribute), 334
autoDraw (psychopy.visual.rect.Rect attribute), 351
autoDraw (psychopy.visual.shape.ShapeStim attribute),

403
autoDraw (psychopy.visual.TextBox2 attribute), 435
autoDraw (psychopy.visual.TextStim attribute), 445
autoDraw (psychopy.visual.VlcMovieStim attribute), 455
autoLog (psychopy.visual.Aperture attribute), 178
autoLog (psychopy.visual.BufferImageStim attribute),

192
autoLog (psychopy.visual.circle.Circle attribute), 204
autoLog (psychopy.visual.Form attribute), 221
autoLog (psychopy.visual.GratingStim attribute), 232
autoLog (psychopy.visual.ImageStim attribute), 244
autoLog (psychopy.visual.line.Line attribute), 258
autoLog (psychopy.visual.MovieStim attribute), 268

Index 955

PsychoPy - Psychology software for Python, Release 2023.2.3

autoLog (psychopy.visual.pie.Pie attribute), 296
autoLog (psychopy.visual.polygon.Polygon attribute),

315
autoLog (psychopy.visual.progress.Progress attribute),

325
autoLog (psychopy.visual.RadialStim attribute), 335
autoLog (psychopy.visual.rect.Rect attribute), 351
autoLog (psychopy.visual.shape.ShapeStim attribute),

403
autoLog (psychopy.visual.TextBox2 attribute), 435
autoLog (psychopy.visual.TextStim attribute), 445
autoLog (psychopy.visual.VlcMovieStim attribute), 456
autoStart (psychopy.visual.MovieStim property), 268
autoStart (psychopy.visual.VlcMovieStim property),

456
average_angle_x (psy-

chopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 633

average_angle_x (psy-
chopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

average_angle_y (psy-
chopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 633

average_angle_y (psy-
chopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

average_gaze_x (psy-
chopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 608, 633, 655

average_gaze_x (psy-
chopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

average_gaze_y (psy-
chopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 608, 633, 655

average_gaze_y (psy-
chopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

average_pupil_measure1_type (psy-
chopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 633

average_pupil_measure1_type (psy-
chopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

average_pupil_measure_1 (psy-
chopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 633

average_pupil_measure_1 (psy-
chopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

average_velocity_xy (psy-
chopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 633

average_velocity_xy (psy-
chopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

B
backColor (psychopy.visual.BoxStim property), 182
backColor (psychopy.visual.BufferImageStim property),

192
backColor (psychopy.visual.circle.Circle property), 204
backColor (psychopy.visual.Form property), 221
backColor (psychopy.visual.GratingStim property), 232
backColor (psychopy.visual.ImageStim property), 244
backColor (psychopy.visual.line.Line property), 258
backColor (psychopy.visual.MovieStim property), 268
backColor (psychopy.visual.ObjMeshStim property),

282
backColor (psychopy.visual.pie.Pie property), 296
backColor (psychopy.visual.PlaneStim property), 305
backColor (psychopy.visual.polygon.Polygon property),

315
backColor (psychopy.visual.progress.Progress prop-

erty), 325
backColor (psychopy.visual.RadialStim property), 335
backColor (psychopy.visual.rect.Rect property), 351
backColor (psychopy.visual.shape.ShapeStim property),

403
backColor (psychopy.visual.SphereStim property), 417
backColor (psychopy.visual.TextBox2 property), 436
backColorSpace (psychopy.visual.BoxStim property),

183
backColorSpace (psychopy.visual.BufferImageStim

property), 192
backColorSpace (psychopy.visual.circle.Circle prop-

erty), 204
backColorSpace (psychopy.visual.Form property), 221
backColorSpace (psychopy.visual.GratingStim prop-

erty), 232
backColorSpace (psychopy.visual.ImageStim property),

244
backColorSpace (psychopy.visual.line.Line property),

258
backColorSpace (psychopy.visual.MovieStim property),

268
backColorSpace (psychopy.visual.ObjMeshStim prop-

erty), 282
backColorSpace (psychopy.visual.pie.Pie property),

296
backColorSpace (psychopy.visual.PlaneStim property),

305
backColorSpace (psychopy.visual.polygon.Polygon

property), 315
backColorSpace (psychopy.visual.progress.Progress

property), 325

Index 956

PsychoPy - Psychology software for Python, Release 2023.2.3

backColorSpace (psychopy.visual.RadialStim prop-
erty), 335

backColorSpace (psychopy.visual.rect.Rect property),
351

backColorSpace (psychopy.visual.shape.ShapeStim
property), 403

backColorSpace (psychopy.visual.SphereStim prop-
erty), 417

backColorSpace (psychopy.visual.TextBox2 property),
436

backgroundColor (psychopy.visual.BoxStim property),
183

backgroundColor (psychopy.visual.BufferImageStim
property), 192

backgroundColor (psychopy.visual.circle.Circle prop-
erty), 204

backgroundColor (psychopy.visual.Form property), 221
backgroundColor (psychopy.visual.GratingStim prop-

erty), 232
backgroundColor (psychopy.visual.ImageStim prop-

erty), 244
backgroundColor (psychopy.visual.line.Line property),

258
backgroundColor (psychopy.visual.MovieStim prop-

erty), 268
backgroundColor (psychopy.visual.ObjMeshStim prop-

erty), 282
backgroundColor (psychopy.visual.pie.Pie property),

296
backgroundColor (psychopy.visual.PlaneStim prop-

erty), 305
backgroundColor (psychopy.visual.polygon.Polygon

property), 315
backgroundColor (psychopy.visual.progress.Progress

property), 325
backgroundColor (psychopy.visual.RadialStim prop-

erty), 335
backgroundColor (psychopy.visual.rect.Rect property),

351
backgroundColor (psychopy.visual.shape.ShapeStim

property), 403
backgroundColor (psychopy.visual.SphereStim prop-

erty), 417
backgroundColor (psychopy.visual.TextBox2 property),

436
backgroundFit (psychopy.visual.nnlvs.VisualSystemHD

attribute), 469
backgroundFit (psychopy.visual.rift.Rift attribute), 364
backgroundFit (psychopy.visual.Window attribute), 489
backgroundImage (psy-

chopy.visual.nnlvs.VisualSystemHD attribute),
469

backgroundImage (psychopy.visual.rift.Rift attribute),
364

backgroundImage (psychopy.visual.Window attribute),
489

backRGB (psychopy.visual.BoxStim property), 183
backRGB (psychopy.visual.BufferImageStim property),

192
backRGB (psychopy.visual.circle.Circle property), 204
backRGB (psychopy.visual.Form property), 221
backRGB (psychopy.visual.GratingStim property), 232
backRGB (psychopy.visual.ImageStim property), 244
backRGB (psychopy.visual.line.Line property), 258
backRGB (psychopy.visual.MovieStim property), 268
backRGB (psychopy.visual.ObjMeshStim property), 282
backRGB (psychopy.visual.pie.Pie property), 296
backRGB (psychopy.visual.PlaneStim property), 305
backRGB (psychopy.visual.polygon.Polygon property),

315
backRGB (psychopy.visual.progress.Progress property),

325
backRGB (psychopy.visual.RadialStim property), 335
backRGB (psychopy.visual.rect.Rect property), 351
backRGB (psychopy.visual.shape.ShapeStim property),

403
backRGB (psychopy.visual.SphereStim property), 417
backRGB (psychopy.visual.TextBox2 property), 436
bandpass() (in module psychopy.voicekey), 885
bank() (psychopy.sound.Microphone method), 518
beep() (psychopy.hardware.crs.bits.BitsSharp method),

563
begin() (psychopy.visual.BlinnPhongMaterial method),

290
beginQuery() (in module psychopy.tools.gltools), 677
beta (psychopy.data.QuestHandler property), 826
bindTexture() (in module psychopy.tools.gltools), 686
bindVBO() (in module psychopy.tools.gltools), 693
BinocularEyeSampleEvent (class in psy-

chopy.iohub.devices.eyetracker), 606, 617,
625, 629, 646, 654

bisector() (in module psychopy.tools.mathtools), 723
BitsPlusPlus (class in psychopy.hardware.crs.bits),

550
BitsSharp (class in psychopy.hardware.crs.bits), 557
blendmode (psychopy.visual.GratingStim attribute), 233
blendMode (psychopy.visual.nnlvs.VisualSystemHD at-

tribute), 469
blendmode (psychopy.visual.RadialStim attribute), 335
blendMode (psychopy.visual.rift.Rift attribute), 364
blendMode (psychopy.visual.Window attribute), 489
BlinkEndEvent (class in psy-

chopy.iohub.devices.eyetracker), 636
BlinkStartEvent (class in psy-

chopy.iohub.devices.eyetracker), 636
BlinnPhongMaterial (class in psychopy.visual), 289
blitFBO() (in module psychopy.tools.gltools), 681
bold (psychopy.visual.TextStim attribute), 445

Index 957

PsychoPy - Psychology software for Python, Release 2023.2.3

bootStraps() (in module psychopy.data), 841
borderColor (psychopy.visual.BoxStim property), 183
borderColor (psychopy.visual.BufferImageStim prop-

erty), 193
borderColor (psychopy.visual.Form property), 221
borderColor (psychopy.visual.GratingStim property),

233
borderColor (psychopy.visual.ImageStim property), 244
borderColor (psychopy.visual.MovieStim property), 268
borderColor (psychopy.visual.ObjMeshStim property),

282
borderColor (psychopy.visual.PlaneStim property), 305
borderColor (psychopy.visual.RadialStim property),

335
borderColor (psychopy.visual.Slider property), 412
borderColor (psychopy.visual.SphereStim property),

417
borderColor (psychopy.visual.TextBox2 property), 436
borderColorSpace (psychopy.visual.BoxStim property),

183
borderColorSpace (psychopy.visual.BufferImageStim

property), 193
borderColorSpace (psychopy.visual.circle.Circle prop-

erty), 204
borderColorSpace (psychopy.visual.Form property),

221
borderColorSpace (psychopy.visual.GratingStim prop-

erty), 233
borderColorSpace (psychopy.visual.ImageStim prop-

erty), 244
borderColorSpace (psychopy.visual.line.Line prop-

erty), 258
borderColorSpace (psychopy.visual.MovieStim prop-

erty), 268
borderColorSpace (psychopy.visual.ObjMeshStim

property), 282
borderColorSpace (psychopy.visual.pie.Pie property),

297
borderColorSpace (psychopy.visual.PlaneStim prop-

erty), 305
borderColorSpace (psychopy.visual.polygon.Polygon

property), 315
borderColorSpace (psychopy.visual.progress.Progress

property), 325
borderColorSpace (psychopy.visual.RadialStim prop-

erty), 335
borderColorSpace (psychopy.visual.rect.Rect prop-

erty), 351
borderColorSpace (psychopy.visual.shape.ShapeStim

property), 403
borderColorSpace (psychopy.visual.SphereStim prop-

erty), 417
borderColorSpace (psychopy.visual.TextBox2 prop-

erty), 436

borderRGB (psychopy.visual.BoxStim property), 183
borderRGB (psychopy.visual.BufferImageStim property),

193
borderRGB (psychopy.visual.circle.Circle property), 204
borderRGB (psychopy.visual.Form property), 221
borderRGB (psychopy.visual.GratingStim property), 233
borderRGB (psychopy.visual.ImageStim property), 245
borderRGB (psychopy.visual.line.Line property), 258
borderRGB (psychopy.visual.MovieStim property), 268
borderRGB (psychopy.visual.ObjMeshStim property),

283
borderRGB (psychopy.visual.pie.Pie property), 297
borderRGB (psychopy.visual.PlaneStim property), 305
borderRGB (psychopy.visual.polygon.Polygon property),

315
borderRGB (psychopy.visual.progress.Progress prop-

erty), 325
borderRGB (psychopy.visual.RadialStim property), 335
borderRGB (psychopy.visual.rect.Rect property), 351
borderRGB (psychopy.visual.shape.ShapeStim property),

403
borderRGB (psychopy.visual.SphereStim property), 417
borderRGB (psychopy.visual.TextBox2 property), 436
borderWidth (psychopy.visual.BoxStim attribute), 183
borderWidth (psychopy.visual.BufferImageStim at-

tribute), 193
borderWidth (psychopy.visual.Form attribute), 221
borderWidth (psychopy.visual.GratingStim attribute),

233
borderWidth (psychopy.visual.ImageStim attribute), 245
borderWidth (psychopy.visual.MovieStim attribute), 268
borderWidth (psychopy.visual.ObjMeshStim attribute),

283
borderWidth (psychopy.visual.PlaneStim attribute), 305
borderWidth (psychopy.visual.RadialStim attribute),

335
borderWidth (psychopy.visual.SphereStim attribute),

418
borderWidth (psychopy.visual.TextBox2 attribute), 436
BoundingBox (class in psychopy.visual), 181
boundingBox (psychopy.visual.TextStim property), 446
bounds (psychopy.visual.RigidBodyPose property), 393
BoxStim (class in psychopy.visual), 181
BufferImageStim (class in psychopy.visual), 190
bufferSize (psychopy.sound.AudioDeviceStatus prop-

erty), 532
butter2d_bp() (in module psychopy.visual.filters), 845
butter2d_hp() (in module psychopy.visual.filters), 845
butter2d_lp() (in module psychopy.visual.filters), 845
butter2d_lp_elliptic() (in module psy-

chopy.visual.filters), 846
bytesOut (psychopy.tools.movietools.MovieFileWriter

property), 765

Index 958

PsychoPy - Psychology software for Python, Release 2023.2.3

C
cacheMessageEvent() (psy-

chopy.iohub.client.ioHubConnection method),
596

calcEyePoses() (psychopy.visual.rift.Rift method), 364
calculateNextIntensity() (psy-

chopy.data.PsiHandler method), 820
calculateNextIntensity() (psy-

chopy.data.QuestHandler method), 826
calculateNextIntensity() (psy-

chopy.data.QuestPlusHandler method), 831
calculateNextIntensity() (psy-

chopy.data.StairHandler method), 816
calculateVertexNormals() (in module psy-

chopy.tools.gltools), 711
calibrate() (psychopy.hardware.qmix.Pump method),

591
calibrateZero() (psy-

chopy.hardware.crs.colorcal.ColorCAL
method), 583

callOnFlip() (psychopy.visual.nnlvs.VisualSystemHD
method), 469

callOnFlip() (psychopy.visual.rift.Rift method), 365
callOnFlip() (psychopy.visual.Window method), 489
Camera (class in psychopy.hardware.camera), 542
cameraAPI (psychopy.hardware.camera.CameraInfo

property), 548
CameraInfo (class in psychopy.hardware.camera), 547
cameraLib (psychopy.hardware.camera.CameraInfo

property), 548
captureStartTime (psy-

chopy.sound.AudioDeviceStatus property),
532

cart2pol() (in module psychopy.tools.coordinatetools),
664

cart2sph() (in module psychopy.tools.coordinatetools),
664

categorical (psychopy.visual.Slider property), 412
changeProjection() (psy-

chopy.visual.windowwarp.Warper method),
505

channels (psychopy.sound.AudioClip property), 523
char (psychopy.iohub.client.keyboard.KeyboardPress

property), 603
char (psychopy.iohub.client.keyboard.KeyboardRelease

property), 604
checkConfig() (psychopy.hardware.crs.bits.BitsSharp

method), 563
cielab2rgb() (in module psy-

chopy.tools.colorspacetools), 658
cielch2rgb() (in module psy-

chopy.tools.colorspacetools), 659
Circle (class in psychopy.visual.circle), 201
clear() (psychopy.sound.Microphone method), 518

clear() (psychopy.visual.BoundingBox method), 181
clear() (psychopy.visual.TextBox2 method), 436
clearAutoDraw() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
469

clearAutoDraw() (psychopy.visual.rift.Rift method),
365

clearAutoDraw() (psychopy.visual.Window method),
489

clearBuffer() (psychopy.visual.nnlvs.VisualSystemHD
method), 470

clearBuffer() (psychopy.visual.rift.Rift method), 365
clearBuffer() (psychopy.visual.Window method), 490
clearEvents() (in module psychopy.event), 843
clearEvents() (psychopy.hardware.keyboard.Keyboard

method), 535
clearEvents() (psychopy.iohub.client.ioHubConnection

method), 596
clearEvents() (psychopy.iohub.devices.eyetracker.hw.mouse.EyeTracker

method), 651
clearEvents() (psychopy.iohub.devices.eyetracker.hw.tobii.EyeTracker

method), 643
clearFaultState() (psychopy.hardware.qmix.Pump

method), 591
clearShouldRecenterFlag() (psy-

chopy.visual.rift.Rift method), 366
clearTextures() (psychopy.visual.BufferImageStim

method), 193
clearTextures() (psychopy.visual.GratingStim

method), 233
clearTextures() (psychopy.visual.ImageStim method),

245
clearTextures() (psychopy.visual.RadialStim

method), 335
clickReset() (psychopy.event.Mouse method), 842
Clock (class in psychopy.clock), 166
Clock (class in psychopy.core), 163
clock() (psychopy.hardware.crs.bits.BitsSharp method),

563
close() (psychopy.data.ExperimentHandler method),

795
close() (psychopy.hardware.brainproducts.RemoteControlServer

method), 538
close() (psychopy.hardware.camera.Camera method),

544
close() (psychopy.session.Session method), 173
close() (psychopy.sound.Microphone method), 518
close() (psychopy.tools.movietools.MovieFileWriter

method), 765
close() (psychopy.visual.nnlvs.VisualSystemHD

method), 470
close() (psychopy.visual.rift.Rift method), 366
close() (psychopy.visual.Window method), 490
closeAllMovieWriters() (in module psy-

Index 959

PsychoPy - Psychology software for Python, Release 2023.2.3

chopy.tools.movietools), 767
closeShape (psychopy.visual.circle.Circle attribute),

204
closeShape (psychopy.visual.line.Line attribute), 258
closeShape (psychopy.visual.pie.Pie attribute), 297
closeShape (psychopy.visual.polygon.Polygon at-

tribute), 315
closeShape (psychopy.visual.progress.Progress at-

tribute), 326
closeShape (psychopy.visual.rect.Rect attribute), 351
closeShape (psychopy.visual.shape.ShapeStim at-

tribute), 404
cm (psychopy.layout.Position property), 856
cm (psychopy.layout.Size property), 857
cm (psychopy.layout.Vector property), 854
cm (psychopy.layout.Vertices property), 859
cm2deg() (in module psychopy.tools.monitorunittools),

761
cm2pix() (in module psychopy.tools.monitorunittools),

761
codec (psychopy.tools.movietools.MovieFileWriter prop-

erty), 765
codecFormat (psychopy.hardware.camera.CameraInfo

property), 548
coherence (psychopy.visual.DotStim attribute), 213
Color (class in psychopy.colors), 791
color (psychopy.visual.BoxStim property), 183
color (psychopy.visual.BufferImageStim property), 193
color (psychopy.visual.circle.Circle attribute), 204
color (psychopy.visual.Form property), 221
color (psychopy.visual.GratingStim property), 233
color (psychopy.visual.ImageStim property), 245
color (psychopy.visual.line.Line property), 259
color (psychopy.visual.MovieStim property), 268
color (psychopy.visual.nnlvs.VisualSystemHD property),

470
color (psychopy.visual.ObjMeshStim property), 283
color (psychopy.visual.pie.Pie attribute), 297
color (psychopy.visual.PlaneStim property), 305
color (psychopy.visual.polygon.Polygon attribute), 315
color (psychopy.visual.progress.Progress attribute), 326
color (psychopy.visual.RadialStim property), 335
color (psychopy.visual.rect.Rect attribute), 351
color (psychopy.visual.rift.Rift property), 366
color (psychopy.visual.shape.ShapeStim attribute), 404
color (psychopy.visual.SphereStim property), 418
color (psychopy.visual.TextBox2 property), 436
color (psychopy.visual.TextStim property), 446
color (psychopy.visual.Window property), 490
ColorCAL (class in psychopy.hardware.crs.colorcal), 582
colorSpace (psychopy.visual.BlinnPhongMaterial prop-

erty), 290
colorSpace (psychopy.visual.BoxStim property), 183

colorSpace (psychopy.visual.BufferImageStim prop-
erty), 193

colorSpace (psychopy.visual.circle.Circle property),
204

colorSpace (psychopy.visual.Form property), 221
colorSpace (psychopy.visual.GratingStim property),

233
colorSpace (psychopy.visual.ImageStim property), 245
colorSpace (psychopy.visual.LightSource property),

253
colorSpace (psychopy.visual.line.Line property), 259
colorSpace (psychopy.visual.MovieStim property), 268
colorSpace (psychopy.visual.nnlvs.VisualSystemHD

property), 470
colorSpace (psychopy.visual.ObjMeshStim property),

283
colorSpace (psychopy.visual.pie.Pie property), 297
colorSpace (psychopy.visual.PlaneStim property), 305
colorSpace (psychopy.visual.polygon.Polygon prop-

erty), 315
colorSpace (psychopy.visual.progress.Progress prop-

erty), 326
colorSpace (psychopy.visual.RadialStim property), 335
colorSpace (psychopy.visual.rect.Rect property), 351
colorSpace (psychopy.visual.rift.Rift property), 366
colorSpace (psychopy.visual.shape.ShapeStim prop-

erty), 404
colorSpace (psychopy.visual.SphereStim property), 418
colorSpace (psychopy.visual.TextBox2 property), 436
colorSpace (psychopy.visual.TextStim property), 446
colorSpace (psychopy.visual.Window property), 490
compileShader() (in module psychopy.tools.gltools),

668
compileShaderObjectARB() (in module psy-

chopy.tools.gltools), 669
complete (psychopy.visual.Form property), 222
complete() (psychopy.clock.StaticPeriod method), 169
complete() (psychopy.core.StaticPeriod method), 165
compress() (psychopy.microphone.AdvAudioCapture

method), 863
computeBBoxCorners() (in module psy-

chopy.tools.mathtools), 753
computeChecksum() (in module psychopy.plugins), 880
computeFrustum() (in module psy-

chopy.tools.viewtools), 779
computeFrustumFOV() (in module psy-

chopy.tools.viewtools), 780
concatenate() (in module psychopy.tools.mathtools),

747
confidence_interval (psy-

chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 618

confidence_interval (psy-
chopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

Index 960

PsychoPy - Psychology software for Python, Release 2023.2.3

attribute), 617
confInterval() (psychopy.data.QuestHandler

method), 826
connectedControllers (psychopy.visual.rift.Rift prop-

erty), 366
contains() (psychopy.visual.Aperture method), 178
contains() (psychopy.visual.BufferImageStim method),

193
contains() (psychopy.visual.circle.Circle method), 205
contains() (psychopy.visual.Form method), 222
contains() (psychopy.visual.GratingStim method), 233
contains() (psychopy.visual.ImageStim method), 245
contains() (psychopy.visual.line.Line method), 259
contains() (psychopy.visual.MovieStim method), 269
contains() (psychopy.visual.pie.Pie method), 297
contains() (psychopy.visual.polygon.Polygon method),

316
contains() (psychopy.visual.progress.Progress

method), 326
contains() (psychopy.visual.RadialStim method), 336
contains() (psychopy.visual.rect.Rect method), 352
contains() (psychopy.visual.shape.ShapeStim method),

404
contains() (psychopy.visual.TextBox2 method), 437
contains() (psychopy.visual.TextStim method), 446
contains() (psychopy.visual.VlcMovieStim method),

456
contentScaleFactor (psy-

chopy.visual.nnlvs.VisualSystemHD property),
471

contentScaleFactor (psychopy.visual.rift.Rift prop-
erty), 367

contentScaleFactor (psychopy.visual.Window prop-
erty), 491

contrast (psychopy.colors.Color property), 791
contrast (psychopy.visual.BlinnPhongMaterial prop-

erty), 290
contrast (psychopy.visual.BoxStim property), 183
contrast (psychopy.visual.BufferImageStim property),

194
contrast (psychopy.visual.circle.Circle property), 205
contrast (psychopy.visual.Form property), 222
contrast (psychopy.visual.GratingStim property), 234
contrast (psychopy.visual.ImageStim property), 246
contrast (psychopy.visual.LightSource property), 253
contrast (psychopy.visual.line.Line property), 259
contrast (psychopy.visual.MovieStim property), 269
contrast (psychopy.visual.ObjMeshStim property), 283
contrast (psychopy.visual.pie.Pie property), 298
contrast (psychopy.visual.PlaneStim property), 306
contrast (psychopy.visual.polygon.Polygon property),

316
contrast (psychopy.visual.progress.Progress property),

326

contrast (psychopy.visual.RadialStim property), 336
contrast (psychopy.visual.rect.Rect property), 352
contrast (psychopy.visual.shape.ShapeStim property),

404
contrast (psychopy.visual.Slider attribute), 412
contrast (psychopy.visual.SphereStim property), 418
contrast (psychopy.visual.TextBox2 property), 437
contrast (psychopy.visual.TextStim property), 446
conv2d() (in module psychopy.visual.filters), 846
convergeOffset (psy-

chopy.visual.nnlvs.VisualSystemHD property),
471

convergeOffset (psychopy.visual.rift.Rift property),
367

convergeOffset (psychopy.visual.Window property),
491

convertToPix() (in module psy-
chopy.tools.monitorunittools), 761

convertToWAV() (psychopy.sound.AudioClip method),
523

coordToRay() (psychopy.visual.nnlvs.VisualSystemHD
method), 471

coordToRay() (psychopy.visual.rift.Rift method), 367
coordToRay() (psychopy.visual.Window method), 491
copy() (psychopy.colors.Color method), 791
copy() (psychopy.layout.Position method), 856
copy() (psychopy.layout.Size method), 857
copy() (psychopy.layout.Vector method), 855
copy() (psychopy.sound.AudioClip method), 524
copy() (psychopy.visual.RigidBodyPose method), 394
copyCalib() (psychopy.monitors.Monitor method), 868
CountdownTimer (class in psychopy.clock), 167
CountdownTimer (class in psychopy.core), 163
CPU, 31
cpuLoad (psychopy.sound.AudioDeviceStatus property),

532
createBoundingBox() (psychopy.visual.rift.Rift static

method), 368
createBox() (in module psychopy.tools.gltools), 709
createCubeMap() (in module psychopy.tools.gltools),

686
createFBO() (in module psychopy.tools.gltools), 678
createFromPTBDesc() (psy-

chopy.sound.AudioDeviceInfo static method),
530

createFromPTBDesc() (psy-
chopy.sound.AudioDeviceStatus static method),
532

createHapticsBuffer() (psychopy.visual.rift.Rift
static method), 369

createLight() (in module psychopy.tools.gltools), 700
createMaterial() (in module psychopy.tools.gltools),

698
createMeshGrid() (in module psychopy.tools.gltools),

Index 961

PsychoPy - Psychology software for Python, Release 2023.2.3

708
createMeshGridFromArrays() (in module psy-

chopy.tools.gltools), 707
createPlane() (in module psychopy.tools.gltools), 706
createPose() (psychopy.visual.rift.Rift static method),

369
createProgram() (in module psychopy.tools.gltools),

666
createProgramObjectARB() (in module psy-

chopy.tools.gltools), 667
createQueryObject() (in module psy-

chopy.tools.gltools), 676
createRenderbuffer() (in module psy-

chopy.tools.gltools), 682
createTexImage2D() (in module psy-

chopy.tools.gltools), 683
createTexImage2dFromFile() (in module psy-

chopy.tools.gltools), 685
createTexImage2DMultisample() (in module psy-

chopy.tools.gltools), 685
createTrialHandlerRecordTable() (psy-

chopy.iohub.client.ioHubConnection method),
597

createUVSphere() (in module psychopy.tools.gltools),
705

createVAO() (in module psychopy.tools.gltools), 688
createVBO() (in module psychopy.tools.gltools), 692
critical() (in module psychopy.logging), 860
cross() (in module psychopy.tools.mathtools), 719
CRT, 31
csv, 31
cullFace (psychopy.visual.nnlvs.VisualSystemHD prop-

erty), 472
cullFace (psychopy.visual.rift.Rift property), 370
cullFace (psychopy.visual.Window property), 492
cullFaceMode (psychopy.visual.nnlvs.VisualSystemHD

property), 472
cullFaceMode (psychopy.visual.rift.Rift property), 370
cullFaceMode (psychopy.visual.Window property), 492
currentEditable (psy-

chopy.visual.nnlvs.VisualSystemHD property),
472

currentEditable (psychopy.visual.rift.Rift property),
370

currentEditable (psychopy.visual.Window property),
492

currentLoop (psychopy.data.ExperimentHandler prop-
erty), 796

currentStreamTime (psy-
chopy.sound.AudioDeviceStatus property),
532

cursorToRay() (in module psychopy.tools.viewtools),
787

CustomMouse (class in psychopy.visual), 211

D
data (psychopy.data.TrialHandler2 property), 805
data() (in module psychopy.logging), 860
dcReset() (psychopy.hardware.brainproducts.RemoteControlServer

method), 538
debug() (in module psychopy.logging), 861
decreaseVolume() (psychopy.visual.VlcMovieStim

method), 456
defaultSampleRate (psychopy.sound.AudioDeviceInfo

property), 530
deg (psychopy.layout.Position property), 856
deg (psychopy.layout.Size property), 857
deg (psychopy.layout.Vector property), 855
deg (psychopy.layout.Vertices property), 859
deg2cm() (in module psychopy.tools.monitorunittools),

761
deg2pix() (in module psychopy.tools.monitorunittools),

761
degFlat (psychopy.layout.Position property), 856
degFlat (psychopy.layout.Size property), 857
degFlat (psychopy.layout.Vector property), 855
degFlat (psychopy.layout.Vertices property), 859
degFlatPos (psychopy.layout.Position property), 856
degFlatPos (psychopy.layout.Size property), 857
degFlatPos (psychopy.layout.Vector property), 855
degrees() (in module psychopy.tools.unittools), 776
delay (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent

attribute), 618, 626
delay (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 617
delCalib() (psychopy.monitors.Monitor method), 868
deleteCaretLeft() (psychopy.visual.TextBox2

method), 437
deleteCaretRight() (psychopy.visual.TextBox2

method), 437
deleteFBO() (in module psychopy.tools.gltools), 680
deleteObject() (in module psychopy.tools.gltools), 671
deleteObjectARB() (in module psychopy.tools.gltools),

671
deleteRenderbuffer() (in module psy-

chopy.tools.gltools), 683
deleteTexture() (in module psychopy.tools.gltools),

686
deleteVAO() (in module psychopy.tools.gltools), 690
deleteVBO() (in module psychopy.tools.gltools), 695
delta (psychopy.data.QuestHandler property), 826
depth (psychopy.visual.BufferImageStim attribute), 194
depth (psychopy.visual.circle.Circle attribute), 206
depth (psychopy.visual.Form attribute), 223
depth (psychopy.visual.GratingStim attribute), 234
depth (psychopy.visual.ImageStim attribute), 246
depth (psychopy.visual.line.Line attribute), 260
depth (psychopy.visual.MovieStim attribute), 269
depth (psychopy.visual.pie.Pie attribute), 298

Index 962

PsychoPy - Psychology software for Python, Release 2023.2.3

depth (psychopy.visual.polygon.Polygon attribute), 316
depth (psychopy.visual.progress.Progress attribute), 327
depth (psychopy.visual.RadialStim attribute), 336
depth (psychopy.visual.rect.Rect attribute), 352
depth (psychopy.visual.shape.ShapeStim attribute), 405
depth (psychopy.visual.TextBox2 attribute), 437
depth (psychopy.visual.TextStim attribute), 447
depth (psychopy.visual.VlcMovieStim attribute), 457
depthFunc (psychopy.visual.nnlvs.VisualSystemHD

property), 472
depthFunc (psychopy.visual.rift.Rift property), 370
depthFunc (psychopy.visual.Window property), 492
depthMask (psychopy.visual.nnlvs.VisualSystemHD

property), 472
depthMask (psychopy.visual.rift.Rift property), 370
depthMask (psychopy.visual.Window property), 492
depthTest (psychopy.visual.nnlvs.VisualSystemHD

property), 473
depthTest (psychopy.visual.rift.Rift property), 370
depthTest (psychopy.visual.Window property), 493
description() (psychopy.hardware.camera.CameraInfo

method), 548
detachObjectARB() (in module psychopy.tools.gltools),

672
detachShader() (in module psychopy.tools.gltools), 672
detect() (psychopy.voicekey.OnsetVoiceKey method),

883
device (psychopy.hardware.camera.Camera property),

544
device (psychopy.iohub.client.keyboard.KeyboardPress

property), 603
device (psychopy.iohub.client.keyboard.KeyboardRelease

property), 605
device_time (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent

attribute), 618, 625
device_time (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 616
deviceIndex (psychopy.sound.AudioDeviceInfo prop-

erty), 530
deviceName (psychopy.sound.AudioDeviceInfo prop-

erty), 530
diffuseColor (psychopy.visual.BlinnPhongMaterial

property), 291
diffuseColor (psychopy.visual.LightSource property),

253
diffuseRGB (psychopy.visual.BlinnPhongMaterial prop-

erty), 291
diffuseRGB (psychopy.visual.LightSource property),

253
diffuseTexture (psychopy.visual.BlinnPhongMaterial

property), 291
dimensions (psychopy.layout.Position property), 856
dimensions (psychopy.layout.Size property), 857
dimensions (psychopy.layout.Vector property), 855

diopters (psychopy.visual.nnlvs.VisualSystemHD prop-
erty), 473

dir (psychopy.visual.DotStim attribute), 213
direction (psychopy.layout.Position property), 856
direction (psychopy.layout.Size property), 857
direction (psychopy.layout.Vector property), 855
direction (psychopy.visual.progress.Progress at-

tribute), 327
disable() (psychopy.visual.Aperture method), 179
disableVertexAttribArray() (in module psy-

chopy.tools.gltools), 698
dispatchAllWindowEvents() (psy-

chopy.visual.nnlvs.VisualSystemHD class
method), 473

dispatchAllWindowEvents() (psy-
chopy.visual.rift.Rift class method), 370

dispense() (psychopy.hardware.qmix.Pump method),
591

displayRefreshRate (psychopy.visual.rift.Rift prop-
erty), 370

displayResolution (psychopy.visual.rift.Rift prop-
erty), 370

distance() (in module psychopy.tools.mathtools), 722
distanceTo() (psychopy.visual.RigidBodyPose

method), 394
distCoef (psychopy.visual.nnlvs.VisualSystemHD prop-

erty), 473
dkl (psychopy.colors.Color property), 791
dkl2rgb() (in module psychopy.tools.colorspacetools),

660
dkla (psychopy.colors.Color property), 791
dklaCart (psychopy.colors.Color property), 791
dklCart (psychopy.colors.Color property), 791
dklCart2rgb() (in module psy-

chopy.tools.colorspacetools), 660
Dlg (class in psychopy.gui), 850
DlgFromDict (class in psychopy.gui), 849
doDragging() (psychopy.visual.BufferImageStim

method), 194
doDragging() (psychopy.visual.circle.Circle method),

206
doDragging() (psychopy.visual.GratingStim method),

234
doDragging() (psychopy.visual.ImageStim method), 246
doDragging() (psychopy.visual.line.Line method), 260
doDragging() (psychopy.visual.MovieStim method),

269
doDragging() (psychopy.visual.pie.Pie method), 298
doDragging() (psychopy.visual.polygon.Polygon

method), 316
doDragging() (psychopy.visual.progress.Progress

method), 327
doDragging() (psychopy.visual.RadialStim method),

337

Index 963

PsychoPy - Psychology software for Python, Release 2023.2.3

doDragging() (psychopy.visual.rect.Rect method), 353
doDragging() (psychopy.visual.shape.ShapeStim

method), 405
doDragging() (psychopy.visual.TextBox2 method), 437
doDragging() (psychopy.visual.TextStim method), 447
dot() (in module psychopy.tools.mathtools), 718
dotLife (psychopy.visual.DotStim attribute), 212
dotSize (psychopy.visual.DotStim attribute), 212
DotStim (class in psychopy.visual), 212
draggable (psychopy.visual.BufferImageStim attribute),

194
draggable (psychopy.visual.circle.Circle attribute), 206
draggable (psychopy.visual.GratingStim attribute), 234
draggable (psychopy.visual.ImageStim attribute), 246
draggable (psychopy.visual.line.Line attribute), 260
draggable (psychopy.visual.MovieStim attribute), 270
draggable (psychopy.visual.pie.Pie attribute), 298
draggable (psychopy.visual.polygon.Polygon attribute),

317
draggable (psychopy.visual.progress.Progress at-

tribute), 327
draggable (psychopy.visual.RadialStim attribute), 337
draggable (psychopy.visual.rect.Rect attribute), 353
draggable (psychopy.visual.shape.ShapeStim attribute),

405
draggable (psychopy.visual.TextBox2 attribute), 438
draggable (psychopy.visual.TextStim attribute), 447
draw() (psychopy.visual.BoxStim method), 184
draw() (psychopy.visual.BufferImageStim method), 194
draw() (psychopy.visual.circle.Circle method), 206
draw() (psychopy.visual.Form method), 223
draw() (psychopy.visual.GratingStim method), 234
draw() (psychopy.visual.ImageStim method), 246
draw() (psychopy.visual.line.Line method), 260
draw() (psychopy.visual.MovieStim method), 270
draw() (psychopy.visual.ObjMeshStim method), 283
draw() (psychopy.visual.pie.Pie method), 298
draw() (psychopy.visual.PlaneStim method), 306
draw() (psychopy.visual.polygon.Polygon method), 317
draw() (psychopy.visual.progress.Progress method), 327
draw() (psychopy.visual.RadialStim method), 337
draw() (psychopy.visual.rect.Rect method), 353
draw() (psychopy.visual.SceneSkybox method), 398
draw() (psychopy.visual.shape.ShapeStim method), 405
draw() (psychopy.visual.Slider method), 412
draw() (psychopy.visual.SphereStim method), 418
draw() (psychopy.visual.TextBox method), 428
draw() (psychopy.visual.TextBox2 method), 438
draw() (psychopy.visual.TextStim method), 447
draw() (psychopy.visual.VlcMovieStim method), 457
draw3d (psychopy.visual.nnlvs.VisualSystemHD prop-

erty), 473
draw3d (psychopy.visual.rift.Rift property), 370
draw3d (psychopy.visual.Window property), 493

drawVAO() (in module psychopy.tools.gltools), 690
driverFor (psychopy.hardware.crs.bits.BitsSharp

attribute), 563
driverFor (psychopy.hardware.crs.colorcal.ColorCAL

attribute), 583
duration (psychopy.iohub.client.keyboard.KeyboardRelease

property), 604
duration (psychopy.iohub.devices.eyetracker.BlinkEndEvent

attribute), 636
duration (psychopy.iohub.devices.eyetracker.FixationEndEvent

attribute), 608, 632, 655
duration (psychopy.iohub.devices.eyetracker.SaccadeEndEvent

attribute), 634
duration (psychopy.sound.AudioClip property), 524
duration (psychopy.tools.movietools.MovieFileWriter

property), 765
duration (psychopy.visual.MovieStim property), 270
duration (psychopy.visual.VlcMovieStim property), 457

E
edges (psychopy.visual.circle.Circle attribute), 206
edges (psychopy.visual.polygon.Polygon attribute), 317
editable (psychopy.visual.TextBox2 property), 438
elapsedOutSamples (psy-

chopy.sound.AudioDeviceStatus property),
533

element (psychopy.visual.DotStim attribute), 213
ElementArrayStim (class in psychopy.visual), 215
embedShaderSourceDefs() (in module psy-

chopy.tools.gltools), 669
emissionColor (psychopy.visual.BlinnPhongMaterial

property), 291
emissionRGB (psychopy.visual.BlinnPhongMaterial

property), 291
empty() (psychopy.hardware.qmix.Pump method), 591
enable() (psychopy.visual.Aperture method), 179
enabled (psychopy.visual.Aperture attribute), 179
enableEventReporting() (psy-

chopy.iohub.devices.eyetracker.hw.mouse.EyeTracker
method), 652

enableEventReporting() (psy-
chopy.iohub.devices.eyetracker.hw.tobii.EyeTracker
method), 643

enableVertexAttribArray() (in module psy-
chopy.tools.gltools), 697

encoderLib (psychopy.tools.movietools.MovieFileWriter
property), 765

encoderOpts (psychopy.tools.movietools.MovieFileWriter
property), 765

end (psychopy.visual.line.Line attribute), 260
end (psychopy.visual.pie.Pie attribute), 298
end() (psychopy.visual.BlinnPhongMaterial method),

291

Index 964

PsychoPy - Psychology software for Python, Release 2023.2.3

end_angle_x (psychopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 632

end_angle_x (psychopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

end_angle_y (psychopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 632

end_angle_y (psychopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

end_gaze_x (psychopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 632, 655

end_gaze_x (psychopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

end_gaze_y (psychopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 632, 655

end_gaze_y (psychopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

end_ppd_x (psychopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 633

end_ppd_x (psychopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

end_ppd_y (psychopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 633

end_ppd_y (psychopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

end_pupil_measure1_type (psy-
chopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 633

end_pupil_measure1_type (psy-
chopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

end_pupil_measure_1 (psy-
chopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 632

end_pupil_measure_1 (psy-
chopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

end_velocity_xy (psy-
chopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 633

end_velocity_xy (psy-
chopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

endOfFlip() (psychopy.visual.windowframepack.ProjectorFramePacker
method), 504

endQuery() (in module psychopy.tools.gltools), 677
enforceWASAPI (psychopy.sound.Microphone attribute),

518
EnvelopeGrating (class in psychopy.visual), 398
epsilon (psychopy.data.QuestHandler property), 826
error() (in module psychopy.logging), 861
estimatedStopTime (psy-

chopy.sound.AudioDeviceStatus property),
533

estimateLambda() (psychopy.data.PsiHandler

method), 821
estimateThreshold() (psychopy.data.PsiHandler

method), 821
eval() (psychopy.data.FitCumNormal method), 839
eval() (psychopy.data.FitLogistic method), 838
eval() (psychopy.data.FitNakaRushton method), 839
eval() (psychopy.data.FitWeibull method), 838
exp() (in module psychopy.logging), 861
ExperimentHandler (class in psychopy.data), 793
expName (psychopy.hardware.brainproducts.RemoteControlServer

property), 538
extent (psychopy.visual.Slider property), 413
extents (psychopy.visual.BoundingBox property), 181
eye (psychopy.iohub.devices.eyetracker.BlinkEndEvent

attribute), 636
eye (psychopy.iohub.devices.eyetracker.BlinkStartEvent

attribute), 636
eye (psychopy.iohub.devices.eyetracker.FixationEndEvent

attribute), 608, 632, 655
eye (psychopy.iohub.devices.eyetracker.FixationStartEvent

attribute), 607, 631, 655
eye (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 617, 628
eye (psychopy.iohub.devices.eyetracker.SaccadeEndEvent

attribute), 634
eye (psychopy.iohub.devices.eyetracker.SaccadeStartEvent

attribute), 633
eye_cam_x (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 617
eye_cam_y (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 617
eye_cam_z (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 617
eyeHeight (psychopy.visual.rift.Rift property), 370
eyeOffset (psychopy.visual.nnlvs.VisualSystemHD

property), 473
eyeOffset (psychopy.visual.rift.Rift property), 370
eyeOffset (psychopy.visual.Window property), 493
eyeRenderPose (psychopy.visual.rift.Rift property), 370
eyeToNoseDistance (psychopy.visual.rift.Rift prop-

erty), 370
EyeTracker (class in psy-

chopy.iohub.devices.eyetracker.hw.mouse),
651

EyeTracker (class in psy-
chopy.iohub.devices.eyetracker.hw.pupil_labs.pupil_core),
613, 623

EyeTracker (class in psy-
chopy.iohub.devices.eyetracker.hw.tobii),
642

F
face (psychopy.visual.BlinnPhongMaterial property),

291

Index 965

PsychoPy - Psychology software for Python, Release 2023.2.3

fadeOut() (psychopy.sound.backend_pygame.SoundPygame
method), 515

farClip (psychopy.visual.nnlvs.VisualSystemHD prop-
erty), 473

farClip (psychopy.visual.rift.Rift property), 371
farClip (psychopy.visual.Window property), 493
fastForward() (psychopy.visual.MovieStim method),

270
fastForward() (psychopy.visual.VlcMovieStim

method), 457
fatal() (in module psychopy.logging), 861
fieldPos (psychopy.visual.DotStim attribute), 213
fieldShape (psychopy.visual.DotStim attribute), 212
fieldSize (psychopy.visual.DotStim attribute), 213
filename (psychopy.tools.movietools.MovieFileWriter

property), 765
filename (psychopy.visual.MovieStim property), 270
filename (psychopy.visual.VlcMovieStim property), 457
fileOpenDlg() (in module psychopy.gui), 851
fileSaveDlg() (in module psychopy.gui), 851
fill() (psychopy.hardware.qmix.Pump method), 591
fillColor (psychopy.visual.BoxStim property), 184
fillColor (psychopy.visual.BufferImageStim property),

194
fillColor (psychopy.visual.circle.Circle property), 206
fillColor (psychopy.visual.Form property), 223
fillColor (psychopy.visual.GratingStim property), 234
fillColor (psychopy.visual.ImageStim property), 246
fillColor (psychopy.visual.line.Line property), 260
fillColor (psychopy.visual.MovieStim property), 270
fillColor (psychopy.visual.ObjMeshStim property),

284
fillColor (psychopy.visual.pie.Pie property), 298
fillColor (psychopy.visual.PlaneStim property), 306
fillColor (psychopy.visual.polygon.Polygon property),

317
fillColor (psychopy.visual.progress.Progress prop-

erty), 327
fillColor (psychopy.visual.RadialStim property), 337
fillColor (psychopy.visual.rect.Rect property), 353
fillColor (psychopy.visual.shape.ShapeStim property),

405
fillColor (psychopy.visual.Slider property), 413
fillColor (psychopy.visual.SphereStim property), 419
fillColor (psychopy.visual.TextBox2 property), 438
fillColorSpace (psychopy.visual.BoxStim property),

184
fillColorSpace (psychopy.visual.BufferImageStim

property), 194
fillColorSpace (psychopy.visual.circle.Circle prop-

erty), 206
fillColorSpace (psychopy.visual.Form property), 223
fillColorSpace (psychopy.visual.GratingStim prop-

erty), 235

fillColorSpace (psychopy.visual.ImageStim property),
246

fillColorSpace (psychopy.visual.line.Line property),
260

fillColorSpace (psychopy.visual.MovieStim property),
270

fillColorSpace (psychopy.visual.ObjMeshStim prop-
erty), 284

fillColorSpace (psychopy.visual.pie.Pie property),
298

fillColorSpace (psychopy.visual.PlaneStim property),
306

fillColorSpace (psychopy.visual.polygon.Polygon
property), 317

fillColorSpace (psychopy.visual.progress.Progress
property), 327

fillColorSpace (psychopy.visual.RadialStim prop-
erty), 337

fillColorSpace (psychopy.visual.rect.Rect property),
353

fillColorSpace (psychopy.visual.shape.ShapeStim
property), 405

fillColorSpace (psychopy.visual.SphereStim prop-
erty), 419

fillColorSpace (psychopy.visual.TextBox2 property),
438

fillLevel (psychopy.hardware.qmix.Pump property),
592

fillRGB (psychopy.visual.BoxStim property), 184
fillRGB (psychopy.visual.BufferImageStim property),

194
fillRGB (psychopy.visual.circle.Circle property), 206
fillRGB (psychopy.visual.Form property), 223
fillRGB (psychopy.visual.GratingStim property), 235
fillRGB (psychopy.visual.ImageStim property), 246
fillRGB (psychopy.visual.line.Line property), 260
fillRGB (psychopy.visual.MovieStim property), 270
fillRGB (psychopy.visual.ObjMeshStim property), 284
fillRGB (psychopy.visual.pie.Pie property), 298
fillRGB (psychopy.visual.PlaneStim property), 306
fillRGB (psychopy.visual.polygon.Polygon property),

317
fillRGB (psychopy.visual.progress.Progress property),

327
fillRGB (psychopy.visual.RadialStim property), 337
fillRGB (psychopy.visual.rect.Rect property), 353
fillRGB (psychopy.visual.shape.ShapeStim property),

405
fillRGB (psychopy.visual.SphereStim property), 419
fillRGB (psychopy.visual.TextBox2 property), 438
findPhotometer() (in module psychopy.hardware), 592
firmwareVersion (psychopy.visual.rift.Rift property),

371
fit() (psychopy.visual.BoundingBox method), 181

Index 966

PsychoPy - Psychology software for Python, Release 2023.2.3

fitBBox() (in module psychopy.tools.mathtools), 752
FitCumNormal (class in psychopy.data), 839
fitGammaErrFun() (psy-

chopy.monitors.GammaCalculator method),
871

fitGammaFun() (psychopy.monitors.GammaCalculator
method), 871

FitLogistic (class in psychopy.data), 838
FitNakaRushton (class in psychopy.data), 839
FitWeibull (class in psychopy.data), 838
FixationEndEvent (class in psy-

chopy.iohub.devices.eyetracker), 608, 632,
655

FixationStartEvent (class in psy-
chopy.iohub.devices.eyetracker), 607, 631,
654

fixTangentHandedness() (in module psy-
chopy.tools.mathtools), 727

flac2wav() (in module psychopy.microphone), 865
flip (psychopy.layout.Vertices property), 859
flip (psychopy.visual.Aperture property), 179
flip (psychopy.visual.BoxStim property), 184
flip (psychopy.visual.BufferImageStim property), 194
flip (psychopy.visual.circle.Circle property), 206
flip (psychopy.visual.Form property), 223
flip (psychopy.visual.GratingStim property), 235
flip (psychopy.visual.ImageStim property), 246
flip (psychopy.visual.line.Line property), 260
flip (psychopy.visual.MovieStim property), 270
flip (psychopy.visual.ObjMeshStim property), 284
flip (psychopy.visual.pie.Pie property), 298
flip (psychopy.visual.PlaneStim property), 306
flip (psychopy.visual.polygon.Polygon property), 317
flip (psychopy.visual.progress.Progress property), 327
flip (psychopy.visual.RadialStim property), 337
flip (psychopy.visual.rect.Rect property), 353
flip (psychopy.visual.shape.ShapeStim property), 405
flip (psychopy.visual.Slider property), 413
flip (psychopy.visual.SphereStim property), 419
flip (psychopy.visual.TextBox2 property), 438
flip (psychopy.visual.TextStim property), 447
flip (psychopy.visual.VlcMovieStim property), 457
flip() (psychopy.visual.nnlvs.VisualSystemHD method),

473
flip() (psychopy.visual.rift.Rift method), 371
flip() (psychopy.visual.Window method), 493
flipHoriz (psychopy.layout.Vertices property), 859
flipHoriz (psychopy.visual.BoxStim property), 184
flipHoriz (psychopy.visual.BufferImageStim attribute),

194
flipHoriz (psychopy.visual.Form property), 223
flipHoriz (psychopy.visual.GratingStim property), 235
flipHoriz (psychopy.visual.ImageStim property), 246
flipHoriz (psychopy.visual.MovieStim property), 270

flipHoriz (psychopy.visual.ObjMeshStim property),
284

flipHoriz (psychopy.visual.PlaneStim property), 306
flipHoriz (psychopy.visual.RadialStim property), 337
flipHoriz (psychopy.visual.SphereStim property), 419
flipHoriz (psychopy.visual.TextBox2 property), 438
flipHoriz (psychopy.visual.TextStim attribute), 447
flipHoriz (psychopy.visual.VlcMovieStim property),

457
flipVert (psychopy.layout.Vertices property), 859
flipVert (psychopy.visual.BoxStim property), 184
flipVert (psychopy.visual.BufferImageStim attribute),

195
flipVert (psychopy.visual.Form property), 223
flipVert (psychopy.visual.GratingStim property), 235
flipVert (psychopy.visual.ImageStim property), 246
flipVert (psychopy.visual.MovieStim property), 270
flipVert (psychopy.visual.ObjMeshStim property), 284
flipVert (psychopy.visual.PlaneStim property), 307
flipVert (psychopy.visual.RadialStim property), 337
flipVert (psychopy.visual.SphereStim property), 419
flipVert (psychopy.visual.TextBox2 property), 438
flipVert (psychopy.visual.TextStim attribute), 447
flipVert (psychopy.visual.VlcMovieStim property), 457
float_uint16() (in module psychopy.tools.typetools),

775
float_uint8() (in module psychopy.tools.typetools),

775
flowRateUnit (psychopy.hardware.qmix.Pump prop-

erty), 592
flush() (in module psychopy.logging), 861, 862
flush() (psychopy.hardware.crs.bits.BitsSharp method),

563
flush() (psychopy.logging._Logger method), 860
flush() (psychopy.sound.Microphone method), 518
flush() (psychopy.tools.movietools.MovieFileWriter

method), 765
flushDataStoreFile() (psy-

chopy.iohub.client.ioHubConnection method),
598

font (psychopy.visual.TextBox2 attribute), 438
font (psychopy.visual.TextStim attribute), 447
fontColor (psychopy.visual.BoxStim property), 184
fontColor (psychopy.visual.BufferImageStim property),

195
fontColor (psychopy.visual.circle.Circle property), 206
fontColor (psychopy.visual.Form property), 223
fontColor (psychopy.visual.GratingStim property), 235
fontColor (psychopy.visual.ImageStim property), 246
fontColor (psychopy.visual.line.Line property), 260
fontColor (psychopy.visual.MovieStim property), 270
fontColor (psychopy.visual.ObjMeshStim property),

284
fontColor (psychopy.visual.pie.Pie property), 299

Index 967

PsychoPy - Psychology software for Python, Release 2023.2.3

fontColor (psychopy.visual.PlaneStim property), 307
fontColor (psychopy.visual.polygon.Polygon property),

317
fontColor (psychopy.visual.progress.Progress prop-

erty), 328
fontColor (psychopy.visual.RadialStim property), 337
fontColor (psychopy.visual.rect.Rect property), 353
fontColor (psychopy.visual.shape.ShapeStim property),

405
fontColor (psychopy.visual.SphereStim property), 419
fontColor (psychopy.visual.TextBox2 property), 438
fontColor (psychopy.visual.TextStim property), 447
fontFiles (psychopy.visual.TextStim attribute), 447
fontMGR (psychopy.visual.TextBox2 property), 438
foreColor (psychopy.visual.BoxStim property), 184
foreColor (psychopy.visual.BufferImageStim property),

195
foreColor (psychopy.visual.circle.Circle property), 206
foreColor (psychopy.visual.Form property), 223
foreColor (psychopy.visual.GratingStim property), 235
foreColor (psychopy.visual.ImageStim property), 247
foreColor (psychopy.visual.line.Line property), 260
foreColor (psychopy.visual.MovieStim property), 271
foreColor (psychopy.visual.ObjMeshStim property),

284
foreColor (psychopy.visual.pie.Pie property), 299
foreColor (psychopy.visual.PlaneStim property), 307
foreColor (psychopy.visual.polygon.Polygon property),

317
foreColor (psychopy.visual.progress.Progress prop-

erty), 328
foreColor (psychopy.visual.RadialStim property), 337
foreColor (psychopy.visual.rect.Rect property), 353
foreColor (psychopy.visual.shape.ShapeStim property),

405
foreColor (psychopy.visual.Slider property), 413
foreColor (psychopy.visual.SphereStim property), 419
foreColor (psychopy.visual.TextBox2 property), 438
foreColor (psychopy.visual.TextStim property), 448
foreColorSpace (psychopy.visual.BoxStim property),

185
foreColorSpace (psychopy.visual.BufferImageStim

property), 196
foreColorSpace (psychopy.visual.circle.Circle prop-

erty), 207
foreColorSpace (psychopy.visual.Form property), 223
foreColorSpace (psychopy.visual.GratingStim prop-

erty), 236
foreColorSpace (psychopy.visual.ImageStim property),

247
foreColorSpace (psychopy.visual.line.Line property),

261
foreColorSpace (psychopy.visual.MovieStim property),

271

foreColorSpace (psychopy.visual.ObjMeshStim prop-
erty), 285

foreColorSpace (psychopy.visual.pie.Pie property),
299

foreColorSpace (psychopy.visual.PlaneStim property),
307

foreColorSpace (psychopy.visual.polygon.Polygon
property), 318

foreColorSpace (psychopy.visual.progress.Progress
property), 328

foreColorSpace (psychopy.visual.RadialStim prop-
erty), 338

foreColorSpace (psychopy.visual.rect.Rect property),
354

foreColorSpace (psychopy.visual.shape.ShapeStim
property), 406

foreColorSpace (psychopy.visual.SphereStim prop-
erty), 420

foreColorSpace (psychopy.visual.TextBox2 property),
439

foreColorSpace (psychopy.visual.TextStim property),
448

foreRGB (psychopy.visual.BoxStim property), 185
foreRGB (psychopy.visual.BufferImageStim property),

196
foreRGB (psychopy.visual.circle.Circle property), 207
foreRGB (psychopy.visual.Form property), 223
foreRGB (psychopy.visual.GratingStim property), 236
foreRGB (psychopy.visual.ImageStim property), 247
foreRGB (psychopy.visual.line.Line property), 261
foreRGB (psychopy.visual.MovieStim property), 271
foreRGB (psychopy.visual.ObjMeshStim property), 285
foreRGB (psychopy.visual.pie.Pie property), 300
foreRGB (psychopy.visual.PlaneStim property), 307
foreRGB (psychopy.visual.polygon.Polygon property),

318
foreRGB (psychopy.visual.progress.Progress property),

328
foreRGB (psychopy.visual.RadialStim property), 338
foreRGB (psychopy.visual.rect.Rect property), 354
foreRGB (psychopy.visual.shape.ShapeStim property),

406
foreRGB (psychopy.visual.SphereStim property), 420
foreRGB (psychopy.visual.TextBox2 property), 439
foreRGB (psychopy.visual.TextStim property), 448
Form (class in psychopy.visual), 217
formComplete() (psychopy.visual.Form method), 223
forwardProject() (in module psy-

chopy.tools.mathtools), 749
fps (psychopy.tools.movietools.MovieFileWriter prop-

erty), 766
fps (psychopy.visual.MovieStim property), 272
fps (psychopy.visual.VlcMovieStim property), 457
fps() (psychopy.visual.nnlvs.VisualSystemHD method),

Index 968

PsychoPy - Psychology software for Python, Release 2023.2.3

473
fps() (psychopy.visual.rift.Rift method), 371
fps() (psychopy.visual.Window method), 493
frameBufferSize (psy-

chopy.visual.nnlvs.VisualSystemHD property),
474

frameBufferSize (psychopy.visual.rift.Rift property),
371

frameBufferSize (psychopy.visual.Window property),
493

frameCount (psychopy.hardware.camera.Camera prop-
erty), 544

frameIndex (psychopy.visual.MovieStim property), 272
frameIndex (psychopy.visual.VlcMovieStim property),

458
frameInterval (psychopy.tools.movietools.MovieFileWriter

property), 766
frameRate (psychopy.hardware.camera.Camera prop-

erty), 544
frameRate (psychopy.hardware.camera.CameraInfo

property), 548
frameRate (psychopy.tools.movietools.MovieFileWriter

property), 766
frameRate (psychopy.visual.MovieStim property), 272
frameSize (psychopy.hardware.camera.Camera prop-

erty), 544
frameSize (psychopy.hardware.camera.CameraInfo

property), 548
frameSize (psychopy.tools.movietools.MovieFileWriter

property), 766
frameSize (psychopy.visual.MovieStim property), 272
frameSizeAsFormattedString() (psy-

chopy.hardware.camera.CameraInfo method),
548

framesOut (psychopy.tools.movietools.MovieFileWriter
property), 766

framesWaiting (psychopy.tools.movietools.MovieFileWriter
property), 766

frameTexture (psychopy.visual.MovieStim property),
272

frameTexture (psychopy.visual.VlcMovieStim prop-
erty), 458

frameTime (psychopy.visual.VlcMovieStim property),
458

fromFile() (in module psychopy.tools.filetools), 664
frontFace (psychopy.visual.nnlvs.VisualSystemHD

property), 474
frontFace (psychopy.visual.rift.Rift property), 371
frontFace (psychopy.visual.Window property), 493
fullscr (psychopy.visual.nnlvs.VisualSystemHD at-

tribute), 474
fullscr (psychopy.visual.rift.Rift attribute), 371
fullscr (psychopy.visual.Window attribute), 494
functionFromStaircase() (in module psychopy.data),

840

G
gain() (psychopy.sound.AudioClip method), 524
gamma (psychopy.data.QuestHandler property), 826
gamma (psychopy.visual.nnlvs.VisualSystemHD attribute),

474
gamma (psychopy.visual.rift.Rift attribute), 371
gamma (psychopy.visual.Window attribute), 494
GammaCalculator (class in psychopy.monitors), 871
gammaCorrectFile (psy-

chopy.hardware.crs.bits.BitsSharp property),
563

gammaFun() (in module psychopy.monitors), 872
gammaInvFun() (in module psychopy.monitors), 872
gammaIsDefault() (psychopy.monitors.Monitor

method), 868
gammaRamp (psychopy.visual.nnlvs.VisualSystemHD at-

tribute), 474
gammaRamp (psychopy.visual.rift.Rift attribute), 372
gammaRamp (psychopy.visual.Window attribute), 494
gaze_x (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent

attribute), 626, 654
gaze_x (psychopy.iohub.devices.eyetracker.FixationStartEvent

attribute), 607, 631, 655
gaze_x (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 617, 628
gaze_x (psychopy.iohub.devices.eyetracker.SaccadeStartEvent

attribute), 633
gaze_y (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent

attribute), 626, 654
gaze_y (psychopy.iohub.devices.eyetracker.FixationStartEvent

attribute), 608, 631, 655
gaze_y (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 617, 628
gaze_y (psychopy.iohub.devices.eyetracker.SaccadeStartEvent

attribute), 633
gaze_z (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 617
genDelimiter() (in module psychopy.tools.filetools),

665
generalizedPerspectiveProjection() (in module

psychopy.tools.viewtools), 782
get_a() (psychopy.hardware.joystick.XboxController

method), 586
get_b() (psychopy.hardware.joystick.XboxController

method), 586
get_back() (psychopy.hardware.joystick.XboxController

method), 586
get_hat_axis() (psy-

chopy.hardware.joystick.XboxController
method), 586

get_left_shoulder() (psy-
chopy.hardware.joystick.XboxController

Index 969

PsychoPy - Psychology software for Python, Release 2023.2.3

method), 587
get_left_thumbstick() (psy-

chopy.hardware.joystick.XboxController
method), 587

get_left_thumbstick_axis() (psy-
chopy.hardware.joystick.XboxController
method), 587

get_named_buttons() (psy-
chopy.hardware.joystick.XboxController
method), 587

get_right_shoulder() (psy-
chopy.hardware.joystick.XboxController
method), 587

get_right_thumbstick() (psy-
chopy.hardware.joystick.XboxController
method), 587

get_right_thumbstick_axis() (psy-
chopy.hardware.joystick.XboxController
method), 587

get_start() (psychopy.hardware.joystick.XboxController
method), 587

get_trigger_axis() (psy-
chopy.hardware.joystick.XboxController
method), 587

get_x() (psychopy.hardware.joystick.XboxController
method), 588

get_y() (psychopy.hardware.joystick.XboxController
method), 588

getAbsTime() (in module psychopy.clock), 169
getAbsTime() (in module psychopy.core), 165
getAbsTimeGPU() (in module psychopy.tools.gltools),

678
getActualFrameRate() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
474

getActualFrameRate() (psychopy.visual.rift.Rift
method), 372

getActualFrameRate() (psychopy.visual.Window
method), 494

getAllAxes() (psychopy.hardware.joystick.Joystick
method), 588

getAllButtons() (psychopy.hardware.joystick.Joystick
method), 588

getAllEntries() (psychopy.data.ExperimentHandler
method), 796

getAllHats() (psychopy.hardware.joystick.Joystick
method), 588

getAllMonitors() (in module psychopy.monitors), 872
getAllRTBoxResponses() (psy-

chopy.hardware.crs.bits.BitsSharp method),
563

getAllStatusBoxResponses() (psy-
chopy.hardware.crs.bits.BitsSharp method),
564

getAllStatusEvents() (psy-
chopy.hardware.crs.bits.BitsSharp method),
564

getAllStatusValues() (psy-
chopy.hardware.crs.bits.BitsSharp method),
565

getAnalog() (psychopy.hardware.crs.bits.BitsSharp
method), 565

getAppFrame() (in module psychopy.app), 790
getAppInstance() (in module psychopy.app), 790
getas() (psychopy.layout.Vertices method), 859
getAttribLocations() (in module psy-

chopy.tools.gltools), 675
getAudioCaptureDevices() (in module psy-

chopy.tools.systemtools), 771
getAudioDevices() (in module psy-

chopy.tools.systemtools), 770
getAudioPlaybackDevices() (in module psy-

chopy.tools.systemtools), 771
getAutoLog() (psychopy.visual.TextBox method), 428
getAxis() (psychopy.hardware.joystick.Joystick

method), 588
getBackend() (psychopy.hardware.keyboard.Keyboard

class method), 535
getBackgroundColor() (psychopy.visual.TextBox

method), 428
getBorderColor() (psychopy.visual.TextBox method),

428
getBorderWidth() (psychopy.visual.TextBox method),

428
getBoundaryDimensions() (psychopy.visual.rift.Rift

method), 372
getButton() (psychopy.hardware.joystick.Joystick

method), 588
getButtons() (psychopy.visual.rift.Rift method), 372
getCalibDate() (psychopy.monitors.Monitor method),

868
getCalibMatrix() (psy-

chopy.hardware.crs.colorcal.ColorCAL
method), 583

getCameraDescriptions() (psy-
chopy.hardware.camera.Camera static
method), 544

getCameras() (in module psychopy.tools.systemtools),
772

getCameras() (psychopy.hardware.camera.Camera
static method), 545

getColorSpace() (psychopy.visual.TextBox method),
428

getConfiguration() (psy-
chopy.iohub.devices.eyetracker.hw.mouse.EyeTracker
method), 652

getConfiguration() (psy-
chopy.iohub.devices.eyetracker.hw.tobii.EyeTracker

Index 970

PsychoPy - Psychology software for Python, Release 2023.2.3

method), 643
getContentScaleFactor() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
474

getContentScaleFactor() (psychopy.visual.rift.Rift
method), 373

getContentScaleFactor() (psychopy.visual.Window
method), 494

getCurrentFrameNumber() (psy-
chopy.visual.MovieStim method), 272

getCurrentFrameNumber() (psy-
chopy.visual.VlcMovieStim method), 458

getCurrentFrameTime() (psy-
chopy.visual.VlcMovieStim method), 458

getCurrentTrial() (psychopy.data.TrialHandler
method), 800

getCurrentTrial() (psychopy.data.TrialHandlerExt
method), 811

getCurrentTrialPosInDataHandler() (psy-
chopy.data.TrialHandlerExt method), 811

getData() (psychopy.visual.Form method), 223
getDevice() (psychopy.iohub.client.ioHubConnection

method), 595
getDevicePose() (psychopy.visual.rift.Rift method),

374
getDevices() (psychopy.sound.Microphone static

method), 518
getDft() (in module psychopy.microphone), 865
getDigital() (psychopy.hardware.crs.bits.BitsSharp

method), 566
getDigitalWord() (psy-

chopy.hardware.crs.bits.BitsSharp method),
566

getDisplayedText() (psychopy.visual.TextBox
method), 428

getDistance() (psychopy.monitors.Monitor method),
868

getDKL_RGB() (psychopy.monitors.Monitor method),
868

getDuration() (psychopy.sound.backend_pygame.SoundPygame
method), 515

getEarlierTrial() (psychopy.data.TrialHandler
method), 800

getEarlierTrial() (psychopy.data.TrialHandler2
method), 805

getEarlierTrial() (psychopy.data.TrialHandlerExt
method), 811

getEvents() (psychopy.iohub.client.ioHubConnection
method), 595

getEvents() (psychopy.iohub.devices.eyetracker.hw.mouse.EyeTracker
method), 652

getEvents() (psychopy.iohub.devices.eyetracker.hw.tobii.EyeTracker
method), 643

getExp() (psychopy.data.MultiStairHandler method),

835
getExp() (psychopy.data.PsiHandler method), 821
getExp() (psychopy.data.QuestHandler method), 826
getExp() (psychopy.data.QuestPlusHandler method),

831
getExp() (psychopy.data.StairHandler method), 816
getExp() (psychopy.data.TrialHandler method), 800
getExp() (psychopy.data.TrialHandler2 method), 805
getExp() (psychopy.data.TrialHandlerExt method), 811
getExpInfoFromExperiment() (psy-

chopy.session.Session method), 173
getFloatv() (in module psychopy.tools.gltools), 712
getFontColor() (psychopy.visual.TextBox method), 428
getFontSize() (psychopy.visual.TextBox method), 429
getFPS() (psychopy.visual.MovieStim method), 272
getFPS() (psychopy.visual.VlcMovieStim method), 458
getFutureFlipTime() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
475

getFutureFlipTime() (psychopy.visual.rift.Rift
method), 374

getFutureFlipTime() (psychopy.visual.Window
method), 495

getFutureTrial() (psychopy.data.TrialHandler
method), 800

getFutureTrial() (psychopy.data.TrialHandler2
method), 805

getFutureTrial() (psychopy.data.TrialHandlerExt
method), 811

getGamma() (psychopy.monitors.Monitor method), 868
getGammaGrid() (psychopy.monitors.Monitor method),

868
getGlyphPositionForTextIndex() (psy-

chopy.visual.TextBox method), 429
getHandTriggerValues() (psychopy.visual.rift.Rift

method), 374
getHat() (psychopy.hardware.joystick.Joystick method),

588
getHistory() (psychopy.visual.Slider method), 414
getHorzAlign() (psychopy.visual.TextBox method), 429
getHorzJust() (psychopy.visual.TextBox method), 429
getIndexTriggerValues() (psychopy.visual.rift.Rift

method), 374
getInfo() (psychopy.hardware.crs.bits.BitsSharp

method), 567
getInfo() (psychopy.hardware.crs.colorcal.ColorCAL

method), 583
getInfoLog() (in module psychopy.tools.gltools), 674
getIntegerv() (in module psychopy.tools.gltools), 712
getInterpolated() (psychopy.visual.TextBox method),

429
getIRBox() (psychopy.hardware.crs.bits.BitsSharp

method), 566
getJSON() (psychopy.data.ExperimentHandler method),

Index 971

PsychoPy - Psychology software for Python, Release 2023.2.3

796
getKeyboards() (in module psy-

chopy.hardware.keyboard), 536
getKeyboards() (in module psy-

chopy.tools.systemtools), 772
getKeys() (in module psychopy.event), 844
getKeys() (psychopy.hardware.keyboard.Keyboard

method), 535
getKeys() (psychopy.iohub.client.keyboard.Keyboard

method), 601
getLabel() (psychopy.visual.TextBox method), 429
getLastClip() (psychopy.hardware.camera.Camera

method), 545
getLastGazePosition() (psy-

chopy.iohub.devices.eyetracker.hw.mouse.EyeTracker
method), 652

getLastGazePosition() (psy-
chopy.iohub.devices.eyetracker.hw.pupil_labs.pupil_core.EyeTracker
method), 614, 623

getLastGazePosition() (psy-
chopy.iohub.devices.eyetracker.hw.tobii.EyeTracker
method), 644

getLastResetTime() (psychopy.clock.MonotonicClock
method), 168

getLastResetTime() (psychopy.core.MonotonicClock
method), 164

getLastSample() (psy-
chopy.iohub.devices.eyetracker.hw.mouse.EyeTracker
method), 653

getLastSample() (psy-
chopy.iohub.devices.eyetracker.hw.pupil_labs.pupil_core.EyeTracker
method), 614, 624

getLastSample() (psy-
chopy.iohub.devices.eyetracker.hw.tobii.EyeTracker
method), 645

getLevel() (in module psychopy.logging), 861
getLevelsPost() (psychopy.monitors.Monitor

method), 869
getLevelsPre() (psychopy.monitors.Monitor method),

869
getLinearizeMethod() (psychopy.monitors.Monitor

method), 869
getLineSpacing() (psychopy.visual.TextBox method),

429
getLMS_RGB() (psychopy.monitors.Monitor method),

868
getLoudness() (psychopy.microphone.AdvAudioCapture

method), 863
getLum() (psychopy.hardware.crs.colorcal.ColorCAL

method), 583
getLumSeriesPR650() (in module psychopy.monitors),

872
getLumsPost() (psychopy.monitors.Monitor method),

869

getLumsPre() (psychopy.monitors.Monitor method),
869

getMarkerInfo() (psy-
chopy.microphone.AdvAudioCapture method),
863

getMarkerOnset() (psy-
chopy.microphone.AdvAudioCapture method),
863

getMarkerPos() (psychopy.visual.Slider method), 414
getMeanLum() (psychopy.monitors.Monitor method),

869
getMemoryUsage() (in module psychopy.info), 853
getMetadata() (psychopy.hardware.camera.Camera

method), 545
getModelMatrix() (psychopy.visual.RigidBodyPose

method), 394
getModelViewMatrix() (in module psy-

chopy.tools.gltools), 713
getMouseResponses() (psychopy.visual.Slider

method), 414
getMovieFrame() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
475

getMovieFrame() (psychopy.visual.rift.Rift method),
375

getMovieFrame() (psychopy.visual.Window method),
495

getMsPerFrame() (psy-
chopy.visual.nnlvs.VisualSystemHD method),
476

getMsPerFrame() (psychopy.visual.rift.Rift method),
375

getMsPerFrame() (psychopy.visual.Window method),
496

getName() (psychopy.hardware.joystick.Joystick
method), 588

getName() (psychopy.visual.TextBox method), 429
getNeedsCalibrateZero() (psy-

chopy.hardware.crs.colorcal.ColorCAL
method), 583

getNextTrialPosInDataHandler() (psy-
chopy.data.TrialHandlerExt method), 811

getNormalMatrix() (psychopy.visual.RigidBodyPose
method), 395

getNotes() (psychopy.monitors.Monitor method), 869
getNumAxes() (psychopy.hardware.joystick.Joystick

method), 588
getNumButtons() (psychopy.hardware.joystick.Joystick

method), 588
getNumHats() (psychopy.hardware.joystick.Joystick

method), 588
getNumJoysticks() (in module psy-

chopy.hardware.joystick), 588
getOpacity() (psychopy.visual.TextBox method), 429

Index 972

PsychoPy - Psychology software for Python, Release 2023.2.3

getOpenGLInfo() (in module psychopy.tools.gltools),
713

getOri() (psychopy.visual.BoxStim method), 185
getOri() (psychopy.visual.ObjMeshStim method), 285
getOri() (psychopy.visual.PlaneStim method), 308
getOri() (psychopy.visual.SphereStim method), 420
getOriAxisAngle() (psychopy.visual.BoxStim method),

185
getOriAxisAngle() (psychopy.visual.ObjMeshStim

method), 285
getOriAxisAngle() (psychopy.visual.PlaneStim

method), 308
getOriAxisAngle() (psychopy.visual.RigidBodyPose

method), 395
getOriAxisAngle() (psychopy.visual.SphereStim

method), 420
getOriginPathAndFile() (psy-

chopy.data.MultiStairHandler method), 835
getOriginPathAndFile() (psychopy.data.PsiHandler

method), 821
getOriginPathAndFile() (psy-

chopy.data.QuestHandler method), 826
getOriginPathAndFile() (psy-

chopy.data.QuestPlusHandler method), 831
getOriginPathAndFile() (psy-

chopy.data.StairHandler method), 816
getOriginPathAndFile() (psy-

chopy.data.TrialHandler method), 800
getOriginPathAndFile() (psy-

chopy.data.TrialHandler2 method), 805
getOriginPathAndFile() (psy-

chopy.data.TrialHandlerExt method), 811
getPackets() (psychopy.hardware.crs.bits.BitsPlusPlus

method), 551
getPackets() (psychopy.hardware.crs.bits.BitsSharp

method), 567
getPercentageComplete() (psy-

chopy.visual.MovieStim method), 272
getPercentageComplete() (psy-

chopy.visual.VlcMovieStim method), 458
getPos() (psychopy.event.Mouse method), 842
getPos() (psychopy.visual.BoxStim method), 186
getPos() (psychopy.visual.ObjMeshStim method), 285
getPos() (psychopy.visual.PlaneStim method), 308
getPos() (psychopy.visual.SphereStim method), 420
getPosition() (psychopy.iohub.devices.eyetracker.hw.mouse.EyeTracker

method), 653
getPosition() (psychopy.iohub.devices.eyetracker.hw.tobii.EyeTracker

method), 645
getPosition() (psychopy.visual.TextBox method), 429
getPredictedDisplayTime() (psy-

chopy.visual.rift.Rift method), 376
getPressed() (psychopy.event.Mouse method), 842
getPresses() (psychopy.iohub.client.keyboard.Keyboard

method), 602
getPriority() (psychopy.data.ExperimentHandler

method), 796
getPriority() (psychopy.iohub.client.ioHubConnection

method), 598
getProcessAffinity() (psy-

chopy.iohub.client.ioHubConnection method),
598

getProjectionMatrix() (in module psy-
chopy.tools.gltools), 713

getPsychopyVersion() (psychopy.monitors.Monitor
method), 869

getQuery() (in module psychopy.tools.gltools), 677
getRAM() (in module psychopy.info), 853
getRating() (psychopy.visual.Slider method), 414
getRayIntersectBounds() (psychopy.visual.BoxStim

method), 186
getRayIntersectBounds() (psy-

chopy.visual.ObjMeshStim method), 285
getRayIntersectBounds() (psy-

chopy.visual.PlaneStim method), 308
getRayIntersectBounds() (psy-

chopy.visual.SphereStim method), 420
getRayIntersectSphere() (psy-

chopy.visual.SphereStim method), 421
getReadable() (psychopy.colors.Color method), 791
getRecording() (psychopy.sound.Microphone method),

518
getRel() (psychopy.event.Mouse method), 842
getReleases() (psychopy.iohub.client.keyboard.Keyboard

method), 602
getResponse() (psychopy.hardware.crs.bits.BitsSharp

method), 568
getRGBspectra() (in module psychopy.monitors), 872
getRMS() (in module psychopy.microphone), 865
getRMScontrast() (in module psychopy.visual.filters),

846
getRT() (psychopy.visual.Slider method), 414
getRTBoxResponse() (psy-

chopy.hardware.crs.bits.BitsSharp method),
567

getRTBoxResponses() (psy-
chopy.hardware.crs.bits.BitsSharp method),
567

getSerialPorts() (in module psy-
chopy.tools.systemtools), 773

getSize() (psychopy.visual.TextBox method), 429
getSizePix() (psychopy.monitors.Monitor method),

869
getSpectra() (psychopy.monitors.Monitor method),

869
getStatus() (psychopy.hardware.crs.bits.BitsSharp

method), 568
getStatus() (psychopy.session.Session method), 173

Index 973

PsychoPy - Psychology software for Python, Release 2023.2.3

getStatusBoxResponse() (psy-
chopy.hardware.crs.bits.BitsSharp method),
568

getStatusBoxResponses() (psy-
chopy.hardware.crs.bits.BitsSharp method),
569

getStatusEvent() (psy-
chopy.hardware.crs.bits.BitsSharp method),
569

getString() (in module psychopy.tools.gltools), 712
getText() (psychopy.visual.TextBox method), 429
getText() (psychopy.visual.TextBox2 method), 439
getTextGridCellForCharIndex() (psy-

chopy.visual.TextBox method), 430
getTextGridCellPlacement() (psy-

chopy.visual.TextBox method), 430
getTextGridLineColor() (psychopy.visual.TextBox

method), 430
getTextGridLineWidth() (psychopy.visual.TextBox

method), 430
getThumbstickValues() (psychopy.visual.rift.Rift

method), 376
getTime() (in module psychopy.clock), 169
getTime() (in module psychopy.core), 166
getTime() (psychopy.clock.CountdownTimer method),

167
getTime() (psychopy.clock.MonotonicClock method),

168
getTime() (psychopy.core.CountdownTimer method),

164
getTime() (psychopy.core.MonotonicClock method),

164
getTime() (psychopy.iohub.client.ioHubConnection

method), 598
getTime() (psychopy.session.Session method), 173
getTimeInSeconds() (psychopy.visual.rift.Rift

method), 376
getTouches() (psychopy.visual.rift.Rift method), 376
getTrackerInfo() (psychopy.visual.rift.Rift method),

377
getTrackingState() (psychopy.visual.rift.Rift

method), 377
getTrigIn() (psychopy.hardware.crs.bits.BitsSharp

method), 570
getUniformLocations() (in module psy-

chopy.tools.gltools), 674
getUnitType() (psychopy.visual.TextBox method), 430
getUseBits() (psychopy.monitors.Monitor method),

869
getValidStrokeWidths() (psychopy.visual.TextBox

method), 430
getVertAlign() (psychopy.visual.TextBox method), 430
getVertJust() (psychopy.visual.TextBox method), 430
getVideoFrame() (psychopy.hardware.camera.Camera

method), 545
getVideoLine() (psychopy.hardware.crs.bits.BitsSharp

method), 570
getViewMatrix() (psychopy.visual.RigidBodyPose

method), 395
getVisible() (psychopy.event.Mouse method), 842
getVisibleText() (psychopy.visual.TextBox2 method),

439
getVolume() (psychopy.sound.backend_pygame.SoundPygame

method), 516
getVolume() (psychopy.visual.VlcMovieStim method),

458
getWheelRel() (psychopy.event.Mouse method), 842
getWidth() (psychopy.monitors.Monitor method), 869
getWindow() (psychopy.visual.TextBox method), 431
getX() (psychopy.hardware.joystick.Joystick method),

589
getY() (psychopy.hardware.joystick.Joystick method),

589
getYawPitchRoll() (psychopy.visual.RigidBodyPose

method), 395
getZ() (psychopy.hardware.joystick.Joystick method),

589
GPU, 31
grain (psychopy.data.QuestHandler property), 826
GratingStim (class in psychopy.visual), 229
groupFlipVert() (in module psychopy.visual.helpers),

241

H
hasFocus (psychopy.visual.TextBox2 property), 439
hasInputFocus (psychopy.visual.rift.Rift property), 379
hasMagYawCorrection (psychopy.visual.rift.Rift prop-

erty), 379
hasOrientationTracking (psychopy.visual.rift.Rift

property), 379
hasPositionTracking (psychopy.visual.rift.Rift prop-

erty), 379
haveInternetAccess() (in module psychopy.web), 886
headLocked (psychopy.visual.rift.Rift property), 379
height (psychopy.layout.Position property), 856
height (psychopy.layout.Size property), 857
height (psychopy.layout.Vector property), 855
height (psychopy.layout.Vertices property), 859
height (psychopy.visual.BoxStim property), 186
height (psychopy.visual.BufferImageStim property), 196
height (psychopy.visual.Form property), 224
height (psychopy.visual.GratingStim property), 236
height (psychopy.visual.ImageStim property), 248
height (psychopy.visual.MovieStim property), 272
height (psychopy.visual.ObjMeshStim property), 286
height (psychopy.visual.PlaneStim property), 308
height (psychopy.visual.RadialStim property), 338
height (psychopy.visual.SphereStim property), 421

Index 974

PsychoPy - Psychology software for Python, Release 2023.2.3

height (psychopy.visual.TextBox2 property), 439
height (psychopy.visual.TextStim attribute), 449
height (psychopy.visual.VlcMovieStim property), 458
hex (psychopy.colors.Color property), 792
hex2rgb255() (in module psychopy.colors), 792
hid (psychopy.visual.rift.Rift property), 379
hideMessage() (psychopy.visual.nnlvs.VisualSystemHD

method), 476
hideMessage() (psychopy.visual.rift.Rift method), 379
hideMessage() (psychopy.visual.Window method), 496
hidePerfHud() (psychopy.visual.rift.Rift method), 379
hmdMounted (psychopy.visual.rift.Rift property), 380
hmdPresent (psychopy.visual.rift.Rift property), 380
horiz (psychopy.visual.Slider property), 414
hostAPIName (psychopy.sound.AudioDeviceInfo prop-

erty), 530
hsv (psychopy.colors.Color property), 792
hsv2rgb() (in module psychopy.tools.colorspacetools),

660
hsva (psychopy.colors.Color property), 792

I
image (psychopy.visual.BufferImageStim attribute), 196
image (psychopy.visual.ImageStim attribute), 248
image2array() (in module psychopy.tools.imagetools),

715
ImageStim (class in psychopy.visual), 243
imfft() (in module psychopy.visual.filters), 846
imifft() (in module psychopy.visual.filters), 846
importConditions() (in module psychopy.data), 840
importData() (psychopy.data.QuestHandler method),

826
importItems() (psychopy.visual.Form method), 224
increaseVolume() (psychopy.visual.VlcMovieStim

method), 458
incTrials() (psychopy.data.QuestHandler method),

826
inDeviceIndex (psychopy.sound.AudioDeviceStatus

property), 533
index (psychopy.hardware.camera.CameraInfo prop-

erty), 548
info() (in module psychopy.logging), 861
inputChannels (psychopy.sound.AudioDeviceInfo prop-

erty), 530
inputLatency (psychopy.sound.AudioDeviceInfo prop-

erty), 530
intensity (psychopy.data.MultiStairHandler property),

836
intensity (psychopy.data.PsiHandler property), 821
intensity (psychopy.data.QuestHandler property), 826
intensity (psychopy.data.QuestPlusHandler property),

831
intensity (psychopy.data.StairHandler property), 816
interp() (psychopy.visual.RigidBodyPose method), 395

interpolate (psychopy.visual.BufferImageStim at-
tribute), 196

interpolate (psychopy.visual.circle.Circle attribute),
207

interpolate (psychopy.visual.GratingStim attribute),
236

interpolate (psychopy.visual.ImageStim attribute), 248
interpolate (psychopy.visual.line.Line attribute), 261
interpolate (psychopy.visual.pie.Pie attribute), 300
interpolate (psychopy.visual.polygon.Polygon at-

tribute), 318
interpolate (psychopy.visual.progress.Progress

attribute), 328
interpolate (psychopy.visual.RadialStim attribute),

338
interpolate (psychopy.visual.rect.Rect attribute), 354
interpolate (psychopy.visual.shape.ShapeStim at-

tribute), 406
interpolate (psychopy.visual.VlcMovieStim property),

459
intersectRayAABB() (in module psy-

chopy.tools.mathtools), 755
intersectRayOBB() (in module psy-

chopy.tools.mathtools), 756
intersectRayPlane() (in module psy-

chopy.tools.mathtools), 754
intersectRaySphere() (in module psy-

chopy.tools.mathtools), 754
intersectRayTriangle() (in module psy-

chopy.tools.mathtools), 757
inverse() (psychopy.data.FitCumNormal method), 839
inverse() (psychopy.data.FitLogistic method), 838
inverse() (psychopy.data.FitNakaRushton method),

839
inverse() (psychopy.data.FitWeibull method), 838
inverseModelMatrix (psychopy.visual.RigidBodyPose

property), 396
invert() (psychopy.visual.Aperture method), 179
invert() (psychopy.visual.RigidBodyPose method), 396
inverted (psychopy.visual.Aperture attribute), 179
inverted() (psychopy.visual.RigidBodyPose method),

396
invertMatrix() (in module psychopy.tools.mathtools),

744
invertQuat() (in module psychopy.tools.mathtools),

738
ioHubConnection (class in psychopy.iohub.client), 595
isAffine() (in module psychopy.tools.mathtools), 745
isAppStarted() (in module psychopy.app), 789
isAwake() (psychopy.hardware.crs.bits.BitsSharp

method), 570
isBoundaryVisible (psychopy.visual.rift.Rift prop-

erty), 380
isCapture (psychopy.sound.AudioDeviceInfo property),

Index 975

PsychoPy - Psychology software for Python, Release 2023.2.3

531
isCapture (psychopy.sound.AudioDeviceStatus prop-

erty), 533
isComplete() (in module psychopy.tools.gltools), 680
isConnected() (psychopy.iohub.devices.eyetracker.hw.pupil_labs.pupil_core.EyeTracker

method), 614, 624
isDragging (psychopy.visual.BufferImageStim at-

tribute), 196
isDragging (psychopy.visual.GratingStim attribute),

236
isDragging (psychopy.visual.ImageStim attribute), 248
isDragging (psychopy.visual.MovieStim attribute), 272
isDragging (psychopy.visual.RadialStim attribute), 338
isDragging (psychopy.visual.TextBox2 attribute), 439
isDuplex (psychopy.sound.AudioDeviceInfo property),

531
isDuplex (psychopy.sound.AudioDeviceStatus prop-

erty), 533
isEqual() (psychopy.visual.RigidBodyPose method),

396
isFinished (psychopy.sound.backend_ptb.SoundPTB

property), 511
isFinished (psychopy.visual.MovieStim property), 272
isFinished (psychopy.visual.VlcMovieStim property),

459
isHmdConnected() (in module psychopy.tools.rifttools),

769
isInFaultState (psychopy.hardware.qmix.Pump prop-

erty), 592
isMono (psychopy.sound.AudioClip property), 524
isNotStarted (psychopy.hardware.camera.Camera

property), 545
isNotStarted (psychopy.visual.MovieStim property),

272
isNotStarted (psychopy.visual.VlcMovieStim prop-

erty), 459
isOculusServiceRunning() (in module psy-

chopy.tools.rifttools), 769
isOpen (psychopy.hardware.crs.bits.BitsSharp property),

570
isOpen (psychopy.tools.movietools.MovieFileWriter

property), 766
isOrthogonal() (in module psychopy.tools.mathtools),

745
isPaused (psychopy.visual.MovieStim property), 272
isPaused (psychopy.visual.VlcMovieStim property), 459
isPlayback (psychopy.sound.AudioDeviceInfo prop-

erty), 531
isPlayback (psychopy.sound.AudioDeviceStatus prop-

erty), 533
isPlaying (psychopy.sound.backend_ptb.SoundPTB

property), 511
isPlaying (psychopy.sound.backend_pygame.SoundPygame

property), 516

isPlaying (psychopy.sound.backend_pyo.SoundPyo
property), 514

isPlaying (psychopy.sound.backend_sounddevice.SoundDeviceSound
property), 513

isPlaying (psychopy.visual.MovieStim property), 272
isPlaying (psychopy.visual.VlcMovieStim property),

459
isPluginLoaded() (in module psychopy.plugins), 878
isPoseVisible() (psychopy.visual.rift.Rift method),

380
isPressedIn() (psychopy.event.Mouse method), 842
isReady (psychopy.hardware.camera.Camera property),

545
isRecBufferFull (psychopy.sound.Microphone prop-

erty), 519
isRecording (psychopy.hardware.camera.Camera

property), 545
isRecording (psychopy.sound.Microphone property),

519
isRecordingEnabled() (psy-

chopy.iohub.devices.eyetracker.hw.mouse.EyeTracker
method), 653

isRecordingEnabled() (psy-
chopy.iohub.devices.eyetracker.hw.pupil_labs.pupil_core.EyeTracker
method), 615, 624

isRecordingEnabled() (psy-
chopy.iohub.devices.eyetracker.hw.tobii.EyeTracker
method), 645

isStarted (psychopy.hardware.camera.Camera prop-
erty), 545

isStarted (psychopy.sound.Microphone property), 519
isStartUpPlugin() (in module psychopy.plugins), 879
isStereo (psychopy.sound.AudioClip property), 524
isStopped (psychopy.hardware.camera.Camera prop-

erty), 546
isStopped (psychopy.visual.MovieStim property), 272
isStopped (psychopy.visual.VlcMovieStim property),

459
isValid (psychopy.visual.BoundingBox property), 181
isValidColor() (in module psychopy.colors), 792
isVisible (psychopy.visual.rift.Rift property), 380
isVisible() (psychopy.visual.BoxStim method), 186
isVisible() (psychopy.visual.ObjMeshStim method),

286
isVisible() (psychopy.visual.PlaneStim method), 308
isVisible() (psychopy.visual.SphereStim method), 421
italic (psychopy.visual.TextStim attribute), 449
itemColor (psychopy.visual.Form property), 224

J
join() (psychopy.voicekey.OnsetVoiceKey method), 884
Joystick (class in psychopy.hardware.joystick), 588

Index 976

PsychoPy - Psychology software for Python, Release 2023.2.3

K
Keyboard (class in psychopy.hardware.keyboard), 535
Keyboard (class in psychopy.iohub.client.keyboard), 600
KeyboardPress (class in psy-

chopy.iohub.client.keyboard), 603
KeyboardRelease (class in psy-

chopy.iohub.client.keyboard), 604
KeyPress (class in psychopy.hardware.keyboard), 536
knownStyles (psychopy.visual.Form attribute), 224
knownStyles (psychopy.visual.Slider attribute), 414
knownStyleTweaks (psychopy.visual.Slider attribute),

414

L
labelColor (psychopy.visual.Slider property), 414
labelHeight (psychopy.visual.Slider property), 414
labelWrapWidth (psychopy.visual.Slider property), 414
languageStyle (psychopy.visual.TextBox2 property),

439
lastClip (psychopy.hardware.camera.Camera prop-

erty), 546
lastFrame (psychopy.hardware.camera.Camera prop-

erty), 546
lastVideoFile (psychopy.tools.movietools.MovieFileWriter

property), 766
latencyBias (psychopy.sound.AudioDeviceStatus prop-

erty), 533
latencyBias (psychopy.sound.Microphone property),

519
launchHubServer() (in module psychopy.iohub.client),

593
left_angle_x (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent

attribute), 618, 629
left_angle_y (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent

attribute), 618, 629
left_eye_cam_x (psy-

chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 618, 646

left_eye_cam_y (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 618, 646

left_eye_cam_z (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 618, 646

left_gaze_x (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 606, 618, 629, 646

left_gaze_y (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 607, 618, 629, 646

left_gaze_z (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 618

left_ppd_x (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 630

left_ppd_y (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 630

left_pupil_measure1 (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 618

left_pupil_measure1_type (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 619, 629

left_pupil_measure2 (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 619

left_pupil_measure_1 (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 607, 629, 646, 654

left_raw_x (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 607, 618, 629

left_raw_y (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 607, 618, 629

left_velocity_x (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 630

left_velocity_xy (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 630

left_velocity_y (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 630

legacyStyles (psychopy.visual.Slider attribute), 414
legacyStyleTweaks (psychopy.visual.Slider attribute),

414
length() (in module psychopy.tools.mathtools), 716
lensCorrection (psy-

chopy.visual.nnlvs.VisualSystemHD property),
476

lensCorrection() (in module psy-
chopy.tools.mathtools), 757

lensCorrectionSpherical() (in module psy-
chopy.tools.mathtools), 758

lerp() (in module psychopy.tools.mathtools), 721
letterHeight (psychopy.visual.TextBox2 property), 439
letterHeightPix (psychopy.visual.TextBox2 property),

439
letterSpacing (psychopy.visual.TextBox2 attribute),

440
LibOVRBounds (in module psychopy.tools.rifttools), 769
LibOVRHapticsBuffer (in module psy-

chopy.tools.rifttools), 769
LibOVRPose (in module psychopy.tools.rifttools), 769
LibOVRPoseState (in module psychopy.tools.rifttools),

769
lights (psychopy.visual.nnlvs.VisualSystemHD prop-

erty), 476
lights (psychopy.visual.rift.Rift property), 380
lights (psychopy.visual.Window property), 496
LightSource (class in psychopy.visual), 252
lightType (psychopy.visual.LightSource property), 254

Index 977

PsychoPy - Psychology software for Python, Release 2023.2.3

Line (class in psychopy.visual.line), 256
lineariseLums() (psychopy.monitors.Monitor

method), 869
linearizeLums() (psychopy.monitors.Monitor

method), 869
lineColor (psychopy.visual.BoxStim property), 186
lineColor (psychopy.visual.BufferImageStim property),

196
lineColor (psychopy.visual.circle.Circle property), 207
lineColor (psychopy.visual.Form property), 224
lineColor (psychopy.visual.GratingStim property), 236
lineColor (psychopy.visual.ImageStim property), 248
lineColor (psychopy.visual.line.Line property), 261
lineColor (psychopy.visual.MovieStim property), 272
lineColor (psychopy.visual.ObjMeshStim property),

286
lineColor (psychopy.visual.pie.Pie property), 300
lineColor (psychopy.visual.PlaneStim property), 309
lineColor (psychopy.visual.polygon.Polygon property),

318
lineColor (psychopy.visual.progress.Progress prop-

erty), 328
lineColor (psychopy.visual.RadialStim property), 338
lineColor (psychopy.visual.rect.Rect property), 354
lineColor (psychopy.visual.shape.ShapeStim property),

406
lineColor (psychopy.visual.SphereStim property), 421
lineColor (psychopy.visual.TextBox2 property), 440
lineColorSpace (psychopy.visual.BoxStim property),

186
lineColorSpace (psychopy.visual.BufferImageStim

property), 196
lineColorSpace (psychopy.visual.circle.Circle prop-

erty), 207
lineColorSpace (psychopy.visual.Form property), 224
lineColorSpace (psychopy.visual.GratingStim prop-

erty), 236
lineColorSpace (psychopy.visual.ImageStim property),

248
lineColorSpace (psychopy.visual.line.Line property),

261
lineColorSpace (psychopy.visual.MovieStim property),

272
lineColorSpace (psychopy.visual.ObjMeshStim prop-

erty), 286
lineColorSpace (psychopy.visual.pie.Pie property),

300
lineColorSpace (psychopy.visual.PlaneStim property),

309
lineColorSpace (psychopy.visual.polygon.Polygon

property), 318
lineColorSpace (psychopy.visual.progress.Progress

property), 328
lineColorSpace (psychopy.visual.RadialStim prop-

erty), 338
lineColorSpace (psychopy.visual.rect.Rect property),

354
lineColorSpace (psychopy.visual.shape.ShapeStim

property), 406
lineColorSpace (psychopy.visual.SphereStim prop-

erty), 421
lineColorSpace (psychopy.visual.TextBox2 property),

440
lineRGB (psychopy.visual.BoxStim property), 186
lineRGB (psychopy.visual.BufferImageStim property),

196
lineRGB (psychopy.visual.circle.Circle property), 207
lineRGB (psychopy.visual.Form property), 224
lineRGB (psychopy.visual.GratingStim property), 236
lineRGB (psychopy.visual.ImageStim property), 248
lineRGB (psychopy.visual.line.Line property), 261
lineRGB (psychopy.visual.MovieStim property), 273
lineRGB (psychopy.visual.ObjMeshStim property), 286
lineRGB (psychopy.visual.pie.Pie property), 300
lineRGB (psychopy.visual.PlaneStim property), 309
lineRGB (psychopy.visual.polygon.Polygon property),

318
lineRGB (psychopy.visual.progress.Progress property),

328
lineRGB (psychopy.visual.RadialStim property), 338
lineRGB (psychopy.visual.rect.Rect property), 354
lineRGB (psychopy.visual.shape.ShapeStim property),

407
lineRGB (psychopy.visual.SphereStim property), 421
lineRGB (psychopy.visual.TextBox2 property), 440
lineSpacing (psychopy.visual.TextBox2 property), 440
lineWidth (psychopy.visual.BoxStim attribute), 186
lineWidth (psychopy.visual.BufferImageStim attribute),

196
lineWidth (psychopy.visual.circle.Circle attribute), 207
lineWidth (psychopy.visual.Form attribute), 224
lineWidth (psychopy.visual.GratingStim attribute), 236
lineWidth (psychopy.visual.ImageStim attribute), 248
lineWidth (psychopy.visual.line.Line attribute), 262
lineWidth (psychopy.visual.MovieStim attribute), 273
lineWidth (psychopy.visual.ObjMeshStim attribute),

286
lineWidth (psychopy.visual.pie.Pie attribute), 300
lineWidth (psychopy.visual.PlaneStim attribute), 309
lineWidth (psychopy.visual.polygon.Polygon attribute),

318
lineWidth (psychopy.visual.progress.Progress at-

tribute), 328
lineWidth (psychopy.visual.RadialStim attribute), 339
lineWidth (psychopy.visual.rect.Rect attribute), 354
lineWidth (psychopy.visual.shape.ShapeStim attribute),

407
lineWidth (psychopy.visual.SphereStim attribute), 421

Index 978

PsychoPy - Psychology software for Python, Release 2023.2.3

lineWidth (psychopy.visual.TextBox2 attribute), 440
linkProgram() (in module psychopy.tools.gltools), 672
linkProgramObjectARB() (in module psy-

chopy.tools.gltools), 672
listPlugins() (in module psychopy.plugins), 875
lms (psychopy.colors.Color property), 792
lms2rgb() (in module psychopy.tools.colorspacetools),

661
lmsa (psychopy.colors.Color property), 792
load() (psychopy.sound.AudioClip static method), 524
load() (psychopy.visual.MovieStim method), 273
loadAll() (psychopy.preferences.Preferences method),

881
loadAppData() (psychopy.preferences.Preferences

method), 881
loadMovie() (psychopy.visual.MovieStim method), 273
loadMovie() (psychopy.visual.VlcMovieStim method),

459
loadMtlFile() (in module psychopy.tools.gltools), 704
loadObjFile() (in module psychopy.tools.gltools), 702
loadPlugin() (in module psychopy.plugins), 876
loadUserPrefs() (psychopy.preferences.Preferences

method), 881
log() (in module psychopy.logging), 861
log() (psychopy.logging._Logger method), 860
LogFile (class in psychopy.logging), 860
logged_time (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent

attribute), 618, 626
logged_time (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 616
logOnFlip() (psychopy.visual.nnlvs.VisualSystemHD

method), 476
logOnFlip() (psychopy.visual.rift.Rift method), 380
logOnFlip() (psychopy.visual.Window method), 496
longName (psychopy.hardware.crs.bits.BitsSharp at-

tribute), 570
longName (psychopy.hardware.crs.colorcal.ColorCAL

attribute), 583
lookAt() (in module psychopy.tools.viewtools), 785
loopCount (psychopy.visual.MovieStim property), 273
loopCount (psychopy.visual.VlcMovieStim property),

459
loopEnded() (psychopy.data.ExperimentHandler

method), 796

M
magnitude (psychopy.layout.Position property), 856
magnitude (psychopy.layout.Size property), 858
magnitude (psychopy.layout.Vector property), 855
make2DGauss() (in module psychopy.visual.filters), 846
makeDKL2RGB() (in module psychopy.monitors), 873
makeGauss() (in module psychopy.visual.filters), 847
makeGrating() (in module psychopy.visual.filters), 847

makeImageAuto() (in module psy-
chopy.tools.imagetools), 715

makeLMS2RGB() (in module psychopy.monitors), 873
makeMask() (in module psychopy.visual.filters), 847
makeRadialMatrix() (in module psy-

chopy.visual.filters), 848
manufacturer (psychopy.visual.rift.Rift property), 381
mapBuffer() (in module psychopy.tools.gltools), 693
markerColor (psychopy.visual.Form property), 224
markerColor (psychopy.visual.Slider property), 414
markerPos (psychopy.visual.Slider attribute), 414
mask (psychopy.visual.BufferImageStim attribute), 196
mask (psychopy.visual.GratingStim attribute), 236
mask (psychopy.visual.ImageStim attribute), 248
mask (psychopy.visual.RadialStim attribute), 339
maskMatrix() (in module psychopy.visual.filters), 848
maskParams (psychopy.visual.BufferImageStim at-

tribute), 196
maskParams (psychopy.visual.GratingStim attribute),

236
maskParams (psychopy.visual.ImageStim attribute), 248
maskParams (psychopy.visual.RadialStim attribute), 339
matrixFromEulerAngles() (in module psy-

chopy.tools.mathtools), 742
matrixToQuat() (in module psychopy.tools.mathtools),

741
maxFlowRate (psychopy.hardware.qmix.Pump property),

592
maxRecordingSize (psychopy.sound.Microphone prop-

erty), 519
mean() (psychopy.data.QuestHandler method), 826
measure() (psychopy.hardware.crs.colorcal.ColorCAL

method), 583
mergeFolder() (in module psychopy.tools.filetools), 665
metadata (psychopy.hardware.camera.Camera prop-

erty), 546
Method of constants, 31
mic (psychopy.hardware.camera.Camera property), 546
Microphone (class in psychopy.sound), 517
mode (psychopy.hardware.brainproducts.RemoteControlServer

property), 538
mode (psychopy.hardware.crs.bits.BitsSharp property),

571
mode() (psychopy.data.QuestHandler method), 826
modelMatrix (psychopy.visual.RigidBodyPose prop-

erty), 396
modifiers (psychopy.iohub.client.keyboard.KeyboardPress

property), 603
modifiers (psychopy.iohub.client.keyboard.KeyboardRelease

property), 605
module

psychopy.clock, 166
psychopy.core, 163
psychopy.data, 793

Index 979

PsychoPy - Psychology software for Python, Release 2023.2.3

psychopy.hardware, 534
psychopy.hardware.brainproducts, 537
psychopy.hardware.camera, 540
psychopy.hardware.crs, 549
psychopy.hardware.emulator, 584
psychopy.hardware.forp, 585
psychopy.hardware.joystick, 585
psychopy.hardware.keyboard, 534
psychopy.hardware.minolta, 590
psychopy.hardware.pr, 590
psychopy.hardware.qmix, 590
psychopy.info, 852
psychopy.iohub.client, 593
psychopy.iohub.client.keyboard, 600
psychopy.logging, 859
psychopy.misc, 865
psychopy.parallel, 873
psychopy.preferences, 881
psychopy.session, 170
psychopy.sound, 507
psychopy.tools, 657
psychopy.tools.colorspacetools, 657
psychopy.tools.coordinatetools, 664
psychopy.tools.filetools, 664
psychopy.tools.gltools, 666
psychopy.tools.imagetools, 714, 768
psychopy.tools.mathtools, 715
psychopy.tools.monitorunittools, 760
psychopy.tools.movietools, 762
psychopy.tools.plottools, 768
psychopy.tools.systemtools, 770
psychopy.tools.typetools, 775
psychopy.tools.unittools, 776
psychopy.tools.viewtools, 778
psychopy.visual.filters, 845
psychopy.visual.windowframepack, 503
psychopy.visual.windowwarp, 504

Monitor (class in psychopy.monitors), 868
monitor (psychopy.layout.Position property), 856
monitor (psychopy.layout.Size property), 858
monitor (psychopy.layout.Vector property), 855
monitorEDID (psychopy.hardware.crs.bits.BitsSharp

property), 571
monitorFramePeriod (psychopy.visual.Window at-

tribute), 487
MonocularEyeSampleEvent (class in psy-

chopy.iohub.devices.eyetracker), 616, 628
monoscopic (psychopy.visual.nnlvs.VisualSystemHD

property), 477
MonotonicClock (class in psychopy.clock), 168
MonotonicClock (class in psychopy.core), 164
Mouse (class in psychopy.event), 842
mouseMoved() (psychopy.event.Mouse method), 843
mouseMoveTime() (psychopy.event.Mouse method), 843

mouseVisible (psychopy.visual.nnlvs.VisualSystemHD
attribute), 477

mouseVisible (psychopy.visual.rift.Rift attribute), 381
mouseVisible (psychopy.visual.Window attribute), 497
MovieFileWriter (class in psychopy.tools.movietools),

762
MovieStim (class in psychopy.visual), 266
multiFlip() (psychopy.visual.nnlvs.VisualSystemHD

method), 477
multiFlip() (psychopy.visual.rift.Rift method), 381
multiplyProjectionMatrixGL() (psy-

chopy.visual.rift.Rift method), 381
multiplyViewMatrixGL() (psychopy.visual.rift.Rift

method), 382
MultiStairHandler (class in psychopy.data), 834
multMatrix() (in module psychopy.tools.mathtools),

745
multQuat() (in module psychopy.tools.mathtools), 736
muted (psychopy.visual.MovieStim property), 273

N
name (psychopy.hardware.camera.CameraInfo property),

548
name (psychopy.hardware.crs.bits.BitsSharp attribute),

571
name (psychopy.visual.Aperture attribute), 179
name (psychopy.visual.BufferImageStim attribute), 197
name (psychopy.visual.circle.Circle attribute), 208
name (psychopy.visual.Form attribute), 224
name (psychopy.visual.GratingStim attribute), 237
name (psychopy.visual.ImageStim attribute), 248
name (psychopy.visual.line.Line attribute), 262
name (psychopy.visual.MovieStim attribute), 273
name (psychopy.visual.pie.Pie attribute), 300
name (psychopy.visual.polygon.Polygon attribute), 319
name (psychopy.visual.progress.Progress attribute), 328
name (psychopy.visual.RadialStim attribute), 339
name (psychopy.visual.rect.Rect attribute), 355
name (psychopy.visual.shape.ShapeStim attribute), 407
name (psychopy.visual.TextBox2 attribute), 440
name (psychopy.visual.TextStim attribute), 449
name (psychopy.visual.VlcMovieStim attribute), 459
named (psychopy.colors.Color property), 792
nearClip (psychopy.visual.nnlvs.VisualSystemHD prop-

erty), 478
nearClip (psychopy.visual.rift.Rift property), 382
nearClip (psychopy.visual.Window property), 497
newCalib() (psychopy.monitors.Monitor method), 869
next() (psychopy.data.MultiStairHandler method), 836
next() (psychopy.data.PsiHandler method), 821
next() (psychopy.data.QuestHandler method), 826
next() (psychopy.data.QuestPlusHandler method), 831
next() (psychopy.data.StairHandler method), 816
next() (psychopy.data.TrialHandler method), 800

Index 980

PsychoPy - Psychology software for Python, Release 2023.2.3

next() (psychopy.data.TrialHandler2 method), 805
next() (psychopy.data.TrialHandlerExt method), 811
nextEditable() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
478

nextEditable() (psychopy.visual.rift.Rift method), 382
nextEditable() (psychopy.visual.Window method),

497
nextEntry() (psychopy.data.ExperimentHandler

method), 796
noiseDots (psychopy.visual.DotStim attribute), 213
NoiseStim (class in psychopy.visual), 278
norm (psychopy.layout.Position property), 856
norm (psychopy.layout.Size property), 858
norm (psychopy.layout.Vector property), 855
norm (psychopy.layout.Vertices property), 859
normalize() (in module psychopy.tools.mathtools), 716
normalMatrix (psychopy.visual.RigidBodyPose prop-

erty), 396
normalMatrix() (in module psychopy.tools.mathtools),

749

O
ObjMeshInfo (class in psychopy.tools.gltools), 701
ObjMeshStim (class in psychopy.visual), 281
OffsetVoiceKey (class in psychopy.voicekey), 884
onResize() (psychopy.visual.nnlvs.VisualSystemHD

method), 478
onResize() (psychopy.visual.rift.Rift method), 382
OnsetVoiceKey (class in psychopy.voicekey), 882
opacity (psychopy.colors.Color property), 792
opacity (psychopy.visual.BufferImageStim property),

197
opacity (psychopy.visual.circle.Circle property), 208
opacity (psychopy.visual.Form property), 224
opacity (psychopy.visual.GratingStim property), 237
opacity (psychopy.visual.ImageStim property), 249
opacity (psychopy.visual.line.Line property), 262
opacity (psychopy.visual.MovieStim property), 273
opacity (psychopy.visual.pie.Pie property), 300
opacity (psychopy.visual.polygon.Polygon property),

319
opacity (psychopy.visual.progress.Progress property),

328
opacity (psychopy.visual.RadialStim property), 339
opacity (psychopy.visual.rect.Rect property), 355
opacity (psychopy.visual.shape.ShapeStim property),

407
opacity (psychopy.visual.Slider property), 414
opacity (psychopy.visual.TextBox2 property), 440
opacity (psychopy.visual.TextStim property), 449
opacity (psychopy.visual.VlcMovieStim property), 460
open() (psychopy.hardware.brainproducts.RemoteControlServer

method), 538

open() (psychopy.hardware.camera.Camera method),
546

open() (psychopy.tools.movietools.MovieFileWriter
method), 766

openOutputFile() (in module psychopy.tools.filetools),
665

openRecorder() (psy-
chopy.hardware.brainproducts.RemoteControlServer
method), 538

ori (psychopy.visual.Aperture attribute), 179
ori (psychopy.visual.BoxStim property), 187
ori (psychopy.visual.BufferImageStim attribute), 197
ori (psychopy.visual.circle.Circle attribute), 208
ori (psychopy.visual.Form attribute), 224
ori (psychopy.visual.GratingStim attribute), 237
ori (psychopy.visual.ImageStim attribute), 249
ori (psychopy.visual.line.Line attribute), 262
ori (psychopy.visual.MovieStim attribute), 273
ori (psychopy.visual.ObjMeshStim property), 286
ori (psychopy.visual.pie.Pie attribute), 300
ori (psychopy.visual.PlaneStim property), 309
ori (psychopy.visual.polygon.Polygon attribute), 319
ori (psychopy.visual.progress.Progress attribute), 328
ori (psychopy.visual.RadialStim attribute), 339
ori (psychopy.visual.rect.Rect attribute), 355
ori (psychopy.visual.RigidBodyPose property), 396
ori (psychopy.visual.shape.ShapeStim attribute), 407
ori (psychopy.visual.SphereStim property), 421
ori (psychopy.visual.TextBox2 attribute), 440
ori (psychopy.visual.TextStim attribute), 449
ori (psychopy.visual.VlcMovieStim attribute), 460
origSize (psychopy.visual.MovieStim property), 273
ortho3Dto2D() (in module psychopy.tools.mathtools),

727
orthogonalize() (in module psy-

chopy.tools.mathtools), 717
orthoProjectionMatrix() (in module psy-

chopy.tools.viewtools), 784
outDeviceIndex (psychopy.sound.AudioDeviceStatus

property), 533
outputChannels (psychopy.sound.AudioDeviceInfo

property), 531
outputLatency (psychopy.sound.AudioDeviceInfo prop-

erty), 531
overflow (psychopy.visual.TextBox2 attribute), 440
overlaps() (psychopy.visual.Aperture method), 179
overlaps() (psychopy.visual.BufferImageStim method),

197
overlaps() (psychopy.visual.circle.Circle method), 208
overlaps() (psychopy.visual.Form method), 225
overlaps() (psychopy.visual.GratingStim method), 237
overlaps() (psychopy.visual.ImageStim method), 249
overlaps() (psychopy.visual.line.Line method), 262
overlaps() (psychopy.visual.MovieStim method), 273

Index 981

PsychoPy - Psychology software for Python, Release 2023.2.3

overlaps() (psychopy.visual.pie.Pie method), 300
overlaps() (psychopy.visual.polygon.Polygon method),

319
overlaps() (psychopy.visual.progress.Progress

method), 328
overlaps() (psychopy.visual.RadialStim method), 339
overlaps() (psychopy.visual.rect.Rect method), 355
overlaps() (psychopy.visual.shape.ShapeStim method),

407
overlaps() (psychopy.visual.TextBox2 method), 440
overlaps() (psychopy.visual.TextStim method), 449
overlaps() (psychopy.visual.VlcMovieStim method),

460
overlayPresent (psychopy.visual.rift.Rift property),

382
overwriteProtection (psy-

chopy.hardware.brainproducts.RemoteControlServer
property), 539

P
padding (psychopy.visual.TextBox2 property), 440
palette (psychopy.visual.TextBox2 property), 440
pallette (psychopy.visual.TextBox2 property), 441
ParallelPort (in module psychopy.parallel), 873
paramEstimate (psychopy.data.QuestPlusHandler

property), 831
participant (psychopy.hardware.brainproducts.RemoteControlServer

property), 539
PatchStim (class in psychopy.visual), 289
pause() (psychopy.data.ExperimentHandler method),

796
pause() (psychopy.hardware.crs.bits.BitsSharp method),

571
pause() (psychopy.sound.backend_ptb.SoundPTB

method), 511
pause() (psychopy.sound.backend_sounddevice.SoundDeviceSound

method), 513
pause() (psychopy.sound.Microphone method), 519
pause() (psychopy.visual.MovieStim method), 274
pause() (psychopy.visual.VlcMovieStim method), 460
pauseExperiment() (psychopy.session.Session

method), 173
pauseRecording() (psy-

chopy.hardware.brainproducts.RemoteControlServer
method), 539

peak_velocity_xy (psy-
chopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 633

peak_velocity_xy (psy-
chopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

percentageComplete (psychopy.visual.VlcMovieStim
property), 460

perfHudMode() (psychopy.visual.rift.Rift method), 382

perp() (in module psychopy.tools.mathtools), 720
perspectiveProjectionMatrix() (in module psy-

chopy.tools.viewtools), 784
phase (psychopy.visual.GratingStim attribute), 237
phase (psychopy.visual.RadialStim attribute), 340
Pie (class in psychopy.visual.pie), 294
pix (psychopy.layout.Position property), 856
pix (psychopy.layout.Size property), 858
pix (psychopy.layout.Vector property), 855
pix (psychopy.layout.Vertices property), 859
pix2cm() (in module psychopy.tools.monitorunittools),

761
pix2deg() (in module psychopy.tools.monitorunittools),

761
PIXEL_FORMAT_RGB24 (psy-

chopy.tools.movietools.MovieFileWriter at-
tribute), 764

PIXEL_FORMAT_RGBA32 (psy-
chopy.tools.movietools.MovieFileWriter at-
tribute), 764

pixelFormat (psychopy.hardware.camera.CameraInfo
property), 549

pixelFormat (psychopy.tools.movietools.MovieFileWriter
property), 766

pixelsPerTanAngleAtCenter (psy-
chopy.visual.rift.Rift property), 382

placeholder (psychopy.visual.TextBox2 attribute), 441
PlaneStim (class in psychopy.visual), 304
play() (psychopy.sound.backend_ptb.SoundPTB

method), 511
play() (psychopy.sound.backend_pygame.SoundPygame

method), 516
play() (psychopy.sound.backend_pyo.SoundPyo

method), 515
play() (psychopy.sound.backend_sounddevice.SoundDeviceSound

method), 513
play() (psychopy.visual.MovieStim method), 274
play() (psychopy.visual.VlcMovieStim method), 460
playback() (psychopy.microphone.AdvAudioCapture

method), 864
playMarker() (psychopy.microphone.AdvAudioCapture

method), 864
plotFrameIntervals() (in module psy-

chopy.tools.plottools), 768
pluginEntryPoints() (in module psychopy.plugins),

879
pluginMetadata() (in module psychopy.plugins), 879
pointInPolygon() (in module psy-

chopy.visual.helpers), 241
pointToNdc() (in module psychopy.tools.viewtools), 786
pol2cart() (in module psychopy.tools.coordinatetools),

664
poll() (psychopy.sound.Microphone method), 519
pollStatus() (psychopy.hardware.crs.bits.BitsSharp

Index 982

PsychoPy - Psychology software for Python, Release 2023.2.3

method), 571
Polygon (class in psychopy.visual.polygon), 312
polygonsOverlap() (in module psy-

chopy.visual.helpers), 241
pos (psychopy.layout.Vertices property), 859
pos (psychopy.visual.Aperture property), 179
pos (psychopy.visual.BoxStim property), 187
pos (psychopy.visual.BufferImageStim property), 197
pos (psychopy.visual.circle.Circle property), 208
pos (psychopy.visual.Form property), 225
pos (psychopy.visual.GratingStim property), 237
pos (psychopy.visual.ImageStim property), 249
pos (psychopy.visual.LightSource property), 254
pos (psychopy.visual.line.Line property), 262
pos (psychopy.visual.MovieStim property), 274
pos (psychopy.visual.ObjMeshStim property), 286
pos (psychopy.visual.pie.Pie property), 301
pos (psychopy.visual.PlaneStim property), 309
pos (psychopy.visual.polygon.Polygon property), 319
pos (psychopy.visual.progress.Progress property), 329
pos (psychopy.visual.RadialStim property), 340
pos (psychopy.visual.rect.Rect property), 355
pos (psychopy.visual.RigidBodyPose property), 396
pos (psychopy.visual.shape.ShapeStim property), 407
pos (psychopy.visual.Slider property), 414
pos (psychopy.visual.SphereStim property), 422
pos (psychopy.visual.TextBox2 property), 441
pos (psychopy.visual.TextStim property), 449
pos (psychopy.visual.VlcMovieStim property), 460
Position (class in psychopy.layout), 855
positionSecs (psychopy.sound.AudioDeviceStatus

property), 533
posOri (psychopy.visual.RigidBodyPose property), 396
posOriToMatrix() (in module psy-

chopy.tools.mathtools), 752
posPix (psychopy.visual.Aperture property), 180
posPix (psychopy.visual.TextStim property), 450
posterior (psychopy.data.QuestPlusHandler property),

831
ppd_x (psychopy.iohub.devices.eyetracker.FixationStartEvent

attribute), 631
ppd_x (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 629
ppd_x (psychopy.iohub.devices.eyetracker.SaccadeStartEvent

attribute), 634
ppd_y (psychopy.iohub.devices.eyetracker.FixationStartEvent

attribute), 631
ppd_y (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 629
ppd_y (psychopy.iohub.devices.eyetracker.SaccadeStartEvent

attribute), 634
predictedLatency (psy-

chopy.sound.AudioDeviceStatus property),
533

Preferences (class in psychopy.preferences), 881
pressEventID (psychopy.iohub.client.keyboard.KeyboardRelease

property), 604
primeClock() (psychopy.hardware.crs.bits.BitsPlusPlus

method), 551
primeClock() (psychopy.hardware.crs.bits.BitsSharp

method), 571
printAsText() (psychopy.data.MultiStairHandler

method), 836
printAsText() (psychopy.data.PsiHandler method),

821
printAsText() (psychopy.data.QuestHandler method),

827
printAsText() (psychopy.data.QuestPlusHandler

method), 832
printAsText() (psychopy.data.StairHandler method),

817
printAsText() (psychopy.data.TrialHandler method),

800
printAsText() (psychopy.data.TrialHandler2 method),

806
printAsText() (psychopy.data.TrialHandlerExt

method), 812
prior (psychopy.data.QuestPlusHandler property), 832
productName (psychopy.visual.rift.Rift property), 382
Progress (class in psychopy.visual.progress), 323
progress (psychopy.visual.progress.Progress attribute),

329
project() (in module psychopy.tools.mathtools), 720
projectFrustum() (in module psy-

chopy.tools.viewtools), 781
projectFrustumToPlane() (in module psy-

chopy.tools.viewtools), 782
projectionMatrix (psy-

chopy.visual.nnlvs.VisualSystemHD property),
478

projectionMatrix (psychopy.visual.rift.Rift property),
382

projectionMatrix (psychopy.visual.Window property),
497

ProjectorFramePacker (class in psy-
chopy.visual.windowframepack), 504

PsiHandler (class in psychopy.data), 819
psychopy.clock

module, 166
psychopy.core

module, 163
psychopy.data

module, 793
psychopy.hardware

module, 534
psychopy.hardware.brainproducts

module, 537
psychopy.hardware.camera

Index 983

PsychoPy - Psychology software for Python, Release 2023.2.3

module, 540
psychopy.hardware.crs

module, 549
psychopy.hardware.emulator

module, 584
psychopy.hardware.forp

module, 585
psychopy.hardware.joystick

module, 585
psychopy.hardware.keyboard

module, 534
psychopy.hardware.minolta

module, 590
psychopy.hardware.pr

module, 590
psychopy.hardware.qmix

module, 590
psychopy.info

module, 852
psychopy.iohub.client

module, 593
psychopy.iohub.client.keyboard

module, 600
psychopy.logging

module, 859
psychopy.misc

module, 865
psychopy.parallel

module, 873
psychopy.preferences

module, 881
psychopy.session

module, 170
psychopy.sound

module, 507
psychopy.tools

module, 657
psychopy.tools.colorspacetools

module, 657
psychopy.tools.coordinatetools

module, 664
psychopy.tools.filetools

module, 664
psychopy.tools.gltools

module, 666
psychopy.tools.imagetools

module, 714, 768
psychopy.tools.mathtools

module, 715
psychopy.tools.monitorunittools

module, 760
psychopy.tools.movietools

module, 762
psychopy.tools.plottools

module, 768
psychopy.tools.systemtools

module, 770
psychopy.tools.typetools

module, 775
psychopy.tools.unittools

module, 776
psychopy.tools.viewtools

module, 778
psychopy.visual.filters

module, 845
psychopy.visual.windowframepack

module, 503
psychopy.visual.windowwarp

module, 504
pt (psychopy.layout.Position property), 856
pt (psychopy.layout.Size property), 858
pt (psychopy.layout.Vector property), 855
pts (psychopy.visual.MovieStim property), 274
Pump (class in psychopy.hardware.qmix), 590
pupil_measure1 (psy-

chopy.iohub.devices.eyetracker.MonocularEyeSampleEvent
attribute), 617

pupil_measure1_type (psy-
chopy.iohub.devices.eyetracker.FixationStartEvent
attribute), 631

pupil_measure1_type (psy-
chopy.iohub.devices.eyetracker.MonocularEyeSampleEvent
attribute), 617, 629

pupil_measure1_type (psy-
chopy.iohub.devices.eyetracker.SaccadeStartEvent
attribute), 634

pupil_measure2 (psy-
chopy.iohub.devices.eyetracker.MonocularEyeSampleEvent
attribute), 617

pupil_measure2_type (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 619

pupil_measure2_type (psy-
chopy.iohub.devices.eyetracker.MonocularEyeSampleEvent
attribute), 617

pupil_measure_1 (psy-
chopy.iohub.devices.eyetracker.FixationStartEvent
attribute), 631

pupil_measure_1 (psy-
chopy.iohub.devices.eyetracker.MonocularEyeSampleEvent
attribute), 628

pupil_measure_1 (psy-
chopy.iohub.devices.eyetracker.SaccadeStartEvent
attribute), 634

Q
quantile() (psychopy.data.QuestHandler method), 827

Index 984

PsychoPy - Psychology software for Python, Release 2023.2.3

quatFromAxisAngle() (in module psy-
chopy.tools.mathtools), 734

quatMagnitude() (in module psy-
chopy.tools.mathtools), 736

quatToAxisAngle() (in module psy-
chopy.tools.mathtools), 733

quatToMatrix() (in module psychopy.tools.mathtools),
739

quatYawPitchRoll() (in module psy-
chopy.tools.mathtools), 734

QueryObjectInfo (class in psychopy.tools.gltools), 677
QuestHandler (class in psychopy.data), 823
QuestPlusHandler (class in psychopy.data), 829
quit() (psychopy.iohub.client.ioHubConnection

method), 599
quitApp() (in module psychopy.app), 789

R
radialCycles (psychopy.visual.RadialStim attribute),

340
radialPhase (psychopy.visual.RadialStim attribute),

340
RadialStim (class in psychopy.visual), 333
radians() (in module psychopy.tools.unittools), 776
radius (psychopy.visual.circle.Circle attribute), 203, 208
radius (psychopy.visual.pie.Pie attribute), 295, 301
radius (psychopy.visual.polygon.Polygon attribute), 319
range (psychopy.data.QuestHandler property), 827
rating (psychopy.visual.Slider property), 415
RatingScale (class in psychopy.visual), 344
raw_x (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 617, 628
raw_y (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 617, 628
read() (psychopy.hardware.crs.bits.BitsSharp method),

572
readline() (psychopy.hardware.crs.colorcal.ColorCAL

method), 584
readPin() (psychopy.parallel method), 874
readSecs (psychopy.sound.AudioDeviceStatus prop-

erty), 533
rec709TF() (in module psychopy.tools.colorspacetools),

662
recBufferSecs (psychopy.sound.Microphone property),

520
recenterTrackingOrigin() (psychopy.visual.rift.Rift

method), 382
record() (psychopy.hardware.camera.Camera method),

546
record() (psychopy.microphone.AdvAudioCapture

method), 864
record() (psychopy.sound.Microphone method), 520
recordedSecs (psychopy.sound.AudioDeviceStatus

property), 533

recordFrameIntervals (psy-
chopy.visual.nnlvs.VisualSystemHD attribute),
478

recordFrameIntervals (psychopy.visual.rift.Rift at-
tribute), 382

recordFrameIntervals (psychopy.visual.Window at-
tribute), 497

recording (psychopy.sound.Microphone property), 520
recordingBytes (psychopy.hardware.camera.Camera

property), 546
recordingTime (psychopy.hardware.camera.Camera

property), 546
recordRating() (psychopy.visual.Slider method), 415
Rect (class in psychopy.visual.rect), 348
reflect() (in module psychopy.tools.mathtools), 718
RemoteControlServer (class in psy-

chopy.hardware.brainproducts), 537
removeEditable() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
478

removeEditable() (psychopy.visual.rift.Rift method),
383

removeEditable() (psychopy.visual.Window method),
497

removeTarget() (psychopy.logging._Logger method),
860

render() (psychopy.colors.Color method), 792
replay() (psychopy.visual.MovieStim method), 274
replay() (psychopy.visual.VlcMovieStim method), 461
reporting (psychopy.iohub.client.keyboard.Keyboard

property), 602
requestedStartTime (psy-

chopy.sound.AudioDeviceStatus property),
533

requestedStopTime (psy-
chopy.sound.AudioDeviceStatus property),
533

requireInternetAccess() (in module psychopy.web),
886

requirePlugin() (in module psychopy.plugins), 877
resample() (psychopy.microphone.AdvAudioCapture

method), 864
resample() (psychopy.sound.AudioClip method), 524
rescaleColor() (in module psy-

chopy.tools.colorspacetools), 663
reset() (psychopy.clock.Clock method), 167
reset() (psychopy.clock.CountdownTimer method), 167
reset() (psychopy.core.Clock method), 163
reset() (psychopy.core.CountdownTimer method), 164
reset() (psychopy.hardware.crs.bits.BitsPlusPlus

method), 551
reset() (psychopy.hardware.crs.bits.BitsSharp method),

572
reset() (psychopy.microphone.AdvAudioCapture

Index 985

PsychoPy - Psychology software for Python, Release 2023.2.3

method), 864
reset() (psychopy.visual.Form method), 225
reset() (psychopy.visual.Slider method), 415
reset() (psychopy.visual.TextBox2 method), 441
resetClock() (psychopy.hardware.crs.bits.BitsPlusPlus

method), 551
resetClock() (psychopy.hardware.crs.bits.BitsSharp

method), 572
resetEyeTransform() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
478

resetEyeTransform() (psychopy.visual.rift.Rift
method), 383

resetEyeTransform() (psychopy.visual.Window
method), 497

resetPrefs() (psychopy.preferences.Preferences
method), 881

resetViewport() (psy-
chopy.visual.nnlvs.VisualSystemHD method),
479

resetViewport() (psychopy.visual.rift.Rift method),
383

resetViewport() (psychopy.visual.Window method),
498

responseColor (psychopy.visual.Form property), 225
ResponseEmulator (class in psy-

chopy.hardware.emulator), 584
restoreBadPrefs() (psychopy.preferences.Preferences

method), 881
resume() (psychopy.data.ExperimentHandler method),

796
resumeExperiment() (psychopy.session.Session

method), 174
resumeRecording() (psy-

chopy.hardware.brainproducts.RemoteControlServer
method), 539

retrieveAutoDraw() (psy-
chopy.visual.nnlvs.VisualSystemHD method),
479

retrieveAutoDraw() (psychopy.visual.rift.Rift
method), 383

retrieveAutoDraw() (psychopy.visual.Window
method), 498

reverseProject() (in module psy-
chopy.tools.mathtools), 750

rewind() (psychopy.visual.MovieStim method), 275
rewind() (psychopy.visual.VlcMovieStim method), 461
rgb (psychopy.colors.Color property), 792
RGB (psychopy.visual.BoxStim property), 182
RGB (psychopy.visual.BufferImageStim property), 191
RGB (psychopy.visual.circle.Circle property), 203
RGB (psychopy.visual.Form property), 218
RGB (psychopy.visual.GratingStim property), 231
RGB (psychopy.visual.ImageStim property), 243

RGB (psychopy.visual.line.Line property), 257
RGB (psychopy.visual.MovieStim property), 267
rgb (psychopy.visual.nnlvs.VisualSystemHD property),

479
RGB (psychopy.visual.ObjMeshStim property), 282
RGB (psychopy.visual.pie.Pie property), 295
RGB (psychopy.visual.PlaneStim property), 304
RGB (psychopy.visual.polygon.Polygon property), 314
RGB (psychopy.visual.progress.Progress property), 324
RGB (psychopy.visual.RadialStim property), 333
RGB (psychopy.visual.rect.Rect property), 350
rgb (psychopy.visual.rift.Rift property), 383
RGB (psychopy.visual.shape.ShapeStim property), 402
RGB (psychopy.visual.SphereStim property), 417
RGB (psychopy.visual.TextBox2 property), 434
RGB (psychopy.visual.TextStim property), 444
rgb (psychopy.visual.Window property), 498
rgb1 (psychopy.colors.Color property), 792
rgb255 (psychopy.colors.Color property), 792
rgb2dklCart() (in module psy-

chopy.tools.colorspacetools), 660
rgb2hsv() (in module psychopy.tools.colorspacetools),

661
rgb2lms() (in module psychopy.tools.colorspacetools),

661
rgba (psychopy.colors.Color property), 792
rgba1 (psychopy.colors.Color property), 792
rgba255 (psychopy.colors.Color property), 792
Rift (class in psychopy.visual.rift), 360
right_angle_x (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent

attribute), 619, 630
right_angle_y (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent

attribute), 619, 630
right_eye_cam_x (psy-

chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 619, 646

right_eye_cam_y (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 619, 646

right_eye_cam_z (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 619, 647

right_gaze_x (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 607, 619, 630, 646

right_gaze_y (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 607, 619, 630, 646

right_gaze_z (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 619

right_ppd_x (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 630

right_ppd_y (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 630

right_pupil_measure1 (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent

Index 986

PsychoPy - Psychology software for Python, Release 2023.2.3

attribute), 619
right_pupil_measure1_type (psy-

chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 619, 630

right_pupil_measure2 (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 619

right_pupil_measure2_type (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 619

right_pupil_measure_1 (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 607, 630, 647

right_raw_x (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 607, 619, 630

right_raw_y (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 607, 619, 630

right_velocity_x (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 630

right_velocity_xy (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 631

right_velocity_y (psy-
chopy.iohub.devices.eyetracker.BinocularEyeSampleEvent
attribute), 630

RigidBodyPose (class in psychopy.visual), 393
rms() (in module psychopy.voicekey), 885
rms() (psychopy.sound.AudioClip method), 525
rotationMatrix() (in module psy-

chopy.tools.mathtools), 743
RTBoxAddKeys() (psychopy.hardware.crs.bits.BitsSharp

method), 558
RTBoxCalibrate() (psy-

chopy.hardware.crs.bits.BitsSharp method),
558

RTBoxClear() (psychopy.hardware.crs.bits.BitsSharp
method), 558

RTBoxDisable() (psychopy.hardware.crs.bits.BitsSharp
method), 558

RTBoxEnable() (psychopy.hardware.crs.bits.BitsSharp
method), 559

RTBoxKeysPressed() (psy-
chopy.hardware.crs.bits.BitsSharp method),
559

RTBoxResetKeys() (psy-
chopy.hardware.crs.bits.BitsSharp method),
560

RTBoxSetKeys() (psychopy.hardware.crs.bits.BitsSharp
method), 560

RTBoxWait() (psychopy.hardware.crs.bits.BitsSharp
method), 560

RTBoxWaitN() (psychopy.hardware.crs.bits.BitsSharp
method), 561

run() (psychopy.hardware.emulator.ResponseEmulator
method), 584

run() (psychopy.hardware.emulator.SyncGenerator
method), 585

runExperiment() (psychopy.session.Session method),
174

runSetupProcedure() (psy-
chopy.iohub.devices.eyetracker.hw.mouse.EyeTracker
method), 653

runSetupProcedure() (psy-
chopy.iohub.devices.eyetracker.hw.pupil_labs.pupil_core.EyeTracker
method), 615

runSetupProcedure() (psy-
chopy.iohub.devices.eyetracker.hw.tobii.EyeTracker
method), 645

RunTimeInfo (class in psychopy.info), 852

S
SaccadeEndEvent (class in psy-

chopy.iohub.devices.eyetracker), 634
SaccadeStartEvent (class in psy-

chopy.iohub.devices.eyetracker), 633
sampleRate (psychopy.sound.AudioDeviceStatus prop-

erty), 533
sampleRateHz (psychopy.sound.AudioClip property),

525
samples (psychopy.sound.AudioClip property), 525
samples_from_file() (in module psychopy.voicekey),

885
samples_from_table() (in module psychopy.voicekey),

885
samples_to_file() (in module psychopy.voicekey),

885
save() (psychopy.hardware.camera.Camera method),

546
save() (psychopy.monitors.Monitor method), 869
save() (psychopy.sound.AudioClip method), 525
save() (psychopy.voicekey.OnsetVoiceKey method), 884
saveAppData() (psychopy.preferences.Preferences

method), 881
saveAsExcel() (psychopy.data.MultiStairHandler

method), 836
saveAsExcel() (psychopy.data.PsiHandler method),

821
saveAsExcel() (psychopy.data.QuestHandler method),

827
saveAsExcel() (psychopy.data.QuestPlusHandler

method), 832
saveAsExcel() (psychopy.data.StairHandler method),

817
saveAsExcel() (psychopy.data.TrialHandler method),

801
saveAsExcel() (psychopy.data.TrialHandler2 method),

806

Index 987

PsychoPy - Psychology software for Python, Release 2023.2.3

saveAsExcel() (psychopy.data.TrialHandlerExt
method), 812

saveAsJson() (psychopy.data.MultiStairHandler
method), 837

saveAsJson() (psychopy.data.PsiHandler method), 822
saveAsJson() (psychopy.data.QuestHandler method),

827
saveAsJson() (psychopy.data.QuestPlusHandler

method), 832
saveAsJson() (psychopy.data.StairHandler method),

817
saveAsJson() (psychopy.data.TrialHandler method),

801
saveAsJson() (psychopy.data.TrialHandler2 method),

806
saveAsJson() (psychopy.data.TrialHandlerExt

method), 813
saveAsPickle() (psychopy.data.ExperimentHandler

method), 797
saveAsPickle() (psychopy.data.MultiStairHandler

method), 837
saveAsPickle() (psychopy.data.PsiHandler method),

822
saveAsPickle() (psychopy.data.QuestHandler

method), 828
saveAsPickle() (psychopy.data.QuestPlusHandler

method), 833
saveAsPickle() (psychopy.data.StairHandler method),

818
saveAsPickle() (psychopy.data.TrialHandler method),

802
saveAsPickle() (psychopy.data.TrialHandler2

method), 807
saveAsPickle() (psychopy.data.TrialHandlerExt

method), 813
saveAsText() (psychopy.data.MultiStairHandler

method), 837
saveAsText() (psychopy.data.PsiHandler method), 822
saveAsText() (psychopy.data.QuestHandler method),

828
saveAsText() (psychopy.data.QuestPlusHandler

method), 833
saveAsText() (psychopy.data.StairHandler method),

818
saveAsText() (psychopy.data.TrialHandler method),

802
saveAsText() (psychopy.data.TrialHandler2 method),

807
saveAsText() (psychopy.data.TrialHandlerExt

method), 813
saveAsWideText() (psychopy.data.ExperimentHandler

method), 797
saveAsWideText() (psychopy.data.TrialHandler

method), 802

saveAsWideText() (psychopy.data.TrialHandler2
method), 807

saveAsWideText() (psychopy.data.TrialHandlerExt
method), 814

saveCurrentExperimentData() (psy-
chopy.session.Session method), 174

saveExperimentData() (psychopy.session.Session
method), 174

saveFrameIntervals() (psy-
chopy.visual.nnlvs.VisualSystemHD method),
479

saveFrameIntervals() (psychopy.visual.rift.Rift
method), 383

saveFrameIntervals() (psychopy.visual.Window
method), 498

saveMon() (psychopy.monitors.Monitor method), 869
saveMovieFrames() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
479

saveMovieFrames() (psychopy.visual.rift.Rift method),
384

saveMovieFrames() (psychopy.visual.Window method),
498

savePosterior() (psychopy.data.PsiHandler method),
822

saveUserPrefs() (psychopy.preferences.Preferences
method), 881

sawtooth() (psychopy.sound.AudioClip static method),
525

scale() (in module psychopy.tools.mathtools), 729
scaleMatrix() (in module psychopy.tools.mathtools),

743
scanPlugins() (in module psychopy.plugins), 875
SceneSkybox (class in psychopy.visual), 397
schedulePosition (psy-

chopy.sound.AudioDeviceStatus property),
533

scissor (psychopy.visual.nnlvs.VisualSystemHD prop-
erty), 480

scissor (psychopy.visual.rift.Rift property), 384
scissor (psychopy.visual.Window property), 499
scissorTest (psychopy.visual.nnlvs.VisualSystemHD

property), 480
scissorTest (psychopy.visual.rift.Rift property), 384
scissorTest (psychopy.visual.Window property), 499
screenshot (psychopy.visual.nnlvs.VisualSystemHD

property), 480
screenshot (psychopy.visual.rift.Rift property), 384
screenshot (psychopy.visual.Window property), 499
scrollbarWidth (psychopy.visual.Form property), 225
sd() (psychopy.data.QuestHandler method), 828
seek() (psychopy.visual.MovieStim method), 275
seek() (psychopy.visual.VlcMovieStim method), 461
sendAnalog() (psychopy.hardware.crs.bits.BitsSharp

Index 988

PsychoPy - Psychology software for Python, Release 2023.2.3

method), 572
sendAnnotation() (psy-

chopy.hardware.brainproducts.RemoteControlServer
method), 539

sendExperimentData() (psychopy.session.Session
method), 175

sendMessage() (psychopy.hardware.crs.bits.BitsSharp
method), 572

sendMessage() (psychopy.hardware.crs.colorcal.ColorCAL
method), 584

sendMessageEvent() (psy-
chopy.iohub.client.ioHubConnection method),
596

sendRaw() (psychopy.hardware.brainproducts.RemoteControlServer
method), 539

sendToLiaison() (psychopy.session.Session method),
175

sendTrigger() (psychopy.hardware.crs.bits.BitsPlusPlus
method), 552

sendTrigger() (psychopy.hardware.crs.bits.BitsSharp
method), 572

sensorSampleTime (psychopy.visual.rift.Rift property),
384

serialNumber (psychopy.visual.rift.Rift property), 385
Session (class in psychopy.session), 170
set() (psychopy.colors.Color method), 792
set() (psychopy.layout.Position method), 857
set() (psychopy.layout.Size method), 858
set() (psychopy.layout.Vector method), 855
setAmbientColor() (psy-

chopy.visual.BlinnPhongMaterial method),
291

setAmbientColor() (psychopy.visual.LightSource
method), 254

setAmbientLight() (in module psychopy.tools.gltools),
700

setAnalog() (psychopy.hardware.crs.bits.BitsSharp
method), 573

setAnchor() (psychopy.visual.Aperture method), 180
setAnchor() (psychopy.visual.BoxStim method), 187
setAnchor() (psychopy.visual.BufferImageStim

method), 197
setAnchor() (psychopy.visual.Form method), 225
setAnchor() (psychopy.visual.GratingStim method),

238
setAnchor() (psychopy.visual.ImageStim method), 249
setAnchor() (psychopy.visual.MovieStim method), 275
setAnchor() (psychopy.visual.ObjMeshStim method),

286
setAnchor() (psychopy.visual.PlaneStim method), 309
setAnchor() (psychopy.visual.RadialStim method), 340
setAnchor() (psychopy.visual.SphereStim method), 422
setAnchor() (psychopy.visual.TextBox2 method), 441
setAnchor() (psychopy.visual.VlcMovieStim method),

461
setAngularCycles() (psychopy.visual.RadialStim

method), 340
setAngularPhase() (psychopy.visual.RadialStim

method), 340
setas() (psychopy.layout.Vertices method), 859
setAutoDraw() (psychopy.visual.Aperture method), 180
setAutoDraw() (psychopy.visual.BufferImageStim

method), 197
setAutoDraw() (psychopy.visual.circle.Circle method),

209
setAutoDraw() (psychopy.visual.Form method), 225
setAutoDraw() (psychopy.visual.GratingStim method),

238
setAutoDraw() (psychopy.visual.ImageStim method),

249
setAutoDraw() (psychopy.visual.line.Line method), 263
setAutoDraw() (psychopy.visual.MovieStim method),

275
setAutoDraw() (psychopy.visual.pie.Pie method), 301
setAutoDraw() (psychopy.visual.polygon.Polygon

method), 320
setAutoDraw() (psychopy.visual.progress.Progress

method), 329
setAutoDraw() (psychopy.visual.RadialStim method),

340
setAutoDraw() (psychopy.visual.rect.Rect method), 355
setAutoDraw() (psychopy.visual.shape.ShapeStim

method), 408
setAutoDraw() (psychopy.visual.TextBox2 method), 441
setAutoDraw() (psychopy.visual.TextStim method), 450
setAutoDraw() (psychopy.visual.VlcMovieStim

method), 461
setAutoLog() (psychopy.visual.Aperture method), 180
setAutoLog() (psychopy.visual.BufferImageStim

method), 198
setAutoLog() (psychopy.visual.circle.Circle method),

209
setAutoLog() (psychopy.visual.Form method), 225
setAutoLog() (psychopy.visual.GratingStim method),

238
setAutoLog() (psychopy.visual.ImageStim method), 249
setAutoLog() (psychopy.visual.line.Line method), 263
setAutoLog() (psychopy.visual.MovieStim method),

275
setAutoLog() (psychopy.visual.pie.Pie method), 301
setAutoLog() (psychopy.visual.polygon.Polygon

method), 320
setAutoLog() (psychopy.visual.progress.Progress

method), 329
setAutoLog() (psychopy.visual.RadialStim method),

340
setAutoLog() (psychopy.visual.rect.Rect method), 355
setAutoLog() (psychopy.visual.shape.ShapeStim

Index 989

PsychoPy - Psychology software for Python, Release 2023.2.3

method), 408
setAutoLog() (psychopy.visual.TextBox method), 431
setAutoLog() (psychopy.visual.TextBox2 method), 441
setAutoLog() (psychopy.visual.TextStim method), 450
setAutoLog() (psychopy.visual.VlcMovieStim method),

461
setBackColor() (psychopy.visual.BoxStim method),

187
setBackColor() (psychopy.visual.BufferImageStim

method), 198
setBackColor() (psychopy.visual.Form method), 225
setBackColor() (psychopy.visual.GratingStim

method), 238
setBackColor() (psychopy.visual.ImageStim method),

249
setBackColor() (psychopy.visual.MovieStim method),

275
setBackColor() (psychopy.visual.ObjMeshStim

method), 286
setBackColor() (psychopy.visual.PlaneStim method),

309
setBackColor() (psychopy.visual.RadialStim method),

341
setBackColor() (psychopy.visual.SphereStim method),

422
setBackColor() (psychopy.visual.TextBox2 method),

441
setBackend() (psychopy.hardware.keyboard.Keyboard

class method), 535
setBackgroundColor() (psychopy.visual.BoxStim

method), 187
setBackgroundColor() (psy-

chopy.visual.BufferImageStim method), 198
setBackgroundColor() (psychopy.visual.Form

method), 226
setBackgroundColor() (psychopy.visual.GratingStim

method), 238
setBackgroundColor() (psychopy.visual.ImageStim

method), 249
setBackgroundColor() (psychopy.visual.MovieStim

method), 275
setBackgroundColor() (psychopy.visual.ObjMeshStim

method), 286
setBackgroundColor() (psychopy.visual.PlaneStim

method), 309
setBackgroundColor() (psychopy.visual.RadialStim

method), 341
setBackgroundColor() (psychopy.visual.SphereStim

method), 422
setBackgroundColor() (psychopy.visual.TextBox

method), 431
setBackgroundColor() (psychopy.visual.TextBox2

method), 441
setBackRGB() (psychopy.visual.BoxStim method), 187

setBackRGB() (psychopy.visual.BufferImageStim
method), 198

setBackRGB() (psychopy.visual.circle.Circle method),
209

setBackRGB() (psychopy.visual.Form method), 225
setBackRGB() (psychopy.visual.GratingStim method),

238
setBackRGB() (psychopy.visual.ImageStim method), 249
setBackRGB() (psychopy.visual.line.Line method), 263
setBackRGB() (psychopy.visual.MovieStim method),

275
setBackRGB() (psychopy.visual.ObjMeshStim method),

286
setBackRGB() (psychopy.visual.pie.Pie method), 301
setBackRGB() (psychopy.visual.PlaneStim method), 309
setBackRGB() (psychopy.visual.polygon.Polygon

method), 320
setBackRGB() (psychopy.visual.progress.Progress

method), 329
setBackRGB() (psychopy.visual.RadialStim method),

341
setBackRGB() (psychopy.visual.rect.Rect method), 356
setBackRGB() (psychopy.visual.shape.ShapeStim

method), 408
setBackRGB() (psychopy.visual.SphereStim method),

422
setBackRGB() (psychopy.visual.TextBox2 method), 441
setBlendmode() (psychopy.visual.GratingStim

method), 238
setBlendMode() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
480

setBlendmode() (psychopy.visual.RadialStim method),
341

setBlendMode() (psychopy.visual.rift.Rift method), 385
setBorderColor() (psychopy.visual.BoxStim method),

187
setBorderColor() (psychopy.visual.BufferImageStim

method), 198
setBorderColor() (psychopy.visual.circle.Circle

method), 209
setBorderColor() (psychopy.visual.Form method),

226
setBorderColor() (psychopy.visual.GratingStim

method), 238
setBorderColor() (psychopy.visual.ImageStim

method), 250
setBorderColor() (psychopy.visual.line.Line method),

263
setBorderColor() (psychopy.visual.MovieStim

method), 275
setBorderColor() (psychopy.visual.ObjMeshStim

method), 287
setBorderColor() (psychopy.visual.pie.Pie method),

Index 990

PsychoPy - Psychology software for Python, Release 2023.2.3

301
setBorderColor() (psychopy.visual.PlaneStim

method), 309
setBorderColor() (psychopy.visual.polygon.Polygon

method), 320
setBorderColor() (psychopy.visual.progress.Progress

method), 329
setBorderColor() (psychopy.visual.RadialStim

method), 341
setBorderColor() (psychopy.visual.rect.Rect method),

356
setBorderColor() (psychopy.visual.shape.ShapeStim

method), 408
setBorderColor() (psychopy.visual.SphereStim

method), 422
setBorderColor() (psychopy.visual.TextBox method),

431
setBorderColor() (psychopy.visual.TextBox2 method),

441
setBorderRGB() (psychopy.visual.BoxStim method),

187
setBorderRGB() (psychopy.visual.BufferImageStim

method), 198
setBorderRGB() (psychopy.visual.circle.Circle

method), 209
setBorderRGB() (psychopy.visual.Form method), 226
setBorderRGB() (psychopy.visual.GratingStim

method), 238
setBorderRGB() (psychopy.visual.ImageStim method),

250
setBorderRGB() (psychopy.visual.line.Line method),

263
setBorderRGB() (psychopy.visual.MovieStim method),

275
setBorderRGB() (psychopy.visual.ObjMeshStim

method), 287
setBorderRGB() (psychopy.visual.pie.Pie method), 301
setBorderRGB() (psychopy.visual.PlaneStim method),

309
setBorderRGB() (psychopy.visual.polygon.Polygon

method), 320
setBorderRGB() (psychopy.visual.progress.Progress

method), 329
setBorderRGB() (psychopy.visual.RadialStim method),

341
setBorderRGB() (psychopy.visual.rect.Rect method),

356
setBorderRGB() (psychopy.visual.shape.ShapeStim

method), 408
setBorderRGB() (psychopy.visual.SphereStim method),

422
setBorderRGB() (psychopy.visual.TextBox2 method),

441
setBorderWidth() (psychopy.visual.BoxStim method),

187
setBorderWidth() (psychopy.visual.BufferImageStim

method), 198
setBorderWidth() (psychopy.visual.Form method),

226
setBorderWidth() (psychopy.visual.GratingStim

method), 238
setBorderWidth() (psychopy.visual.ImageStim

method), 250
setBorderWidth() (psychopy.visual.MovieStim

method), 275
setBorderWidth() (psychopy.visual.ObjMeshStim

method), 287
setBorderWidth() (psychopy.visual.PlaneStim

method), 309
setBorderWidth() (psychopy.visual.RadialStim

method), 341
setBorderWidth() (psychopy.visual.SphereStim

method), 422
setBorderWidth() (psychopy.visual.TextBox method),

431
setBorderWidth() (psychopy.visual.TextBox2 method),

441
setBuffer() (psychopy.visual.nnlvs.VisualSystemHD

method), 480
setBuffer() (psychopy.visual.rift.Rift method), 385
setBuffer() (psychopy.visual.Window method), 499
setCalibDate() (psychopy.monitors.Monitor method),

870
setColor() (psychopy.visual.BoxStim method), 187
setColor() (psychopy.visual.BufferImageStim method),

198
setColor() (psychopy.visual.circle.Circle method), 209
setColor() (psychopy.visual.Form method), 226
setColor() (psychopy.visual.GratingStim method), 238
setColor() (psychopy.visual.ImageStim method), 250
setColor() (psychopy.visual.line.Line method), 263
setColor() (psychopy.visual.MovieStim method), 275
setColor() (psychopy.visual.nnlvs.VisualSystemHD

method), 480
setColor() (psychopy.visual.ObjMeshStim method),

287
setColor() (psychopy.visual.pie.Pie method), 301
setColor() (psychopy.visual.PlaneStim method), 309
setColor() (psychopy.visual.polygon.Polygon method),

320
setColor() (psychopy.visual.progress.Progress

method), 329
setColor() (psychopy.visual.RadialStim method), 341
setColor() (psychopy.visual.rect.Rect method), 356
setColor() (psychopy.visual.rift.Rift method), 385
setColor() (psychopy.visual.shape.ShapeStim method),

408
setColor() (psychopy.visual.SphereStim method), 422

Index 991

PsychoPy - Psychology software for Python, Release 2023.2.3

setColor() (psychopy.visual.TextBox2 method), 441
setConnectionState() (psy-

chopy.iohub.devices.eyetracker.hw.pupil_labs.pupil_core.EyeTracker
method), 615, 624

setContrast() (psychopy.hardware.crs.bits.BitsPlusPlus
method), 552

setContrast() (psychopy.hardware.crs.bits.BitsSharp
method), 573

setContrast() (psychopy.visual.BoxStim method), 187
setContrast() (psychopy.visual.BufferImageStim

method), 198
setContrast() (psychopy.visual.circle.Circle method),

209
setContrast() (psychopy.visual.Form method), 226
setContrast() (psychopy.visual.GratingStim method),

238
setContrast() (psychopy.visual.ImageStim method),

250
setContrast() (psychopy.visual.line.Line method), 263
setContrast() (psychopy.visual.MovieStim method),

275
setContrast() (psychopy.visual.ObjMeshStim

method), 287
setContrast() (psychopy.visual.pie.Pie method), 301
setContrast() (psychopy.visual.PlaneStim method),

309
setContrast() (psychopy.visual.polygon.Polygon

method), 320
setContrast() (psychopy.visual.progress.Progress

method), 329
setContrast() (psychopy.visual.RadialStim method),

341
setContrast() (psychopy.visual.rect.Rect method), 356
setContrast() (psychopy.visual.shape.ShapeStim

method), 408
setContrast() (psychopy.visual.SphereStim method),

422
setContrast() (psychopy.visual.TextBox2 method), 441
setContrast() (psychopy.visual.TextStim method), 450
setCurrent() (psychopy.monitors.Monitor method),

870
setData() (psychopy.hardware.labjacks.U3 method),

589
setData() (psychopy.parallel method), 874
setDefaultClock() (in module psychopy.logging), 861,

862
setDefaultView() (psychopy.visual.rift.Rift method),

385
setDepth() (psychopy.visual.BufferImageStim method),

198
setDepth() (psychopy.visual.circle.Circle method), 209
setDepth() (psychopy.visual.Form method), 226
setDepth() (psychopy.visual.GratingStim method), 238
setDepth() (psychopy.visual.ImageStim method), 250

setDepth() (psychopy.visual.line.Line method), 263
setDepth() (psychopy.visual.MovieStim method), 275
setDepth() (psychopy.visual.pie.Pie method), 301
setDepth() (psychopy.visual.polygon.Polygon method),

320
setDepth() (psychopy.visual.progress.Progress

method), 329
setDepth() (psychopy.visual.RadialStim method), 341
setDepth() (psychopy.visual.rect.Rect method), 356
setDepth() (psychopy.visual.shape.ShapeStim method),

408
setDepth() (psychopy.visual.TextBox2 method), 442
setDepth() (psychopy.visual.TextStim method), 450
setDepth() (psychopy.visual.VlcMovieStim method),

461
setDiffuseColor() (psy-

chopy.visual.BlinnPhongMaterial method),
292

setDiffuseColor() (psychopy.visual.LightSource
method), 254

setDiopters() (psychopy.visual.nnlvs.VisualSystemHD
method), 480

setDistance() (psychopy.monitors.Monitor method),
870

setDKL() (psychopy.visual.BoxStim method), 187
setDKL() (psychopy.visual.BufferImageStim method),

198
setDKL() (psychopy.visual.circle.Circle method), 209
setDKL() (psychopy.visual.Form method), 226
setDKL() (psychopy.visual.GratingStim method), 238
setDKL() (psychopy.visual.ImageStim method), 250
setDKL() (psychopy.visual.line.Line method), 263
setDKL() (psychopy.visual.MovieStim method), 275
setDKL() (psychopy.visual.ObjMeshStim method), 287
setDKL() (psychopy.visual.pie.Pie method), 301
setDKL() (psychopy.visual.PlaneStim method), 309
setDKL() (psychopy.visual.polygon.Polygon method),

320
setDKL() (psychopy.visual.progress.Progress method),

329
setDKL() (psychopy.visual.RadialStim method), 341
setDKL() (psychopy.visual.rect.Rect method), 356
setDKL() (psychopy.visual.shape.ShapeStim method),

408
setDKL() (psychopy.visual.SphereStim method), 422
setDKL() (psychopy.visual.TextBox2 method), 442
setDKL() (psychopy.visual.TextStim method), 450
setDKL_RGB() (psychopy.monitors.Monitor method),

870
setEdges() (psychopy.visual.circle.Circle method), 209
setEdges() (psychopy.visual.polygon.Polygon method),

320
setEmissionColor() (psy-

chopy.visual.BlinnPhongMaterial method),

Index 992

PsychoPy - Psychology software for Python, Release 2023.2.3

292
setEnd() (psychopy.visual.line.Line method), 263
setEnd() (psychopy.visual.pie.Pie method), 301
setExclusive() (psychopy.event.Mouse method), 843
setExp() (psychopy.data.MultiStairHandler method),

838
setExp() (psychopy.data.PsiHandler method), 823
setExp() (psychopy.data.QuestHandler method), 828
setExp() (psychopy.data.QuestPlusHandler method),

833
setExp() (psychopy.data.StairHandler method), 818
setExp() (psychopy.data.TrialHandler method), 803
setExp() (psychopy.data.TrialHandler2 method), 808
setExp() (psychopy.data.TrialHandlerExt method), 814
setEyeOffset() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
481

setFile() (psychopy.microphone.AdvAudioCapture
method), 864

setFillColor() (psychopy.visual.BoxStim method),
187

setFillColor() (psychopy.visual.BufferImageStim
method), 198

setFillColor() (psychopy.visual.circle.Circle
method), 209

setFillColor() (psychopy.visual.Form method), 226
setFillColor() (psychopy.visual.GratingStim

method), 238
setFillColor() (psychopy.visual.ImageStim method),

250
setFillColor() (psychopy.visual.line.Line method),

263
setFillColor() (psychopy.visual.MovieStim method),

276
setFillColor() (psychopy.visual.ObjMeshStim

method), 287
setFillColor() (psychopy.visual.pie.Pie method), 301
setFillColor() (psychopy.visual.PlaneStim method),

309
setFillColor() (psychopy.visual.polygon.Polygon

method), 320
setFillColor() (psychopy.visual.progress.Progress

method), 330
setFillColor() (psychopy.visual.RadialStim method),

341
setFillColor() (psychopy.visual.rect.Rect method),

356
setFillColor() (psychopy.visual.shape.ShapeStim

method), 408
setFillColor() (psychopy.visual.SphereStim method),

422
setFillColor() (psychopy.visual.TextBox2 method),

442
setFillRGB() (psychopy.visual.BoxStim method), 187

setFillRGB() (psychopy.visual.BufferImageStim
method), 198

setFillRGB() (psychopy.visual.circle.Circle method),
209

setFillRGB() (psychopy.visual.Form method), 226
setFillRGB() (psychopy.visual.GratingStim method),

238
setFillRGB() (psychopy.visual.ImageStim method), 250
setFillRGB() (psychopy.visual.line.Line method), 263
setFillRGB() (psychopy.visual.MovieStim method),

276
setFillRGB() (psychopy.visual.ObjMeshStim method),

287
setFillRGB() (psychopy.visual.pie.Pie method), 302
setFillRGB() (psychopy.visual.PlaneStim method), 309
setFillRGB() (psychopy.visual.polygon.Polygon

method), 320
setFillRGB() (psychopy.visual.progress.Progress

method), 330
setFillRGB() (psychopy.visual.RadialStim method),

341
setFillRGB() (psychopy.visual.rect.Rect method), 356
setFillRGB() (psychopy.visual.shape.ShapeStim

method), 408
setFillRGB() (psychopy.visual.SphereStim method),

422
setFillRGB() (psychopy.visual.TextBox2 method), 442
setFlip() (psychopy.visual.TextStim method), 450
setFlipHoriz() (psychopy.visual.BufferImageStim

method), 198
setFlipHoriz() (psychopy.visual.TextStim method),

450
setFlipHoriz() (psychopy.visual.VlcMovieStim

method), 462
setFlipVert() (psychopy.visual.BufferImageStim

method), 198
setFlipVert() (psychopy.visual.TextStim method), 450
setFlipVert() (psychopy.visual.VlcMovieStim

method), 462
setFont() (psychopy.visual.TextBox2 method), 442
setFont() (psychopy.visual.TextStim method), 450
setFontColor() (psychopy.visual.BoxStim method),

187
setFontColor() (psychopy.visual.BufferImageStim

method), 198
setFontColor() (psychopy.visual.Form method), 226
setFontColor() (psychopy.visual.GratingStim

method), 239
setFontColor() (psychopy.visual.ImageStim method),

250
setFontColor() (psychopy.visual.MovieStim method),

276
setFontColor() (psychopy.visual.ObjMeshStim

method), 287

Index 993

PsychoPy - Psychology software for Python, Release 2023.2.3

setFontColor() (psychopy.visual.PlaneStim method),
310

setFontColor() (psychopy.visual.RadialStim method),
341

setFontColor() (psychopy.visual.SphereStim method),
422

setFontColor() (psychopy.visual.TextBox method), 431
setFontColor() (psychopy.visual.TextBox2 method),

442
setForeColor() (psychopy.visual.BoxStim method),

187
setForeColor() (psychopy.visual.BufferImageStim

method), 198
setForeColor() (psychopy.visual.circle.Circle

method), 209
setForeColor() (psychopy.visual.Form method), 226
setForeColor() (psychopy.visual.GratingStim

method), 239
setForeColor() (psychopy.visual.ImageStim method),

250
setForeColor() (psychopy.visual.line.Line method),

263
setForeColor() (psychopy.visual.MovieStim method),

276
setForeColor() (psychopy.visual.ObjMeshStim

method), 287
setForeColor() (psychopy.visual.pie.Pie method), 302
setForeColor() (psychopy.visual.PlaneStim method),

310
setForeColor() (psychopy.visual.polygon.Polygon

method), 320
setForeColor() (psychopy.visual.progress.Progress

method), 330
setForeColor() (psychopy.visual.RadialStim method),

341
setForeColor() (psychopy.visual.rect.Rect method),

356
setForeColor() (psychopy.visual.shape.ShapeStim

method), 408
setForeColor() (psychopy.visual.SphereStim method),

422
setForeColor() (psychopy.visual.TextBox2 method),

442
setForeColor() (psychopy.visual.TextStim method),

450
setForeRGB() (psychopy.visual.BoxStim method), 187
setForeRGB() (psychopy.visual.BufferImageStim

method), 198
setForeRGB() (psychopy.visual.circle.Circle method),

209
setForeRGB() (psychopy.visual.Form method), 226
setForeRGB() (psychopy.visual.GratingStim method),

239
setForeRGB() (psychopy.visual.ImageStim method), 250

setForeRGB() (psychopy.visual.line.Line method), 263
setForeRGB() (psychopy.visual.MovieStim method),

276
setForeRGB() (psychopy.visual.ObjMeshStim method),

287
setForeRGB() (psychopy.visual.pie.Pie method), 302
setForeRGB() (psychopy.visual.PlaneStim method), 310
setForeRGB() (psychopy.visual.polygon.Polygon

method), 320
setForeRGB() (psychopy.visual.progress.Progress

method), 330
setForeRGB() (psychopy.visual.RadialStim method),

341
setForeRGB() (psychopy.visual.rect.Rect method), 356
setForeRGB() (psychopy.visual.shape.ShapeStim

method), 408
setForeRGB() (psychopy.visual.SphereStim method),

422
setForeRGB() (psychopy.visual.TextBox2 method), 442
setForeRGB() (psychopy.visual.TextStim method), 450
setGamma() (psychopy.hardware.crs.bits.BitsPlusPlus

method), 552
setGamma() (psychopy.hardware.crs.bits.BitsSharp

method), 573
setGamma() (psychopy.monitors.Monitor method), 870
setGamma() (psychopy.visual.nnlvs.VisualSystemHD

method), 481
setGamma() (psychopy.visual.rift.Rift method), 385
setGammaGrid() (psychopy.monitors.Monitor method),

870
setHeight() (psychopy.visual.rect.Rect method), 356
setHeight() (psychopy.visual.TextBox2 method), 442
setHeight() (psychopy.visual.TextStim method), 450
setHorzAlign() (psychopy.visual.TextBox method), 431
setHorzJust() (psychopy.visual.TextBox method), 431
setIdentity() (psychopy.visual.RigidBodyPose

method), 396
setImage() (psychopy.visual.BufferImageStim method),

199
setImage() (psychopy.visual.ImageStim method), 250
setInterpolated() (psychopy.visual.TextBox method),

431
setLevel() (psychopy.logging.LogFile method), 860
setLevelsPost() (psychopy.monitors.Monitor

method), 870
setLevelsPre() (psychopy.monitors.Monitor method),

870
setLineariseMethod() (psychopy.monitors.Monitor

method), 870
setLineColor() (psychopy.visual.BoxStim method),

187
setLineColor() (psychopy.visual.BufferImageStim

method), 199
setLineColor() (psychopy.visual.Form method), 226

Index 994

PsychoPy - Psychology software for Python, Release 2023.2.3

setLineColor() (psychopy.visual.GratingStim
method), 239

setLineColor() (psychopy.visual.ImageStim method),
250

setLineColor() (psychopy.visual.MovieStim method),
276

setLineColor() (psychopy.visual.ObjMeshStim
method), 287

setLineColor() (psychopy.visual.PlaneStim method),
310

setLineColor() (psychopy.visual.RadialStim method),
341

setLineColor() (psychopy.visual.SphereStim method),
422

setLineColor() (psychopy.visual.TextBox2 method),
442

setLineRGB() (psychopy.visual.BoxStim method), 187
setLineRGB() (psychopy.visual.BufferImageStim

method), 199
setLineRGB() (psychopy.visual.circle.Circle method),

209
setLineRGB() (psychopy.visual.Form method), 226
setLineRGB() (psychopy.visual.GratingStim method),

239
setLineRGB() (psychopy.visual.ImageStim method), 250
setLineRGB() (psychopy.visual.line.Line method), 263
setLineRGB() (psychopy.visual.MovieStim method),

276
setLineRGB() (psychopy.visual.ObjMeshStim method),

287
setLineRGB() (psychopy.visual.pie.Pie method), 302
setLineRGB() (psychopy.visual.PlaneStim method), 310
setLineRGB() (psychopy.visual.polygon.Polygon

method), 320
setLineRGB() (psychopy.visual.progress.Progress

method), 330
setLineRGB() (psychopy.visual.RadialStim method),

341
setLineRGB() (psychopy.visual.rect.Rect method), 356
setLineRGB() (psychopy.visual.shape.ShapeStim

method), 408
setLineRGB() (psychopy.visual.SphereStim method),

422
setLineRGB() (psychopy.visual.TextBox2 method), 442
setLineWidth() (psychopy.visual.BoxStim method),

187
setLineWidth() (psychopy.visual.BufferImageStim

method), 199
setLineWidth() (psychopy.visual.Form method), 226
setLineWidth() (psychopy.visual.GratingStim

method), 239
setLineWidth() (psychopy.visual.ImageStim method),

250
setLineWidth() (psychopy.visual.MovieStim method),

276
setLineWidth() (psychopy.visual.ObjMeshStim

method), 287
setLineWidth() (psychopy.visual.PlaneStim method),

310
setLineWidth() (psychopy.visual.RadialStim method),

342
setLineWidth() (psychopy.visual.SphereStim method),

422
setLineWidth() (psychopy.visual.TextBox2 method),

442
setLMS() (psychopy.visual.BoxStim method), 187
setLMS() (psychopy.visual.BufferImageStim method),

199
setLMS() (psychopy.visual.circle.Circle method), 209
setLMS() (psychopy.visual.Form method), 226
setLMS() (psychopy.visual.GratingStim method), 239
setLMS() (psychopy.visual.ImageStim method), 250
setLMS() (psychopy.visual.line.Line method), 263
setLMS() (psychopy.visual.MovieStim method), 276
setLMS() (psychopy.visual.ObjMeshStim method), 287
setLMS() (psychopy.visual.pie.Pie method), 302
setLMS() (psychopy.visual.PlaneStim method), 310
setLMS() (psychopy.visual.polygon.Polygon method),

320
setLMS() (psychopy.visual.progress.Progress method),

330
setLMS() (psychopy.visual.RadialStim method), 341
setLMS() (psychopy.visual.rect.Rect method), 356
setLMS() (psychopy.visual.shape.ShapeStim method),

408
setLMS() (psychopy.visual.SphereStim method), 422
setLMS() (psychopy.visual.TextBox2 method), 442
setLMS() (psychopy.visual.TextStim method), 450
setLMS_RGB() (psychopy.monitors.Monitor method),

870
setLumsPost() (psychopy.monitors.Monitor method),

870
setLumsPre() (psychopy.monitors.Monitor method),

870
setLUT() (psychopy.hardware.crs.bits.BitsPlusPlus

method), 552
setLUT() (psychopy.hardware.crs.bits.BitsSharp

method), 573
setMarker() (psychopy.microphone.AdvAudioCapture

method), 864
setMarkerPos() (psychopy.visual.Slider method), 415
setMask() (psychopy.visual.BufferImageStim method),

199
setMask() (psychopy.visual.GratingStim method), 239
setMask() (psychopy.visual.ImageStim method), 250
setMask() (psychopy.visual.RadialStim method), 342
setMeanLum() (psychopy.monitors.Monitor method),

870

Index 995

PsychoPy - Psychology software for Python, Release 2023.2.3

setMouseType() (psy-
chopy.visual.nnlvs.VisualSystemHD method),
481

setMouseType() (psychopy.visual.rift.Rift method), 385
setMouseType() (psychopy.visual.Window method),

500
setMouseVisible() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
481

setMouseVisible() (psychopy.visual.rift.Rift method),
386

setMovie() (psychopy.visual.MovieStim method), 276
setMovie() (psychopy.visual.VlcMovieStim method),

462
setNotes() (psychopy.monitors.Monitor method), 870
setNVertices() (psychopy.visual.circle.Circle

method), 210
setNVertices() (psychopy.visual.polygon.Polygon

method), 321
setOffAxisView() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
481

setOffAxisView() (psychopy.visual.rift.Rift method),
386

setOffAxisView() (psychopy.visual.Window method),
500

setOpacity() (psychopy.visual.BufferImageStim
method), 199

setOpacity() (psychopy.visual.circle.Circle method),
210

setOpacity() (psychopy.visual.Form method), 226
setOpacity() (psychopy.visual.GratingStim method),

239
setOpacity() (psychopy.visual.ImageStim method), 250
setOpacity() (psychopy.visual.line.Line method), 264
setOpacity() (psychopy.visual.MovieStim method),

276
setOpacity() (psychopy.visual.pie.Pie method), 302
setOpacity() (psychopy.visual.polygon.Polygon

method), 321
setOpacity() (psychopy.visual.progress.Progress

method), 330
setOpacity() (psychopy.visual.RadialStim method),

342
setOpacity() (psychopy.visual.rect.Rect method), 356
setOpacity() (psychopy.visual.shape.ShapeStim

method), 408
setOpacity() (psychopy.visual.Slider method), 415
setOpacity() (psychopy.visual.TextBox method), 431
setOpacity() (psychopy.visual.TextBox2 method), 442
setOpacity() (psychopy.visual.TextStim method), 450
setOpacity() (psychopy.visual.VlcMovieStim method),

462
setOri() (psychopy.visual.Aperture method), 180

setOri() (psychopy.visual.BoxStim method), 188
setOri() (psychopy.visual.BufferImageStim method),

199
setOri() (psychopy.visual.circle.Circle method), 210
setOri() (psychopy.visual.Form method), 226
setOri() (psychopy.visual.GratingStim method), 239
setOri() (psychopy.visual.ImageStim method), 251
setOri() (psychopy.visual.line.Line method), 264
setOri() (psychopy.visual.MovieStim method), 276
setOri() (psychopy.visual.ObjMeshStim method), 287
setOri() (psychopy.visual.pie.Pie method), 302
setOri() (psychopy.visual.PlaneStim method), 310
setOri() (psychopy.visual.polygon.Polygon method),

321
setOri() (psychopy.visual.progress.Progress method),

330
setOri() (psychopy.visual.RadialStim method), 342
setOri() (psychopy.visual.rect.Rect method), 356
setOri() (psychopy.visual.shape.ShapeStim method),

409
setOri() (psychopy.visual.Slider method), 415
setOri() (psychopy.visual.SphereStim method), 422
setOri() (psychopy.visual.TextBox2 method), 442
setOri() (psychopy.visual.TextStim method), 451
setOri() (psychopy.visual.VlcMovieStim method), 462
setOriAxisAngle() (psychopy.visual.BoxStim method),

188
setOriAxisAngle() (psychopy.visual.ObjMeshStim

method), 287
setOriAxisAngle() (psychopy.visual.PlaneStim

method), 310
setOriAxisAngle() (psychopy.visual.RigidBodyPose

method), 396
setOriAxisAngle() (psychopy.visual.SphereStim

method), 423
setPerspectiveView() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
482

setPerspectiveView() (psychopy.visual.rift.Rift
method), 386

setPerspectiveView() (psychopy.visual.Window
method), 500

setPhase() (psychopy.visual.GratingStim method), 239
setPhase() (psychopy.visual.RadialStim method), 342
setPin() (psychopy.parallel method), 874
setPlaceholder() (psychopy.visual.TextBox2 method),

442
setPortAddress() (psychopy.parallel method), 873
setPos() (psychopy.event.Mouse method), 843
setPos() (psychopy.visual.Aperture method), 180
setPos() (psychopy.visual.BoxStim method), 188
setPos() (psychopy.visual.BufferImageStim method),

199
setPos() (psychopy.visual.circle.Circle method), 210

Index 996

PsychoPy - Psychology software for Python, Release 2023.2.3

setPos() (psychopy.visual.Form method), 226
setPos() (psychopy.visual.GratingStim method), 239
setPos() (psychopy.visual.ImageStim method), 251
setPos() (psychopy.visual.line.Line method), 264
setPos() (psychopy.visual.MovieStim method), 276
setPos() (psychopy.visual.ObjMeshStim method), 287
setPos() (psychopy.visual.pie.Pie method), 302
setPos() (psychopy.visual.PlaneStim method), 310
setPos() (psychopy.visual.polygon.Polygon method),

321
setPos() (psychopy.visual.progress.Progress method),

330
setPos() (psychopy.visual.RadialStim method), 342
setPos() (psychopy.visual.rect.Rect method), 356
setPos() (psychopy.visual.shape.ShapeStim method),

409
setPos() (psychopy.visual.Slider method), 415
setPos() (psychopy.visual.SphereStim method), 423
setPos() (psychopy.visual.TextBox2 method), 442
setPos() (psychopy.visual.TextStim method), 451
setPos() (psychopy.visual.VlcMovieStim method), 462
setPosition() (psychopy.visual.TextBox method), 432
setPriority() (psychopy.data.ExperimentHandler

method), 797
setPriority() (psychopy.iohub.client.ioHubConnection

method), 598
setProcessAffinity() (psy-

chopy.iohub.client.ioHubConnection method),
598

setPsychopyVersion() (psychopy.monitors.Monitor
method), 871

setRadialCycles() (psychopy.visual.RadialStim
method), 342

setRadialPhase() (psychopy.visual.RadialStim
method), 342

setRadius() (psychopy.visual.circle.Circle method),
210

setRadius() (psychopy.visual.pie.Pie method), 302
setRadius() (psychopy.visual.polygon.Polygon

method), 321
setReadOnly() (psychopy.visual.Slider method), 415
setRecordFrameIntervals() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
482

setRecordFrameIntervals() (psy-
chopy.visual.rift.Rift method), 386

setRecordingState() (psy-
chopy.iohub.devices.eyetracker.hw.mouse.EyeTracker
method), 653

setRecordingState() (psy-
chopy.iohub.devices.eyetracker.hw.pupil_labs.pupil_core.EyeTracker
method), 615, 625

setRecordingState() (psy-
chopy.iohub.devices.eyetracker.hw.tobii.EyeTracker

method), 645
setRGB() (psychopy.visual.BoxStim method), 188
setRGB() (psychopy.visual.BufferImageStim method),

199
setRGB() (psychopy.visual.circle.Circle method), 210
setRGB() (psychopy.visual.Form method), 227
setRGB() (psychopy.visual.GratingStim method), 239
setRGB() (psychopy.visual.ImageStim method), 251
setRGB() (psychopy.visual.line.Line method), 264
setRGB() (psychopy.visual.MovieStim method), 276
setRGB() (psychopy.visual.nnlvs.VisualSystemHD

method), 482
setRGB() (psychopy.visual.ObjMeshStim method), 288
setRGB() (psychopy.visual.pie.Pie method), 302
setRGB() (psychopy.visual.PlaneStim method), 310
setRGB() (psychopy.visual.polygon.Polygon method),

321
setRGB() (psychopy.visual.progress.Progress method),

330
setRGB() (psychopy.visual.RadialStim method), 342
setRGB() (psychopy.visual.rect.Rect method), 357
setRGB() (psychopy.visual.rift.Rift method), 386
setRGB() (psychopy.visual.shape.ShapeStim method),

409
setRGB() (psychopy.visual.SphereStim method), 423
setRGB() (psychopy.visual.TextBox2 method), 442
setRGB() (psychopy.visual.TextStim method), 451
setRiftView() (psychopy.visual.rift.Rift method), 386
setRTBoxMode() (psychopy.hardware.crs.bits.BitsSharp

method), 573
setScale() (psychopy.visual.nnlvs.VisualSystemHD

method), 482
setScale() (psychopy.visual.rift.Rift method), 387
setScrollSpeed() (psychopy.visual.Form method),

227
setSF() (psychopy.visual.GratingStim method), 239
setSF() (psychopy.visual.RadialStim method), 342
setSize() (psychopy.visual.Aperture method), 180
setSize() (psychopy.visual.BufferImageStim method),

199
setSize() (psychopy.visual.circle.Circle method), 210
setSize() (psychopy.visual.Form method), 227
setSize() (psychopy.visual.GratingStim method), 239
setSize() (psychopy.visual.ImageStim method), 251
setSize() (psychopy.visual.line.Line method), 264
setSize() (psychopy.visual.MovieStim method), 276
setSize() (psychopy.visual.pie.Pie method), 302
setSize() (psychopy.visual.polygon.Polygon method),

321
setSize() (psychopy.visual.progress.Progress method),

330
setSize() (psychopy.visual.RadialStim method), 342
setSize() (psychopy.visual.rect.Rect method), 357
setSize() (psychopy.visual.rift.Rift method), 387

Index 997

PsychoPy - Psychology software for Python, Release 2023.2.3

setSize() (psychopy.visual.shape.ShapeStim method),
409

setSize() (psychopy.visual.Slider method), 415
setSize() (psychopy.visual.TextBox2 method), 443
setSize() (psychopy.visual.TextStim method), 451
setSize() (psychopy.visual.VlcMovieStim method), 462
setSizePix() (psychopy.monitors.Monitor method),

871
setSound() (psychopy.sound.backend_ptb.SoundPTB

method), 511
setSound() (psychopy.sound.backend_sounddevice.SoundDeviceSound

method), 513
setSpectra() (psychopy.monitors.Monitor method),

871
setSpecularColor() (psy-

chopy.visual.BlinnPhongMaterial method),
292

setSpecularColor() (psychopy.visual.LightSource
method), 254

setSpeechPoint() (psychopy.visual.TextBox2 method),
443

setStart() (psychopy.visual.line.Line method), 264
setStart() (psychopy.visual.pie.Pie method), 302
setStatusBoxMode() (psy-

chopy.hardware.crs.bits.BitsSharp method),
574

setStatusBoxThreshold() (psy-
chopy.hardware.crs.bits.BitsSharp method),
574

setStatusEventParams() (psy-
chopy.hardware.crs.bits.BitsSharp method),
574

setStereoDebugHudOption() (psy-
chopy.visual.rift.Rift method), 387

setTex() (psychopy.visual.GratingStim method), 239
setTex() (psychopy.visual.RadialStim method), 342
setText() (psychopy.visual.TextBox method), 432
setText() (psychopy.visual.TextBox2 method), 443
setText() (psychopy.visual.TextStim method), 451
setTextGridLineColor() (psychopy.visual.TextBox

method), 432
setTextGridLineWidth() (psychopy.visual.TextBox

method), 432
setToeInView() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
482

setToeInView() (psychopy.visual.rift.Rift method), 387
setToeInView() (psychopy.visual.Window method),

501
setTrigger() (psychopy.hardware.crs.bits.BitsPlusPlus

method), 553
setTrigger() (psychopy.hardware.crs.bits.BitsSharp

method), 575
setTriggerList() (psy-

chopy.hardware.crs.bits.BitsPlusPlus method),
553

setTriggerList() (psy-
chopy.hardware.crs.bits.BitsSharp method),
575

setUnits() (psychopy.visual.nnlvs.VisualSystemHD
method), 482

setUnits() (psychopy.visual.rift.Rift method), 388
setupInputsFromExperiment() (psy-

chopy.session.Session method), 175
setupProxy() (in module psychopy.web), 886
setupWindowFromExperiment() (psy-

chopy.session.Session method), 176
setupWindowFromParams() (psychopy.session.Session

method), 176
setUseBits() (psychopy.monitors.Monitor method),

871
setVertAlign() (psychopy.visual.TextBox method), 432
setVertexAttribPointer() (in module psy-

chopy.tools.gltools), 695
setVertices() (psychopy.visual.circle.Circle method),

210
setVertices() (psychopy.visual.line.Line method), 264
setVertices() (psychopy.visual.pie.Pie method), 302
setVertices() (psychopy.visual.polygon.Polygon

method), 321
setVertices() (psychopy.visual.progress.Progress

method), 330
setVertices() (psychopy.visual.rect.Rect method), 357
setVertices() (psychopy.visual.shape.ShapeStim

method), 409
setVertJust() (psychopy.visual.TextBox method), 432
setViewPos() (psychopy.visual.nnlvs.VisualSystemHD

method), 482
setViewPos() (psychopy.visual.rift.Rift method), 388
setVisible() (psychopy.event.Mouse method), 843
setVolume() (psychopy.sound.backend_pygame.SoundPygame

method), 516
setVolume() (psychopy.visual.VlcMovieStim method),

462
setWidth() (psychopy.monitors.Monitor method), 871
setWidth() (psychopy.visual.rect.Rect method), 357
sf (psychopy.visual.GratingStim attribute), 239
sf (psychopy.visual.RadialStim attribute), 342
ShapeStim (class in psychopy.visual.shape), 400
shininess (psychopy.visual.BlinnPhongMaterial prop-

erty), 292
shouldQuit (psychopy.visual.rift.Rift property), 388
shouldRecenter (psychopy.visual.rift.Rift property),

388
show() (psychopy.gui.Dlg method), 850
show() (psychopy.gui.DlgFromDict method), 850
showExpInfoDlgFromExperiment() (psy-

chopy.session.Session method), 176

Index 998

PsychoPy - Psychology software for Python, Release 2023.2.3

showMessage() (psychopy.visual.nnlvs.VisualSystemHD
method), 482

showMessage() (psychopy.visual.rift.Rift method), 388
showMessage() (psychopy.visual.Window method), 501
shutdown() (psychopy.iohub.client.ioHubConnection

method), 599
signalDots (psychopy.visual.DotStim attribute), 212
silence() (psychopy.sound.AudioClip static method),

525
SimpleImageStim (class in psychopy.visual), 410
simulate() (psychopy.data.QuestHandler method), 828
sine() (psychopy.sound.AudioClip static method), 526
Size (class in psychopy.layout), 857
size (psychopy.layout.Vertices property), 859
size (psychopy.tools.movietools.MovieFileWriter prop-

erty), 767
size (psychopy.visual.Aperture property), 180
size (psychopy.visual.BoxStim property), 188
size (psychopy.visual.BufferImageStim property), 199
size (psychopy.visual.circle.Circle property), 210
size (psychopy.visual.Form property), 227
size (psychopy.visual.GratingStim property), 240
size (psychopy.visual.ImageStim property), 251
size (psychopy.visual.line.Line property), 264
size (psychopy.visual.MovieStim property), 276
size (psychopy.visual.nnlvs.VisualSystemHD property),

483
size (psychopy.visual.ObjMeshStim property), 288
size (psychopy.visual.pie.Pie property), 302
size (psychopy.visual.PlaneStim property), 310
size (psychopy.visual.polygon.Polygon property), 321
size (psychopy.visual.progress.Progress property), 330
size (psychopy.visual.RadialStim property), 342
size (psychopy.visual.rect.Rect property), 357
size (psychopy.visual.rift.Rift property), 388
size (psychopy.visual.shape.ShapeStim property), 409
size (psychopy.visual.Slider property), 415
size (psychopy.visual.SphereStim property), 423
size (psychopy.visual.TextBox2 property), 443
size (psychopy.visual.TextStim property), 451
size (psychopy.visual.VlcMovieStim property), 462
size (psychopy.visual.Window attribute), 487
size (psychopy.visual.Window property), 501
sizePix (psychopy.visual.Aperture property), 180
skyCubeMap (psychopy.visual.SceneSkybox property),

398
slerp() (in module psychopy.tools.mathtools), 732
Slider (class in psychopy.visual), 411
slippage (psychopy.voicekey.OnsetVoiceKey property),

884
smooth() (in module psychopy.voicekey), 885
SoundDeviceSound (class in psy-

chopy.sound.backend_sounddevice), 512
SoundPTB (class in psychopy.sound.backend_ptb), 510

SoundPygame (class in psy-
chopy.sound.backend_pygame), 515

SoundPyo (class in psychopy.sound.backend_pyo), 514
specifyTrackingOrigin() (psychopy.visual.rift.Rift

method), 388
specifyTrackingOriginPosOri() (psy-

chopy.visual.rift.Rift method), 388
specularColor (psychopy.visual.BlinnPhongMaterial

property), 292
specularColor (psychopy.visual.LightSource property),

254
specularRGB (psychopy.visual.BlinnPhongMaterial

property), 292
specularRGB (psychopy.visual.LightSource property),

254
speechPoint (psychopy.visual.TextBox2 attribute), 443
speed (psychopy.visual.DotStim attribute), 213
sph2cart() (in module psychopy.tools.coordinatetools),

664
SphereStim (class in psychopy.visual), 416
square() (psychopy.sound.AudioClip static method),

527
srgb (psychopy.colors.Color property), 792
srgbTF() (in module psychopy.tools.colorspacetools),

662
StairHandler (class in psychopy.data), 815
start (psychopy.visual.line.Line attribute), 264
start (psychopy.visual.pie.Pie attribute), 303
start() (psychopy.clock.StaticPeriod method), 169
start() (psychopy.core.StaticPeriod method), 165
start() (psychopy.hardware.crs.bits.BitsSharp method),

576
start() (psychopy.hardware.keyboard.Keyboard

method), 536
start() (psychopy.session.Session method), 177
start() (psychopy.sound.Microphone method), 520
start() (psychopy.voicekey.OnsetVoiceKey method),

884
start_angle_x (psychopy.iohub.devices.eyetracker.FixationEndEvent

attribute), 632
start_angle_x (psychopy.iohub.devices.eyetracker.SaccadeEndEvent

attribute), 634
start_angle_y (psychopy.iohub.devices.eyetracker.FixationEndEvent

attribute), 632
start_angle_y (psychopy.iohub.devices.eyetracker.SaccadeEndEvent

attribute), 634
start_gaze_x (psychopy.iohub.devices.eyetracker.FixationEndEvent

attribute), 632, 655
start_gaze_x (psychopy.iohub.devices.eyetracker.SaccadeEndEvent

attribute), 634
start_gaze_y (psychopy.iohub.devices.eyetracker.FixationEndEvent

attribute), 632, 655
start_gaze_y (psychopy.iohub.devices.eyetracker.SaccadeEndEvent

attribute), 634

Index 999

PsychoPy - Psychology software for Python, Release 2023.2.3

start_ppd_x (psychopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 632

start_ppd_x (psychopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 634

start_ppd_y (psychopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 632

start_ppd_y (psychopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

start_pupil_measure1_type (psy-
chopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 632

start_pupil_measure1_type (psy-
chopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 634

start_pupil_measure_1 (psy-
chopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 632

start_pupil_measure_1 (psy-
chopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 634

start_velocity_xy (psy-
chopy.iohub.devices.eyetracker.FixationEndEvent
attribute), 632

start_velocity_xy (psy-
chopy.iohub.devices.eyetracker.SaccadeEndEvent
attribute), 635

startAnalog() (psychopy.hardware.crs.bits.BitsSharp
method), 576

startApp() (in module psychopy.app), 789
startCustomTasklet() (psy-

chopy.iohub.client.ioHubConnection method),
599

started (psychopy.voicekey.OnsetVoiceKey property),
884

startGoggles() (psy-
chopy.hardware.crs.bits.BitsPlusPlus method),
554

startGoggles() (psychopy.hardware.crs.bits.BitsSharp
method), 576

startHaptics() (psychopy.visual.rift.Rift method), 388
startIntensity (psychopy.data.QuestPlusHandler

property), 833
startOfFlip() (psychopy.visual.windowframepack.ProjectorFramePacker

method), 504
startRecording() (psy-

chopy.hardware.brainproducts.RemoteControlServer
method), 539

startStatusLog() (psy-
chopy.hardware.crs.bits.BitsSharp method),
576

startTime (psychopy.sound.AudioDeviceStatus prop-
erty), 533

startTrigger() (psy-
chopy.hardware.crs.bits.BitsPlusPlus method),

554
startTrigger() (psychopy.hardware.crs.bits.BitsSharp

method), 577
startUpPlugins() (in module psychopy.plugins), 878
stashAutoDraw() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
483

stashAutoDraw() (psychopy.visual.rift.Rift method),
389

stashAutoDraw() (psychopy.visual.Window method),
501

state (psychopy.iohub.client.keyboard.Keyboard prop-
erty), 602

state (psychopy.sound.AudioDeviceStatus property),
533

StaticPeriod (class in psychopy.clock), 168
StaticPeriod (class in psychopy.core), 165
status (psychopy.data.ExperimentHandler property),

798
status (psychopy.hardware.camera.Camera property),

547
status (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent

attribute), 607, 631, 647, 654
status (psychopy.iohub.devices.eyetracker.BlinkEndEvent

attribute), 636
status (psychopy.iohub.devices.eyetracker.BlinkStartEvent

attribute), 636
status (psychopy.iohub.devices.eyetracker.FixationEndEvent

attribute), 633
status (psychopy.iohub.devices.eyetracker.FixationStartEvent

attribute), 631
status (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 629
status (psychopy.iohub.devices.eyetracker.SaccadeEndEvent

attribute), 636
status (psychopy.iohub.devices.eyetracker.SaccadeStartEvent

attribute), 634
status (psychopy.sound.backend_ptb.SoundPTB prop-

erty), 512
status (psychopy.sound.Microphone property), 520
statusBoxAddKeys() (psy-

chopy.hardware.crs.bits.BitsSharp method),
577

statusBoxDisable() (psy-
chopy.hardware.crs.bits.BitsSharp method),
578

statusBoxEnable() (psy-
chopy.hardware.crs.bits.BitsSharp method),
578

statusBoxKeysPressed() (psy-
chopy.hardware.crs.bits.BitsSharp method),
579

statusBoxResetKeys() (psy-
chopy.hardware.crs.bits.BitsSharp method),

Index 1000

PsychoPy - Psychology software for Python, Release 2023.2.3

579
statusBoxSetKeys() (psy-

chopy.hardware.crs.bits.BitsSharp method),
579

statusBoxWait() (psy-
chopy.hardware.crs.bits.BitsSharp method),
579

statusBoxWaitN() (psy-
chopy.hardware.crs.bits.BitsSharp method),
580

std() (in module psychopy.voicekey), 885
stencilTest (psychopy.visual.nnlvs.VisualSystemHD

property), 483
stencilTest (psychopy.visual.rift.Rift property), 389
stencilTest (psychopy.visual.Window property), 501
stereoDebugHudMode() (psychopy.visual.rift.Rift

method), 389
stop() (psychopy.data.ExperimentHandler method), 798
stop() (psychopy.hardware.camera.Camera method),

547
stop() (psychopy.hardware.crs.bits.BitsSharp method),

580
stop() (psychopy.hardware.keyboard.Keyboard

method), 536
stop() (psychopy.hardware.qmix.Pump method), 592
stop() (psychopy.microphone.AdvAudioCapture

method), 864
stop() (psychopy.session.Session method), 177
stop() (psychopy.sound.backend_ptb.SoundPTB

method), 512
stop() (psychopy.sound.backend_pygame.SoundPygame

method), 516
stop() (psychopy.sound.backend_pyo.SoundPyo

method), 515
stop() (psychopy.sound.backend_sounddevice.SoundDeviceSound

method), 513
stop() (psychopy.sound.Microphone method), 521
stop() (psychopy.visual.MovieStim method), 277
stop() (psychopy.visual.VlcMovieStim method), 462
stop() (psychopy.voicekey.OnsetVoiceKey method), 884
stopAnalog() (psychopy.hardware.crs.bits.BitsSharp

method), 580
stopCustomTasklet() (psy-

chopy.iohub.client.ioHubConnection method),
599

stopExperiment() (psychopy.session.Session method),
177

stopGoggles() (psychopy.hardware.crs.bits.BitsPlusPlus
method), 554

stopGoggles() (psychopy.hardware.crs.bits.BitsSharp
method), 581

stopHaptics() (psychopy.visual.rift.Rift method), 389
stopRecording() (psy-

chopy.hardware.brainproducts.RemoteControlServer

method), 539
stopStatusLog() (psy-

chopy.hardware.crs.bits.BitsSharp method),
581

stopTrigger() (psychopy.hardware.crs.bits.BitsPlusPlus
method), 555

stopTrigger() (psychopy.hardware.crs.bits.BitsSharp
method), 582

stream (psychopy.sound.backend_ptb.SoundPTB prop-
erty), 512

stream (psychopy.sound.backend_sounddevice.SoundDeviceSound
property), 514

streamBufferSecs (psychopy.sound.Microphone prop-
erty), 521

streamStatus (psychopy.sound.Microphone property),
521

streamTime (psychopy.hardware.camera.Camera prop-
erty), 547

style (psychopy.visual.Form property), 227
style (psychopy.visual.Slider property), 415
styleTweaks (psychopy.visual.Slider attribute), 415
submitControllerVibration() (psy-

chopy.visual.rift.Rift method), 389
surface_topic (psychopy.iohub.devices.eyetracker.hw.pupil_labs.pupil_core.EyeTracker

property), 616, 625
surfaceBitangent() (in module psy-

chopy.tools.mathtools), 724
surfaceNormal() (in module psy-

chopy.tools.mathtools), 723
surfaceTangent() (in module psy-

chopy.tools.mathtools), 725
switchOn() (in module psychopy.microphone), 862
switchValvePosition() (psy-

chopy.hardware.qmix.Pump method), 592
syncClock() (psychopy.iohub.client.ioHubConnection

method), 598
syncClocks() (psychopy.hardware.crs.bits.BitsPlusPlus

method), 555
syncClocks() (psychopy.hardware.crs.bits.BitsSharp

method), 582
SyncGenerator (class in psychopy.hardware.emulator),

584
syringeType (psychopy.hardware.qmix.Pump property),

592
systemProfilerMacOS() (in module psy-

chopy.tools.systemtools), 774

T
table_from_file() (in module psychopy.voicekey),

885
table_from_samples() (in module psychopy.voicekey),

885
table_to_file() (in module psychopy.voicekey), 885

Index 1001

PsychoPy - Psychology software for Python, Release 2023.2.3

tanAngleToNDC() (psychopy.visual.rift.Rift method),
390

temporalDithering (psy-
chopy.hardware.crs.bits.BitsSharp property),
582

testBoundary() (psychopy.visual.rift.Rift method), 390
tex (psychopy.visual.GratingStim attribute), 240
tex (psychopy.visual.RadialStim attribute), 343
texRes (psychopy.visual.BufferImageStim attribute), 199
texRes (psychopy.visual.GratingStim attribute), 240
texRes (psychopy.visual.ImageStim attribute), 251
texRes (psychopy.visual.RadialStim attribute), 343
text (psychopy.visual.TextBox2 property), 443
text (psychopy.visual.TextStim attribute), 451
TextBox (class in psychopy.visual), 425
TextBox2 (class in psychopy.visual), 433
TextStim (class in psychopy.visual), 444
thePose (psychopy.visual.BoxStim property), 188
thePose (psychopy.visual.ObjMeshStim property), 288
thePose (psychopy.visual.PlaneStim property), 310
thePose (psychopy.visual.SphereStim property), 423
ticks (psychopy.visual.Slider attribute), 415
time (psychopy.iohub.client.keyboard.KeyboardPress

property), 604
time (psychopy.iohub.client.keyboard.KeyboardRelease

property), 605
time (psychopy.iohub.devices.eyetracker.BinocularEyeSampleEvent

attribute), 606, 618, 626, 629, 646, 654
time (psychopy.iohub.devices.eyetracker.BlinkEndEvent

attribute), 636
time (psychopy.iohub.devices.eyetracker.BlinkStartEvent

attribute), 636
time (psychopy.iohub.devices.eyetracker.FixationEndEvent

attribute), 608, 632, 655
time (psychopy.iohub.devices.eyetracker.FixationStartEvent

attribute), 607, 631, 654
time (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 616, 628
time (psychopy.iohub.devices.eyetracker.SaccadeEndEvent

attribute), 634
time (psychopy.iohub.devices.eyetracker.SaccadeStartEvent

attribute), 633
timeFailed (psychopy.sound.AudioDeviceStatus prop-

erty), 534
timeOnFlip() (psychopy.visual.nnlvs.VisualSystemHD

method), 483
timeOnFlip() (psychopy.visual.rift.Rift method), 390
timeOnFlip() (psychopy.visual.Window method), 501
timeout (psychopy.hardware.brainproducts.RemoteControlServer

property), 539
timestampOnFlip() (psy-

chopy.data.ExperimentHandler method),
798

title (psychopy.visual.nnlvs.VisualSystemHD attribute),

483
title (psychopy.visual.rift.Rift attribute), 390
title (psychopy.visual.Window attribute), 502
toFile() (in module psychopy.tools.filetools), 664
toggle() (psychopy.visual.MovieStim method), 277
tone() (in module psychopy.voicekey), 885
totalCalls (psychopy.sound.AudioDeviceStatus prop-

erty), 534
totalFrames (psychopy.tools.movietools.MovieFileWriter

property), 767
track (psychopy.sound.backend_ptb.SoundPTB prop-

erty), 512
trackerCount (psychopy.visual.rift.Rift property), 390
trackerSec() (psychopy.iohub.devices.eyetracker.hw.mouse.EyeTracker

method), 654
trackerSec() (psychopy.iohub.devices.eyetracker.hw.pupil_labs.pupil_core.EyeTracker

method), 616, 625
trackerTime() (psychopy.iohub.devices.eyetracker.hw.mouse.EyeTracker

method), 654
trackerTime() (psychopy.iohub.devices.eyetracker.hw.pupil_labs.pupil_core.EyeTracker

method), 616, 625
trackingOriginType (psychopy.visual.rift.Rift prop-

erty), 390
transcribe() (psychopy.sound.AudioClip method), 527
transform() (in module psychopy.tools.mathtools), 728
transform() (psychopy.visual.RigidBodyPose method),

397
transformMeshPosOri() (in module psy-

chopy.tools.gltools), 710
transformNormal() (psychopy.visual.RigidBodyPose

method), 397
translationMatrix() (in module psy-

chopy.tools.mathtools), 744
trialAborted (psychopy.data.TrialHandler2 property),

808
TrialHandler (class in psychopy.data), 798
TrialHandler2 (class in psychopy.data), 803
TrialHandlerExt (class in psychopy.data), 809
type (psychopy.iohub.client.keyboard.KeyboardPress

property), 604
type (psychopy.iohub.client.keyboard.KeyboardRelease

property), 605

U
U3 (class in psychopy.hardware.labjacks), 589
uint8_float() (in module psychopy.tools.typetools),

775
unbindTexture() (in module psychopy.tools.gltools),

686
unbindVBO() (in module psychopy.tools.gltools), 693
uncompress() (psychopy.microphone.AdvAudioCapture

method), 864
units (psychopy.event.Mouse property), 843
units (psychopy.layout.Vertices property), 859

Index 1002

PsychoPy - Psychology software for Python, Release 2023.2.3

units (psychopy.visual.BoxStim attribute), 188
units (psychopy.visual.BufferImageStim property), 200
units (psychopy.visual.Form property), 227
units (psychopy.visual.GratingStim property), 240
units (psychopy.visual.ImageStim property), 251
units (psychopy.visual.MovieStim property), 277
units (psychopy.visual.nnlvs.VisualSystemHD attribute),

483
units (psychopy.visual.ObjMeshStim attribute), 288
units (psychopy.visual.PlaneStim attribute), 310
units (psychopy.visual.RadialStim property), 343
units (psychopy.visual.rift.Rift attribute), 390
units (psychopy.visual.Slider property), 415
units (psychopy.visual.SphereStim attribute), 423
units (psychopy.visual.TextBox2 property), 443
units (psychopy.visual.VlcMovieStim property), 463
units (psychopy.visual.Window attribute), 502
unload() (psychopy.visual.MovieStim method), 277
unmapBuffer() (in module psychopy.tools.gltools), 695
up (psychopy.visual.RigidBodyPose property), 397
update() (psychopy.hardware.camera.Camera method),

547
update() (psychopy.visual.nnlvs.VisualSystemHD

method), 483
update() (psychopy.visual.rift.Rift method), 391
updateColors() (psychopy.visual.BoxStim method),

188
updateColors() (psychopy.visual.BufferImageStim

method), 200
updateColors() (psychopy.visual.circle.Circle

method), 210
updateColors() (psychopy.visual.Form method), 227
updateColors() (psychopy.visual.GratingStim

method), 240
updateColors() (psychopy.visual.ImageStim method),

251
updateColors() (psychopy.visual.line.Line method),

264
updateColors() (psychopy.visual.MovieStim method),

277
updateColors() (psychopy.visual.ObjMeshStim

method), 288
updateColors() (psychopy.visual.pie.Pie method), 303
updateColors() (psychopy.visual.PlaneStim method),

310
updateColors() (psychopy.visual.polygon.Polygon

method), 321
updateColors() (psychopy.visual.progress.Progress

method), 331
updateColors() (psychopy.visual.RadialStim method),

343
updateColors() (psychopy.visual.rect.Rect method),

357
updateColors() (psychopy.visual.shape.ShapeStim

method), 409
updateColors() (psychopy.visual.SphereStim method),

423
updateColors() (psychopy.visual.TextBox2 method),

443
updateColors() (psychopy.visual.TextStim method),

451
updateInputState() (psychopy.visual.rift.Rift

method), 391
updateLights() (psy-

chopy.visual.nnlvs.VisualSystemHD method),
483

updateLights() (psychopy.visual.rift.Rift method), 391
updateLights() (psychopy.visual.Window method),

502
updateOpacity() (psychopy.visual.BufferImageStim

method), 200
updateOpacity() (psychopy.visual.circle.Circle

method), 210
updateOpacity() (psychopy.visual.Form method), 227
updateOpacity() (psychopy.visual.GratingStim

method), 240
updateOpacity() (psychopy.visual.ImageStim method),

251
updateOpacity() (psychopy.visual.line.Line method),

264
updateOpacity() (psychopy.visual.MovieStim method),

277
updateOpacity() (psychopy.visual.pie.Pie method),

303
updateOpacity() (psychopy.visual.polygon.Polygon

method), 321
updateOpacity() (psychopy.visual.progress.Progress

method), 331
updateOpacity() (psychopy.visual.RadialStim

method), 343
updateOpacity() (psychopy.visual.rect.Rect method),

357
updateOpacity() (psychopy.visual.shape.ShapeStim

method), 409
updateOpacity() (psychopy.visual.Slider method), 415
updateOpacity() (psychopy.visual.TextBox2 method),

443
updateOpacity() (psychopy.visual.TextStim method),

451
updateOpacity() (psychopy.visual.VlcMovieStim

method), 463
updateTexture() (psychopy.visual.VlcMovieStim

method), 463
updateVideoFrame() (psychopy.visual.MovieStim

method), 277
useFBO() (in module psychopy.tools.gltools), 681
useLights (psychopy.visual.nnlvs.VisualSystemHD

property), 484

Index 1003

PsychoPy - Psychology software for Python, Release 2023.2.3

useLights (psychopy.visual.rift.Rift property), 391
useLights (psychopy.visual.Window property), 502
useLights() (in module psychopy.tools.gltools), 700
useMaterial() (in module psychopy.tools.gltools), 699
useProgram() (in module psychopy.tools.gltools), 673
useProgramObjectARB() (in module psy-

chopy.tools.gltools), 673
userData (psychopy.sound.AudioClip property), 528
userHeight (psychopy.visual.rift.Rift property), 392

V
validate() (psychopy.colors.Color method), 792
validate() (psychopy.gui.Dlg method), 850
validate() (psychopy.layout.Position method), 857
validate() (psychopy.layout.Size method), 858
validate() (psychopy.layout.Vector method), 855
validate() (psychopy.preferences.Preferences method),

881
validateProgram() (in module psychopy.tools.gltools),

673
validateProgramARB() (in module psy-

chopy.tools.gltools), 673
value (psychopy.visual.Slider property), 415
values (psychopy.visual.Form property), 227
VBI, 31
VBI blocking, 31
VBI syncing, 31
Vector (class in psychopy.layout), 854
velocity_x (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 629
velocity_xy (psychopy.iohub.devices.eyetracker.FixationStartEvent

attribute), 631
velocity_xy (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 629
velocity_xy (psychopy.iohub.devices.eyetracker.SaccadeStartEvent

attribute), 634
velocity_y (psychopy.iohub.devices.eyetracker.MonocularEyeSampleEvent

attribute), 629
version (psychopy.hardware.brainproducts.RemoteControlServer

property), 540
VertexArrayInfo (class in psychopy.tools.gltools), 687
VertexBufferInfo (class in psychopy.tools.gltools),

690
vertexNormal() (in module psychopy.tools.mathtools),

726
Vertices (class in psychopy.layout), 858
vertices (psychopy.visual.Aperture property), 180
vertices (psychopy.visual.BoxStim property), 188
vertices (psychopy.visual.BufferImageStim property),

200
vertices (psychopy.visual.Form property), 227
vertices (psychopy.visual.GratingStim property), 240
vertices (psychopy.visual.ImageStim property), 251
vertices (psychopy.visual.line.Line property), 264

vertices (psychopy.visual.MovieStim property), 277
vertices (psychopy.visual.ObjMeshStim property), 288
vertices (psychopy.visual.PlaneStim property), 311
vertices (psychopy.visual.progress.Progress property),

331
vertices (psychopy.visual.RadialStim property), 343
vertices (psychopy.visual.shape.ShapeStim property),

409
vertices (psychopy.visual.SphereStim property), 423
vertices (psychopy.visual.TextBox2 property), 443
vertices (psychopy.visual.VlcMovieStim property), 463
verticesPix (psychopy.visual.Aperture property), 180
verticesPix (psychopy.visual.BufferImageStim prop-

erty), 200
verticesPix (psychopy.visual.circle.Circle property),

210
verticesPix (psychopy.visual.Form property), 227
verticesPix (psychopy.visual.GratingStim property),

240
verticesPix (psychopy.visual.ImageStim property), 251
verticesPix (psychopy.visual.line.Line property), 265
verticesPix (psychopy.visual.MovieStim property), 277
verticesPix (psychopy.visual.pie.Pie property), 303
verticesPix (psychopy.visual.polygon.Polygon prop-

erty), 321
verticesPix (psychopy.visual.progress.Progress prop-

erty), 331
verticesPix (psychopy.visual.RadialStim property),

343
verticesPix (psychopy.visual.rect.Rect property), 357
verticesPix (psychopy.visual.shape.ShapeStim prop-

erty), 409
verticesPix (psychopy.visual.TextBox2 property), 443
verticesPix (psychopy.visual.TextStim property), 451
verticesPix (psychopy.visual.VlcMovieStim property),

463
videoSize (psychopy.visual.MovieStim property), 277
videoSize (psychopy.visual.VlcMovieStim property),

463
viewMatrix (psychopy.visual.nnlvs.VisualSystemHD

property), 484
viewMatrix (psychopy.visual.rift.Rift property), 392
viewMatrix (psychopy.visual.Window property), 502
viewport (psychopy.visual.nnlvs.VisualSystemHD prop-

erty), 484
viewport (psychopy.visual.rift.Rift property), 392
viewport (psychopy.visual.Window property), 503
viewPos (psychopy.visual.nnlvs.VisualSystemHD at-

tribute), 484
viewPos (psychopy.visual.rift.Rift attribute), 392
viewPos (psychopy.visual.Window attribute), 503
visible() (in module psychopy.tools.viewtools), 787
visibleBBox() (in module psychopy.tools.viewtools),

788

Index 1004

PsychoPy - Psychology software for Python, Release 2023.2.3

visibleText (psychopy.visual.TextBox2 property), 443
visibleWedge (psychopy.visual.RadialStim attribute),

343
visualAngle() (in module psychopy.tools.viewtools),

778
VisualSystemHD (class in psychopy.visual.nnlvs), 464
VlcMovieStim (class in psychopy.visual), 454
volume (psychopy.visual.MovieStim property), 277
volume (psychopy.visual.VlcMovieStim property), 463
volumeDown() (psychopy.visual.MovieStim method),

277
volumeUnit (psychopy.hardware.qmix.Pump property),

592
volumeUp() (psychopy.visual.MovieStim method), 278

W
wait() (in module psychopy.clock), 169
wait() (in module psychopy.core), 166
wait_for_event() (psychopy.voicekey.OnsetVoiceKey

method), 884
waitBlanking (psychopy.visual.nnlvs.VisualSystemHD

attribute), 484
waitBlanking (psychopy.visual.rift.Rift attribute), 392
waitBlanking (psychopy.visual.Window attribute), 503
waitForKeys() (psychopy.iohub.client.keyboard.Keyboard

method), 602
waitForMessage() (psy-

chopy.hardware.brainproducts.RemoteControlServer
method), 540

waitForPresses() (psy-
chopy.iohub.client.keyboard.Keyboard
method), 603

waitForReleases() (psy-
chopy.iohub.client.keyboard.Keyboard
method), 603

waitForState() (psy-
chopy.hardware.brainproducts.RemoteControlServer
method), 540

waitKeys() (in module psychopy.event), 843
waitKeys() (psychopy.hardware.keyboard.Keyboard

method), 536
warn() (in module psychopy.logging), 862
warning() (in module psychopy.logging), 862
Warper (class in psychopy.visual.windowwarp), 504
wav2flac() (in module psychopy.microphone), 865
whiteNoise() (psychopy.sound.AudioClip static

method), 528
width (psychopy.visual.BoxStim property), 188
width (psychopy.visual.BufferImageStim property), 200
width (psychopy.visual.Form property), 227
width (psychopy.visual.GratingStim property), 240
width (psychopy.visual.ImageStim property), 251
width (psychopy.visual.MovieStim property), 278
width (psychopy.visual.ObjMeshStim property), 288

width (psychopy.visual.PlaneStim property), 311
width (psychopy.visual.RadialStim property), 343
width (psychopy.visual.SphereStim property), 423
width (psychopy.visual.TextBox2 property), 443
width (psychopy.visual.VlcMovieStim property), 463
win (psychopy.hardware.camera.Camera property), 547
win (psychopy.hardware.crs.bits.BitsSharp property),

582
win (psychopy.visual.BoxStim property), 188
win (psychopy.visual.BufferImageStim property), 200
win (psychopy.visual.circle.Circle property), 211
win (psychopy.visual.Form property), 228
win (psychopy.visual.GratingStim property), 240
win (psychopy.visual.ImageStim property), 251
win (psychopy.visual.line.Line property), 265
win (psychopy.visual.MovieStim property), 278
win (psychopy.visual.ObjMeshStim property), 288
win (psychopy.visual.pie.Pie property), 303
win (psychopy.visual.PlaneStim property), 311
win (psychopy.visual.polygon.Polygon property), 322
win (psychopy.visual.progress.Progress property), 331
win (psychopy.visual.RadialStim property), 343
win (psychopy.visual.rect.Rect property), 357
win (psychopy.visual.shape.ShapeStim property), 409
win (psychopy.visual.SphereStim property), 423
win (psychopy.visual.TextBox2 property), 443
win (psychopy.visual.TextStim property), 451
win (psychopy.visual.VlcMovieStim property), 463
Window (class in psychopy.visual), 485
windowedSize (psychopy.visual.nnlvs.VisualSystemHD

property), 485
windowedSize (psychopy.visual.rift.Rift property), 392
windowedSize (psychopy.visual.Window property), 503
workspace (psychopy.hardware.brainproducts.RemoteControlServer

property), 540
wrapWidth (psychopy.visual.TextStim attribute), 452
write() (psychopy.logging.LogFile method), 860

X
XboxController (class in psychopy.hardware.joystick),

586
xlsx, 31
xRuns (psychopy.sound.AudioDeviceStatus property),

534
xydist() (in module psychopy.event), 844

Z
zero_crossings() (in module psychopy.voicekey), 885
zeroFix() (in module psychopy.tools.mathtools), 759

Index 1005

	Citing
	License for use
	General issues
	Monitor Center
	Real world units
	Calibrating your monitor

	Units for the window and stimuli
	Units for online experiments
	Height units
	Normalised units
	Centimeters on screen
	Degrees of visual angle
	Pixels on screen

	Color spaces
	Colors by name
	Colors by hex value
	RGB color space
	HSV color space
	DKL color space
	LMS color space

	Preferences
	General settings (General)
	Application settings (App)
	Builder settings (Builder)
	Coder settings (Coder)
	Connection settings (Connections)
	Hardware settings
	Key bindings

	Data outputs
	Log file
	 data file (.psydat)
	Long-wide data file
	Excel data file
	Delimited text files (.csv, .tsv, .txt)

	Gamma correcting a monitor
	Simple gamma correction
	Full gamma correction
	Deriving the inverse full equation
	References

	OpenGL and Rendering
	Fast and slow functions
	Tips to render stimuli faster
	OpenGL Shaders
	Blend Mode
	blendMode = ‘avg’
	blendMode = ‘add’

	Sync to VBL and wait for VBL

	Timing Issues and synchronisation
	Can deliver millisecond precision?
	Computer monitors
	Monitors have fixed refresh rates
	The top of the screen appears 5-15 ms before the bottom
	Additional delays caused by monitors

	Delays caused by drivers and OS
	MacOS
	Windows 10
	Linux

	Delays caused by coding errors
	Delays caused by keyboards
	Audio delays
	Non-slip timing for imaging
	Non-slip timing from the Builder

	Detecting dropped frames
	Turn on frame time recording
	Warn me if I drop a frame
	Show me all the frame times that I recorded
	‘Blocking’ on the VBI

	Reducing dropped frames
	Things to change on your system:
	Writing optimal scripts
	Possible good ideas

	Understand and measuring your timing

	Glossary

	Installation
	Download
	Manual installations
	pip install
	brew install
	Linux
	Anaconda and Miniconda
	Developers install

	Recommended hardware
	Notes on OpenGL drivers

	Getting Started
	Builder
	A first program
	Getting beyond Hello

	Builder-to-coder
	Coder

	Builder
	Building experiments in a GUI
	Builder concepts
	Routines and Flow
	The components panel
	Making experiments to go online

	Routines
	Flow
	Adding Routines
	Loops
	Loop types

	Using a Staircase

	Using a simple staircase
	Using a QUEST staircase
	Using a QUEST Plus staircase
	Blocks of trials and counterbalancing
	Blocking similar conditions
	Counterbalancing similar conditions
	Counterbalancing different subtasks

	Components
	Pavlovia Survey
	Get ID
	Get JSON
	Basic

	Aperture Component
	Basic
	Layout

	Brush Component
	Properties
	Appearance

	Button Component
	Appearance
	Layout
	Formatting

	Camera Component
	Parameters
	Basic
	Data

	Cedrus Button Box Component
	Properties
	Data
	Hardware

	Data output
	Special use cases

	Code Component
	Parameters
	Example code uses
	1. Set a random location for your target stimulus
	2. Create a patch of noise
	3. Send a feedback message at the end of the experiment
	4. End a loop early.

	What variables are available to use?

	Dots (RDK) Component
	Parameters
	Layout
	Appearance
	Dots

	Emotiv Marking Component
	Parameters

	Emotiv Record Component
	Getting Started
	Troubleshooting
	Parameters

	Eye Tracker Region of Interest Component
	Parameters
	Basic
	Layout
	Data

	Eye Tracker Calibration Component (Standalone Routine)
	Parameters
	Basic
	Target
	Animation

	Eye Tracker Record Component
	Parameters
	Basic
	Data

	Eye Tracker Validation Component (Standalone Routine)
	Parameters
	Basic
	Target
	Animation
	Data

	Form Component
	Properties
	Layout
	Appearance
	Formatting

	Creating a Google Cloud Speech API key
	Steps

	Grating Component
	Parameters
	Appearance
	Layout
	Texture

	Image Component
	Parameters
	Appearance
	Layout
	Texture

	ioLab Systems buttonbox Component
	Properties
	Data
	Hardware

	JoyButtons Component
	Parameters
	Data
	Hardware

	Joystick Component
	Scenarios
	Parameters Basic
	Data
	Hardware

	Keyboard Component
	Parameters
	Data

	Microphone Component
	Parameters
	Basic
	Transcription
	Data
	Hardware

	Mouse Component
	Scenarios
	Parameters
	Data

	Movie Component
	Parameters
	Appearance
	Layout
	Playback

	Panorama Component
	Parameters
	Basic
	Data

	Parallel Port Out Component
	Properties
	Data
	Hardware

	Patch (image) Component
	Parameters
	Advanced Settings

	Polygon (shape) Component
	Parameters
	Appearance
	Layout
	Texture

	Progress Bar Component
	Parameters
	Appearance
	Layout

	Pump Component
	Properties
	Hardware

	RatingScale Component
	Properties
	Layout
	Data

	Resource Manager Component
	Example: Loading resources in the background of instructions
	Loading resources for blocked or branched designs, or loading trial-by-trial
	Reward Component
	Properties

	Serial Port Out Component
	Properties
	Data
	Hardware

	Slider Component
	Properties
	Formatting
	Appearance

	Sound Component
	Parameters
	Playback

	Static Component
	Parameters

	Custom
	Text Component
	Appearance
	Layout
	Formatting

	Textbox Component
	Appearance
	Layout
	Formatting

	Variable Component
	Parameters
	Data

	Entering parameters
	How often to evaluate the variable/code

	Experiment settings
	Settings
	Basic
	Screen
	Audio
	Online
	Eyetracking
	Data

	Defining the onset/duration of components
	Examples

	Generating outputs (datafiles)
	Common Mistakes (aka Gotcha’s)
	General Advice
	My stimulus isn’t appearing, there’s only the grey background
	The loop isn’t using my Excel spreadsheet
	I just want a plain square, but it’s turning into a grating
	The code snippet I’ve entered doesn’t do anything
	My stimulus isn’t changing as I progress through the loop
	I’m getting the error message AttributeError: ‘unicode object has no attribute ‘XXXX’
	The window opens and immediately closes

	Compiling a Script
	Set up your monitor properly

	Coder
	Basic Concepts
	Presenting Stimuli
	Stimulus objects
	Setting stimulus attributes
	Timing
	Using autoDraw

	Logging data
	Log levels and targets
	Updating the logs
	AutoLogging
	Manual methods
	Using a custom clock for logs

	Handling Trials and Conditions
	TrialHandler
	TrialHandlerExt (For oddball paradigms)
	StairHandler

	Global Event Keys
	Adding a global event key (simple)
	Adding a global event key (advanced)
	Indexing
	Number of active event keys
	Removing global event keys
	psychopy.event.globalKeys.remove()
	del
	psychopy.event.globalKeys.pop()

	Global shutdown key
	A working example

	 Tutorials
	Tutorial 1: Generating your first stimulus
	Know your monitor
	Your first stimulus

	Tutorial 2: Measuring a JND using a staircase procedure
	Get info from the user
	Setup the information for trials
	Build your stimuli
	Control the presentation of the stimuli
	Get input from the subject
	Output your data and clean up

	Tutorial 3: Analysing data in Python

	Running and sharing studies online
	Related links
	Troubleshooting Online Studies
	Getting Started
	PsychoPy Builder is your friend
	Running the latest version of your experiment
	Developer Tools

	Types of Errors
	Python Syntax Errors (seen in Auto-translate code components)
	Synchronisation Errors (seen in the PsychoPy Runner Stdout)
	Synchronisation Errors (seen in a pop-up when synchronising)
	Launch Errors (stuck on “initialising the experiment”)
	Resource Errors
	Semantic Errors
	Unexpected Behaviour

	Getting Help
	Creating a New Topic on the forum

	What next?

	Searching for experiments on Pavlovia
	Via the website
	Via the PsychoPy Builder

	Contributing an experiment to Pavlovia
	Making an experiment public
	Adding a team member

	Recruiting participants and daisy-chaining with other platforms
	Counterbalancing online
	How does it work?
	How does this compare with jsPsych?

	Manual coding of PsychoJS studies
	Working with JS Code Components
	Adding JS functions
	Don’t change the generated JS file

	Communicating with external hardware using PsychoPy
	Communicating with EEG
	Communicating with an eye-tracker
	Communicating with other devices

	Reference Manual (API)
	psychopy.core - basic functions (clocks etc.)
	psychopy.clock - Clocks and timers
	psychopy.session - for running a session with multiple experiments
	psychopy.visual - many visual stimuli
	Aperture
	Attributes

	BoundingBox
	Attributes
	Details

	BoxStim
	Attributes
	Details

	BufferImageStim
	Attributes
	Details

	psychopy.visual.Circle
	Overview
	Details

	CustomMouse
	DotStim
	ElementArrayStim
	Form
	Attributes
	Details

	GratingStim
	Attributes
	Details

	Helper functions
	ImageStim
	Attributes
	Details

	LightSource
	Attributes
	Details

	psychopy.visual.Line
	Overview
	Details

	MovieStim
	Attributes
	Details

	NoiseStim
	Attributes
	Details

	ObjMeshStim
	Attributes
	Details

	PatchStim (deprecated)
	BlinnPhongMaterial
	Attributes
	Details

	psychopy.visual.Pie
	Overview
	Details

	PlaneStim
	Attributes
	Details

	psychopy.visual.Polygon
	Overview
	Details

	psychopy.visual.Progress
	Overview
	Details

	RadialStim
	Attributes
	Details

	RatingScale
	psychopy.visual.Rect
	Overview
	Details

	psychopy.visual.Rift
	Overview
	Details

	RigidBodyPose
	Attributes
	Details

	SceneSkybox
	Attributes
	Details

	EnvelopeGrating
	Attributes
	Details

	psychopy.visual.ShapeStim
	Overview
	Details

	SimpleImageStim
	Slider
	Attributes
	Details

	SphereStim
	Attributes
	Details

	TextBox
	Attributes
	Helper Functions
	Details

	TextBox2
	Attributes
	Details

	TextStim
	VlcMovieStim
	Attributes
	Details

	psychopy.visual.VisualSystemHD
	Overview
	Details

	Window
	psychopy.visual.windowframepack - Pack multiple monochrome images into RGB frame
	ProjectorFramePacker

	psychopy.visual.windowwarp - warping to spherical, cylindrical, or other projections
	Warper

	psychopy.sound - for playback and recording of sound
	Sound - for audio playback
	PTB audio latency
	Preschedule your sound
	PTB Audio Latency Modes
	PTB Devices
	Sound Classes

	PTB Sound
	SoundDevice Sound
	Pyo Sound
	pygame Sound

	Microphone - for recording sound
	Overview
	Details

	AudioClip - for working with audio data
	Overview
	Details

	AudioDeviceInfo and AudioDeviceStatus - descriptors for audio devices
	Overview
	Details

	psychopy.hardware - hardware interfaces
	Keyboard
	Psychtoolbox versus event.getKeys
	Classes and functions

	BrainProducts
	Camera
	Overview
	Details
	Cedrus (response boxes)
	Useful functions
	Device classes

	Cambridge Research Systems Ltd.
	For stimulus display
	BitsPlusPlus
	Attributes
	Details
	Finding the identity LUT

	BitsSharp
	Attributes
	Details

	For display calibration
	ColorCAL
	Attributes
	Details

	egi (pynetstation)
	Launch an fMRI experiment: Test or Scan
	fORP response box
	iolab
	joystick (pyglet and pygame)
	labjacks (USB I/O devices)
	Minolta
	PhotoResearch
	pylink (SR Research)
	pump - A simple interface to the Cetoni neMESYS syringe pump system

	psychopy.iohub - ioHub event monitoring framework
	Starting the psychopy.iohub Process
	launchHubServer Function
	ioHubConnection Class

	Supported Devices
	Keyboard Device
	Keyboard Events
	KeyboardPress Event
	KeyboardRelease Event

	The ioHub Mouse Device
	Mouse Event Types

	ioHub Common Eye Tracker Interface
	Supported Eye Trackers
	Gazepoint
	Additional Software Requirements
	EyeTracker Class
	Supported Event Types
	Default Device Settings
	Pupil Labs - Core
	High Level Pupil Core Introduction
	Device, Software, and Connection Setup
	Additional Software Requirements
	Setting Up the Eye Tracker
	Setting Up
	Pupillometry + Gaze Mode
	Implementation and API Overview
	EyeTracker Class
	Supported Event Types
	Default Device Settings
	Pupil Labs - Neon
	High Level Neon Introduction
	Device, Software, and Connection Setup
	Setting Up the Eye Tracker
	Setting Up
	Implementation and API Overview
	EyeTracker Class
	Supported Event Types
	Default Device Settings
	SR Research
	Additional Software Requirements
	EyeTracker Class
	Supported Event Types
	Eye Samples
	Fixation Events
	Saccade Events
	Blink Events
	Default Device Settings
	Tobii
	Additional Software Requirements
	EyeTracker Class
	Supported Event Types
	Default Device Settings
	MouseGaze
	Additional Software Requirements
	EyeTracker Class
	Supported Event Types
	Default Device Settings

	psychopy.iohub Specific Requirements
	Computer Specifications
	Usage Considerations

	psychopy.tools - miscellaneous tools
	psychopy.tools.colorspacetools
	CIELAB
	psychopy.tools.colorspacetools.cielab2rgb
	psychopy.tools.colorspacetools.cielch2rgb

	DKL
	psychopy.tools.colorspacetools.dkl2rgb
	psychopy.tools.colorspacetools.dklCart2rgb
	psychopy.tools.colorspacetools.rgb2dklCart

	HSV
	psychopy.tools.colorspacetools.hsv2rgb
	psychopy.tools.colorspacetools.rgb2hsv

	LMS
	psychopy.tools.colorspacetools.lms2rgb
	psychopy.tools.colorspacetools.rgb2lms

	Gamma/Transfer Functions
	psychopy.tools.colorspacetools.srgbTF
	psychopy.tools.colorspacetools.rec709TF

	Helpers
	psychopy.tools.colorspacetools.rescaleColor

	psychopy.tools.coordinatetools
	Function details

	psychopy.tools.filetools
	psychopy.tools.gltools
	Shaders
	psychopy.tools.gltools.createProgram
	psychopy.tools.gltools.createProgramObjectARB
	psychopy.tools.gltools.compileShader
	psychopy.tools.gltools.compileShaderObjectARB
	psychopy.tools.gltools.embedShaderSourceDefs
	psychopy.tools.gltools.deleteObject
	psychopy.tools.gltools.deleteObjectARB
	psychopy.tools.gltools.attachShader
	psychopy.tools.gltools.attachObjectARB
	psychopy.tools.gltools.detachShader
	psychopy.tools.gltools.detachObjectARB
	psychopy.tools.gltools.linkProgram
	psychopy.tools.gltools.linkProgramObjectARB
	psychopy.tools.gltools.validateProgram
	psychopy.tools.gltools.validateProgramARB
	psychopy.tools.gltools.useProgram
	psychopy.tools.gltools.useProgramObjectARB
	psychopy.tools.gltools.getInfoLog
	psychopy.tools.gltools.getUniformLocations
	psychopy.tools.gltools.getAttribLocations

	Query
	psychopy.tools.gltools.createQueryObject
	psychopy.tools.gltools.QueryObjectInfo
	psychopy.tools.gltools.beginQuery
	psychopy.tools.gltools.endQuery
	psychopy.tools.gltools.getQuery
	psychopy.tools.gltools.getAbsTimeGPU

	Framebuffer Objects (FBO)
	psychopy.tools.gltools.createFBO
	psychopy.tools.gltools.attach
	psychopy.tools.gltools.isComplete
	psychopy.tools.gltools.deleteFBO
	psychopy.tools.gltools.blitFBO
	psychopy.tools.gltools.useFBO

	Renderbuffers
	psychopy.tools.gltools.createRenderbuffer
	psychopy.tools.gltools.deleteRenderbuffer

	Textures
	psychopy.tools.gltools.createTexImage2D
	psychopy.tools.gltools.createTexImage2dFromFile
	psychopy.tools.gltools.createTexImage2DMultisample
	psychopy.tools.gltools.deleteTexture
	psychopy.tools.gltools.bindTexture
	psychopy.tools.gltools.unbindTexture
	psychopy.tools.gltools.createCubeMap

	Vertex Buffer/Array Objects
	psychopy.tools.gltools.VertexArrayInfo
	psychopy.tools.gltools.createVAO
	psychopy.tools.gltools.drawVAO
	psychopy.tools.gltools.deleteVAO
	psychopy.tools.gltools.VertexBufferInfo
	psychopy.tools.gltools.createVBO
	psychopy.tools.gltools.bindVBO
	psychopy.tools.gltools.unbindVBO
	psychopy.tools.gltools.mapBuffer
	psychopy.tools.gltools.unmapBuffer
	psychopy.tools.gltools.deleteVBO
	psychopy.tools.gltools.setVertexAttribPointer
	psychopy.tools.gltools.enableVertexAttribArray
	psychopy.tools.gltools.disableVertexAttribArray

	Materials and Lighting
	psychopy.tools.gltools.createMaterial
	psychopy.tools.gltools.useMaterial
	psychopy.tools.gltools.createLight
	psychopy.tools.gltools.useLights
	psychopy.tools.gltools.setAmbientLight

	Meshes
	psychopy.tools.gltools.ObjMeshInfo
	psychopy.tools.gltools.loadObjFile
	psychopy.tools.gltools.loadMtlFile
	psychopy.tools.gltools.createUVSphere
	psychopy.tools.gltools.createPlane
	psychopy.tools.gltools.createMeshGridFromArrays
	psychopy.tools.gltools.createMeshGrid
	psychopy.tools.gltools.createBox
	psychopy.tools.gltools.transformMeshPosOri
	psychopy.tools.gltools.calculateVertexNormals

	Miscellaneous
	psychopy.tools.gltools.getIntegerv
	psychopy.tools.gltools.getFloatv
	psychopy.tools.gltools.getString
	psychopy.tools.gltools.getOpenGLInfo
	psychopy.tools.gltools.getModelViewMatrix
	psychopy.tools.gltools.getProjectionMatrix

	Examples

	psychopy.tools.imagetools
	Function details

	psychopy.tools.mathtools
	Vectors
	psychopy.tools.mathtools.length
	psychopy.tools.mathtools.normalize
	psychopy.tools.mathtools.orthogonalize
	psychopy.tools.mathtools.reflect
	psychopy.tools.mathtools.dot
	psychopy.tools.mathtools.cross
	psychopy.tools.mathtools.project
	psychopy.tools.mathtools.perp
	psychopy.tools.mathtools.lerp
	psychopy.tools.mathtools.distance
	psychopy.tools.mathtools.angleTo
	psychopy.tools.mathtools.bisector
	psychopy.tools.mathtools.surfaceNormal
	psychopy.tools.mathtools.surfaceBitangent
	psychopy.tools.mathtools.surfaceTangent
	psychopy.tools.mathtools.vertexNormal
	psychopy.tools.mathtools.fixTangentHandedness
	psychopy.tools.mathtools.ortho3Dto2D
	psychopy.tools.mathtools.transform
	psychopy.tools.mathtools.scale

	Quaternions
	psychopy.tools.mathtools.articulate
	psychopy.tools.mathtools.slerp
	psychopy.tools.mathtools.quatToAxisAngle
	psychopy.tools.mathtools.quatFromAxisAngle
	psychopy.tools.mathtools.quatYawPitchRoll
	psychopy.tools.mathtools.alignTo
	psychopy.tools.mathtools.quatMagnitude
	psychopy.tools.mathtools.multQuat
	psychopy.tools.mathtools.accumQuat
	psychopy.tools.mathtools.invertQuat
	psychopy.tools.mathtools.applyQuat
	psychopy.tools.mathtools.quatToMatrix

	Matrices
	psychopy.tools.mathtools.matrixToQuat
	psychopy.tools.mathtools.matrixFromEulerAngles
	psychopy.tools.mathtools.scaleMatrix
	psychopy.tools.mathtools.rotationMatrix
	psychopy.tools.mathtools.translationMatrix
	psychopy.tools.mathtools.invertMatrix
	psychopy.tools.mathtools.isOrthogonal
	psychopy.tools.mathtools.isAffine
	psychopy.tools.mathtools.multMatrix
	psychopy.tools.mathtools.concatenate
	psychopy.tools.mathtools.normalMatrix
	psychopy.tools.mathtools.forwardProject
	psychopy.tools.mathtools.reverseProject
	psychopy.tools.mathtools.applyMatrix
	psychopy.tools.mathtools.posOriToMatrix

	Collisions
	psychopy.tools.mathtools.fitBBox
	psychopy.tools.mathtools.computeBBoxCorners
	psychopy.tools.mathtools.intersectRayPlane
	psychopy.tools.mathtools.intersectRaySphere
	psychopy.tools.mathtools.intersectRayAABB
	psychopy.tools.mathtools.intersectRayOBB
	psychopy.tools.mathtools.intersectRayTriangle

	Distortion
	psychopy.tools.mathtools.lensCorrection
	psychopy.tools.mathtools.lensCorrectionSpherical

	Miscellaneous
	psychopy.tools.mathtools.zeroFix
	Performance and Optimization
	Data Types

	psychopy.tools.monitorunittools
	Function details

	psychopy.tools.movietools
	Overview
	Details

	psychopy.tools.pkgtools
	Details

	psychopy.tools.plottools
	psychopy.tools.rifttools
	Overview
	Classes
	Functions

	Details

	psychopy.tools.systemtools
	Overview
	Details

	psychopy.tools.typetools
	psychopy.tools.unittools
	psychopy.tools.viewtools
	Overview
	Details

	psychopy.app - the application suite
	Overview
	Details
	psychopy.colors - For working with colors
	Overview
	Details

	psychopy.data - functions for storing/saving/analysing data
	ExperimentHandler
	TrialHandler
	TrialHandler2
	TrialHandlerExt
	StairHandler
	PsiHandler
	QuestHandler
	QuestPlusHandler
	MultiStairHandler
	FitWeibull
	FitLogistic
	FitNakaRushton
	FitCumNormal
	importConditions()
	functionFromStaircase()
	bootStraps()

	Encryption
	psychopy.event - for keypresses and mouse clicks
	psychopy.filters - helper functions for creating filters
	psychopy.gui - create dialogue boxes
	DlgFromDict
	Dlg
	fileOpenDlg()
	fileSaveDlg()

	psychopy.info - functions for getting information about the system
	psychopy.layout - For working with vectors and points
	Overview
	Details

	psychopy.logging - control what gets logged
	flush()
	setDefaultClock()

	psychopy.microphone - Capture and analyze sound
	Overview
	Audio Capture
	Speech recognition
	Misc

	psychopy.misc - miscellaneous routines for converting units etc
	From psychopy.tools.filetools
	From psychopy.tools.colorspacetools
	From psychopy.tools.coordinatetools
	From psychopy.tools.monitorunittools
	From psychopy.tools.imagetools
	From psychopy.tools.plottools
	From psychopy.tools.typetools
	From psychopy.tools.unittools

	psychopy.monitors - for those that don’t like Monitor Center
	Monitor
	GammaCalculator
	getAllMonitors()
	getLumSeriesPR650()
	getRGBspectra()
	gammaFun()
	gammaInvFun()
	makeDKL2RGB()
	makeLMS2RGB()

	psychopy.parallel - functions for interacting with the parallel port
	Legacy functions

	psychopy.plugins - utilities for extending with plugins
	Overview
	Details

	psychopy.preferences - getting and setting preferences
	Preferences

	psychopy.serial - functions for interacting with the serial port
	psychopy.voicekey - Real-time sound processing
	Overview
	Voice-Keys
	Signal-processing functions
	Sound file I/O

	psychopy.web - Web methods
	Test for access
	Proxy set-up and testing

	Timing information for PsychoPy
	Mega-timing study data
	Table2: lab-based timing data
	Table3: online timing data

	Troubleshooting
	The application doesn’t start
	I run a Builder experiment and nothing happens
	Manually turn off the viewing of output
	Use the source (Luke?)
	Cleaning preferences and app data
	Errors with getting/setting the Gamma ramp
	MS Windows bug in release 1903
	Linux missing xorg.conf

	Alerts
	2xxx: Issues with units
	2115: Stimulus size is bigger than the window dimensions
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	2120: Stimulus size is smaller than 1 pixel
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	2155: Stimulus position is beyond the bounds of the window
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	3xxx: Issues with timing
	3110: Stimulus duration is less than one screen refresh
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	3115: Stimulus duration is not possible on a standard monitor refresh
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4xxx: Issues with Builder experiments
	4051: Experiment from future version
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4052: Experiment fixed to past version
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4105: Component start time exceeds its stop time
	Synopsis
	PsychoPy versions affected
	Solutions

	4115: Component start/stop in units of frames must be whole numbers
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4120: Component stop duration with no start time
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4125: Microphone component given blank stop time
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4205: Probable syntax error detected in your Python code
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4210: Probable syntax error detected in your JavaScript code
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4305: Component is currently disabled in your experiment
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4310: Builder cannot check your parameter further
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4315: Invalid dollar sign syntax.
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4320: Non-local font.
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4325: Font not available
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4330: Recording device not found
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4335: Component or routine not implemented in Python
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4340: Component or routine not implemented in JavaScript
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4405: Textbox and keyboard conflict
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4505: Eyetracking not configured
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4510: Eyetracker not calibrated
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4520: Animation params not used
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4530: Auto pace param not used
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4540: Eyetracking requires window to be fullscreen
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4545: Eyetracking requires a monitor config
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4550: Input -> Keyboard Backend not set to ‘ioHub’
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4605: Transcription service not compatible online
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4610: Transcription service not compatible locally
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4615: API key not found
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	4705: Column name from conditions file clashes with variable name
	Synopsis
	Details
	PsychoPy versions affected
	Solutions

	Frequently Asked Questions (FAQs)
	Why is the bits++ demo not working?
	Why is my stimulus not showing?
	My experiment is crashing - how do I know where the problem is?
	Can run my experiment with sub-millisecond timing?
	Why am I getting a variable not defined error?
	Will updating PsychoPy break my existing experiments?

	Resources (e.g. for teaching)
	Workshops
	Youtube tutorials
	Materials for Builder
	Materials for Coder
	Previous events

	For Developers
	Using the repository
	PsychoPy Git Flow
	PsychoPy commit messages
	Setting up your repository first time
	Create your own fork of the central repository
	Fetch a local copy
	Run using your local repo copy

	Fixing bugs and making minor improvements
	Working on a new feature
	Making a pull request
	Converting to the 2-trunk flow

	Adding documentation
	Adding a new Builder Component
	1. Create the file defining the component: newcomp.py
	Notes & gotchas
	2. Icon: newcomp.png
	3. Documentation: newcomp.rst

	Style-guide for coder demos
	Adding a new Menu Item
	1. makeMenus()
	2. wxIDs.py
	3. Key-binding prefs
	4. Your new method
	5. Documentation

	Creating Plugins for
	How plugins work
	Plugin packages
	Naming plugin packages
	Specifying entry points
	The __register__ attribute

	Plugin example project
	Project files
	Building packages
	Using the plugin

	Plugins as patches
	Creating patches
	Applying patches

	Creating window backends
	Example

	Contributing to the Test Suite
	Why do we need a test suite?
	How does it work?
	Using assert
	Using classes
	Exercise

	Running tests in PyCharm
	Test utils
	Paths
	Compare screenshot
	Compare pixel color
	Exemplars and tykes

	Cleanup
	Exercise

	CodeCov
	Solutions

	 Experiment file format (.psyexp)
	Parameters
	Settings
	Routines
	Components
	Flow
	Names

	Python Module Index
	Index

