#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Part of the PsychoPy library
# Copyright (C) 2002-2018 Jonathan Peirce (C) 2019-2022 Open Science Tools Ltd.
# Distributed under the terms of the GNU General Public License (GPL).
"""Audio capture and analysis using pyo"""
# Author: Jeremy R. Gray, March 2012, March 2013
import os
import glob
import threading
from psychopy.tools.filetools import pathToString
import urllib.request
import urllib.error
import urllib.parse
import json
import numpy as np
from scipy.io import wavfile
from psychopy import core, logging, web, prefs
from psychopy.sound import backend_pyo
from psychopy.constants import NOT_STARTED, PLAYING, PSYCHOPY_USERAGENT
# import pyo is done within switchOn to better encapsulate it, can be very
# slow and don't want to delay up to 3 sec when importing microphone
# downside: to make this work requires some trickiness with globals
haveMic = False # goes True in switchOn, if can import pyo
# flac is used for audio compression; user needs to install it
FLAC_PATH = None # set on first call to _getFlacPath()
class AudioCapture:
"""Capture sound sample from the default sound input, and save to a file.
Untested whether you can have two recordings going on simultaneously.
**Examples**
.. code-block:: python
from psychopy import microphone
from psychopy import event, visual # for key events
microphone.switchOn(sampleRate=16000) # do once
# Record for 1.000 seconds, save to mic.savedFile
mic = microphone.AudioCapture()
mic.record(1)
mic.playback()
# Resample, creates a new file discards orig
mic.resample(48000, keep=False)
# Record new file for 60 sec or until key 'q'
w = visual.Window() # needed for key-events
mic.reset()
mic.record(60, block=False)
while mic.recorder.running:
if 'q' in event.getKeys():
mic.stop()
Also see Builder Demo "voiceCapture".
:Author: Jeremy R. Gray, March 2012
"""
class _Recorder():
"""Class for internal object to make an audio recording using pyo.
Never needed by end-users; only used internally in __init__::
self.recorder = _Recorder(None) # instantiate, global
Then in record(), do::
self.recorder.run(filename, sec)
This sets recording parameters, starts recording.
To stop a recording that is in progress, do::
self.stop()
This class never handles blocking; AudioCapture has to do that.
Motivation: Doing pyo Record from within a function worked most of
the time, but failed catastrophically ~1% of time with a bus error.
Seemed to be due to a namespace scoping issue, which using globals
seemed to fix; see pyo mailing list, 7 April 2012. This draws
heavily on Olivier Belanger's solution.
"""
def __init__(self):
self.running = False
def run(self, filename, sec, sampletype=0, buffering=16,
chnl=0, chnls=2):
filename = pathToString(filename)
self.running = True
# chnl from psychopy.backend_pyo.get_input_devices()
inputter = pyo.Input(chnl=chnl, mul=1)
self.recorder = pyo.Record(inputter, filename, chnls=chnls,
fileformat=0, sampletype=sampletype,
buffering=buffering)
# handles recording offset
pyo.Clean_objects(sec, self.recorder).start()
threading.Timer(sec, self._stop).start() # set running flag False
def stop(self):
self.recorder.stop()
self._stop()
def _stop(self):
self.running = False
def __init__(self, name='mic', filename='', saveDir='', sampletype=0,
buffering=16, chnl=0, stereo=True, autoLog=True):
"""
:Parameters:
name :
Stem for the output file, also used in logging.
filename :
optional file name to use; default = 'name-onsetTimeEpoch.wav'
saveDir :
Directory to use for output .wav files. If a saveDir is given, it will return 'saveDir/file'.
If no saveDir, then return abspath(file)
sampletype : bit depth
pyo recording option: 0=16 bits int, 1=24 bits int; 2=32 bits int
buffering : pyo argument
Controls the buffering argument for pyo if necessary
chnl : int (default=0)
which audio input channel to record (default=0)
stereo : bool or nChannels (default = True)
how many channels to record
"""
if not haveMic:
raise MicrophoneError('Need to call microphone.switchOn()'
' before AudioCapture or AdvancedCapture')
self.name = name
self.saveDir = saveDir
filename = pathToString(filename)
if filename:
self.wavOutFilename = filename
else:
self.wavOutFilename = os.path.join(self.saveDir, name + '.wav')
if not self.saveDir:
self.wavOutFilename = os.path.abspath(self.wavOutFilename)
else:
if not os.path.isdir(self.saveDir):
os.makedirs(self.saveDir, 0o770)
self.onset = None # becomes onset time, used in filename
self.savedFile = False # becomes saved file name
self.status = NOT_STARTED # for Builder component
# pyo server good to go?
if not pyo.serverCreated():
raise AttributeError('pyo server not created')
if not pyo.serverBooted():
raise AttributeError('pyo server not booted')
self.autoLog = autoLog
self.loggingId = self.__class__.__name__
if self.name:
self.loggingId += ' ' + self.name
if type(chnl) != int:
try:
chnl = int(chnl)
except (TypeError, ValueError):
raise TypeError("AudioCapture argument 'chnl' needs to be an int but received {}".format(repr(chnl)))
# the recorder object needs to persist, or else get bus errors:
self.recorder = self._Recorder()
self.options = {'sampletype': sampletype, 'buffering': buffering,
'chnl': chnl, 'chnls': 1 + int(stereo == True)}
def stop(self, log=True):
"""Interrupt a recording that is in progress; close & keep the file.
Ends the recording before the duration that was initially specified.
The same file name is retained, with the same onset time but a
shorter duration.
The same recording cannot be resumed after a stop (it is not a pause),
but you can start a new one.
"""
if not self.recorder.running:
if log and self.autoLog:
msg = '%s: Stop requested, but no record() in progress'
logging.exp(msg % self.loggingId)
return
self.duration = core.getTime() - self.onset # new shorter duration
self.recorder.stop()
if log and self.autoLog:
msg = '%s: Record stopped early, new duration %.3fs'
logging.data(msg % (self.loggingId, self.duration))
def reset(self, log=True):
"""Restores to fresh state, ready to record again
"""
if log and self.autoLog:
msg = '%s: resetting at %.3f'
logging.exp(msg % (self.loggingId, core.getTime()))
self.__init__(name=self.name, saveDir=self.saveDir)
def record(self, sec, filename='', block=True):
"""Capture sound input for duration <sec>, save to a file.
Return the path/name to the new file. Uses onset time (epoch) as
a meaningful identifier for filename and log.
"""
return self._record(sec, filename=filename, block=block)
def _record(self, sec, filename='', block=True, log=True):
filename = pathToString(filename)
while self.recorder.running:
pass
self.duration = float(sec)
# for duration estimation, high precision:
self.onset = core.getTime()
# use time for unique log and filename, 1 sec precision
self.fileOnset = core.getAbsTime()
ms = "%.3f" % (core.getTime() - int(core.getTime()))
if log and self.autoLog:
msg = '%s: Record: onset %d, capture %.3fs'
logging.data(msg % (self.loggingId, self.fileOnset,
self.duration))
if not filename:
onsettime = '-%d' % self.fileOnset + ms[1:]
self.savedFile = onsettime.join(
os.path.splitext(self.wavOutFilename))
else:
self.savedFile = os.path.abspath(filename)
if not self.savedFile.endswith('.wav'):
self.savedFile += '.wav'
t0 = core.getTime()
self.recorder.run(self.savedFile, self.duration, **self.options)
self.rate = backend_pyo.pyoSndServer.getSamplingRate()
if block:
core.wait(self.duration, 0)
if log and self.autoLog:
msg = '%s: Record: stop. %.3f, capture %.3fs (est)'
logging.exp(msg % (self.loggingId, core.getTime(),
core.getTime() - t0))
while self.recorder.running:
core.wait(.001, 0)
else:
if log and self.autoLog:
msg = '%s: Record: return immediately, no blocking'
logging.exp(msg % (self.loggingId))
return self.savedFile
def playback(self, block=True, loops=0, stop=False, log=True):
"""Plays the saved .wav file, as just recorded or resampled. Execution
blocks by default, but can return immediately with `block=False`.
`loops` : number of extra repetitions; 0 = play once
`stop` : True = immediately stop ongoing playback (if there is one),
and return
"""
if not self.savedFile or not os.path.isfile(self.savedFile):
msg = '%s: Playback requested but no saved file' % self.loggingId
logging.error(msg)
raise ValueError(msg)
if stop:
if (hasattr(self, 'current_recording') and
self.current_recording.status == PLAYING):
self.current_recording.stop()
return
# play this file:
name = self.name + '.current_recording'
self.current_recording = backend_pyo.SoundPyo(
self.savedFile, name=name, loops=loops)
self.current_recording.play()
if block:
core.wait(self.duration * (loops + 1)) # set during record()
if log and self.autoLog:
if loops:
msg = '%s: Playback: play %.3fs x %d (est) %s'
vals = (self.loggingId, self.duration, loops + 1,
self.savedFile)
logging.exp(msg % vals)
else:
msg = '%s: Playback: play %.3fs (est) %s'
logging.exp(msg % (self.loggingId, self.duration,
self.savedFile))
def resample(self, newRate=16000, keep=True, log=True):
"""Re-sample the saved file to a new rate, return the full path.
Can take several visual frames to resample a 2s recording.
The default values for resample() are for Google-speech, keeping the
original (presumably recorded at 48kHz) to archive.
A warning is generated if the new rate not an integer factor /
multiple of the old rate.
To control anti-aliasing, use pyo.downsamp() or upsamp() directly.
"""
if not self.savedFile or not os.path.isfile(self.savedFile):
msg = '%s: Re-sample requested but no saved file' % self.loggingId
logging.error(msg)
raise ValueError(msg)
if newRate <= 0 or type(newRate) != int:
msg = '%s: Re-sample bad new rate = %s' % (self.loggingId,
repr(newRate))
logging.error(msg)
raise ValueError(msg)
# set-up:
if self.rate >= newRate:
ratio = float(self.rate) / newRate
info = '-ds%i' % ratio
else:
ratio = float(newRate) / self.rate
info = '-us%i' % ratio
if ratio != int(ratio):
msg = '%s: old rate is not an integer factor of new rate'
logging.warn(msg % self.loggingId)
ratio = int(ratio)
newFile = info.join(os.path.splitext(self.savedFile))
# use pyo's downsamp or upsamp based on relative rates:
if not ratio:
msg = '%s: Re-sample by %sx is undefined, skipping'
logging.warn(msg % (self.loggingId, str(ratio)))
elif self.rate >= newRate:
t0 = core.getTime()
# default 128-sample anti-aliasing
pyo.downsamp(self.savedFile, newFile, ratio)
if log and self.autoLog:
msg = '%s: Down-sampled %sx in %.3fs to %s'
vals = (self.loggingId, str(ratio), core.getTime() - t0,
newFile)
logging.exp(msg % vals)
else:
t0 = core.getTime()
# default 128-sample anti-aliasing
pyo.upsamp(self.savedFile, newFile, ratio)
if log and self.autoLog:
msg = '%s: Up-sampled %sx in %.3fs to %s'
vals = (self.loggingId, str(ratio), core.getTime() - t0,
newFile)
logging.exp(msg % vals)
# clean-up:
if not keep:
os.unlink(self.savedFile)
self.savedFile = newFile
self.rate = newRate
return os.path.abspath(newFile)
[docs]class AdvAudioCapture(AudioCapture):
"""Class extends AudioCapture, plays marker sound as a "start" indicator.
Has method for retrieving the marker onset time from the file, to allow
calculation of vocal RT (or other sound-based RT).
See Coder demo > input > latencyFromTone.py
"""
def __init__(self, name='advMic', filename='', saveDir='', sampletype=0,
buffering=16, chnl=0, stereo=True, autoLog=True):
AudioCapture.__init__(self, name=name, filename=filename,
saveDir=saveDir, sampletype=sampletype,
buffering=buffering, chnl=chnl, stereo=stereo)
self.setMarker()
self.autoLog = autoLog
[docs] def record(self, sec, filename='', block=False):
"""Starts recording and plays an onset marker tone just prior
to returning. The idea is that the start of the tone in the
recording indicates when this method returned, to enable you to sync
a known recording onset with other events.
"""
# get effectively the same timing if play after starting the record
self.playMarker()
self.filename = self._record(sec, filename=filename, block=block)
return self.filename
[docs] def setFile(self, filename):
"""Sets the name of the file to work with.
"""
self.filename = filename
[docs] def setMarker(self, tone=19000, secs=0.015, volume=0.03, log=True):
"""Sets the onset marker, where `tone` is either in hz or a custom
sound.
The default tone (19000 Hz) is recommended for auto-detection,
as being easier to isolate from speech sounds (and so reliable
to detect). The default duration and volume are appropriate for
a quiet setting such as a lab testing room. A louder volume, longer
duration, or both may give better results when recording loud sounds
or in noisy environments, and will be auto-detected just fine
(even more easily). If the hardware microphone in use is not
physically near the speaker hardware, a louder volume is likely
to be required.
Custom sounds cannot be auto-detected, but are supported anyway for
presentation purposes. E.g., a recording of someone saying "go" or
"stop" could be passed as the onset marker.
"""
if hasattr(tone, 'play'):
self.marker_hz = 0
self.marker = tone
if log and self.autoLog:
logging.exp('custom sound set as marker; getMarkerOnset()'
' will not be able to auto-detect onset')
else:
self.marker_hz = float(tone)
sampleRate = backend_pyo.pyoSndServer.getSamplingRate()
if sampleRate < 2 * self.marker_hz:
# NyquistError
msg = ("Recording rate (%i Hz) too slow for %i Hz-based"
" marker detection.")
logging.warning(msg % (int(sampleRate), self.marker_hz))
if log and self.autoLog:
msg = 'frequency of recording onset marker: %.1f'
logging.exp(msg % self.marker_hz)
self.marker = backend_pyo.SoundPyo(self.marker_hz, secs, volume=volume,
name=self.name + '.marker_tone')
[docs] def playMarker(self):
"""Plays the current marker sound. This is automatically called at the
start of recording, but can be called anytime to insert a marker.
"""
self.marker.play()
[docs] def getMarkerInfo(self):
"""Returns (hz, duration, volume) of the marker sound.
Custom markers always return 0 hz (regardless of the sound).
"""
dur, vol = self.marker.getDuration(), self.marker.getVolume()
return self.marker_hz, dur, vol
[docs] def getMarkerOnset(self, chunk=128, secs=0.5, filename=''):
"""Return (onset, offset) time of the first marker within the
first `secs` of the saved recording.
Has approx ~1.33ms resolution at 48000Hz, chunk=64. Larger chunks
can speed up processing times, at a sacrifice of some resolution,
e.g., to pre-process long recordings with multiple markers.
If given a filename, it will first set that file as the one to
work with, and then try to detect the onset marker.
"""
while self.recorder.running:
core.wait(0.10, 0)
if filename:
self.setFile(filename)
else:
filename = self.filename
return getMarkerOnset(chunk=chunk, secs=secs,
filename=filename,
marker_hz=self.marker_hz,
marker_duration=self.marker.getDuration())
[docs] def getLoudness(self):
"""Return the RMS loudness of the saved recording.
"""
# use cached value unless the file has changed, based on its mod time:
try:
mtime = os.path.getmtime(self.savedFile)
except (OSError, TypeError):
logging.error('%s no .savedFile, try again' % self.name)
core.wait(0.01, 0)
if not self.savedFile or not os.path.exists(self.savedFile):
raise ValueError('no such file')
mtime = os.path.getmtime(self.savedFile)
if not hasattr(self, 'rms') or self.mtime != mtime:
self.rms = getRMS(self.savedFile) # ~3ms for 2s file
self.mtime = mtime
return self.rms
[docs] def compress(self, keep=False):
"""Compress using FLAC (lossless compression).
"""
if os.path.isfile(self.savedFile) and self.savedFile.endswith('.wav'):
self.savedFile = wav2flac(self.savedFile, keep=keep)
[docs] def uncompress(self, keep=False):
"""Uncompress from FLAC to .wav format.
"""
isFlac = self.savedFile.endswith('.flac')
if os.path.isfile(self.savedFile) and isFlac:
self.savedFile = flac2wav(self.savedFile, keep=keep)
def getMarkerOnset(filename, chunk=128, secs=0.5, marker_hz=19000,
marker_duration=0.015):
"""Returns marker sound (onset, offset) in sec, as read from filename.
"""
def thresh2SD(data, mult=2, thr=None):
"""Return index of first value in abs(data) exceeding 2 * std(data),
or length of the data + 1 if nothing > threshold
Return threshold so can re-use the same threshold later
"""
# this algorithm could use improvement
data = abs(data)
if not thr:
thr = mult * np.std(data)
val = data[(data > thr)]
if not len(val):
return len(data) + 1, thr
first = val[0]
for i, v in enumerate(data):
if v == first:
return i, thr
# read data from file:
data, sampleRate = readWavFile(filename)
if marker_hz == 0:
raise ValueError("Custom marker sounds cannot be auto-detected.")
if sampleRate < 2 * marker_hz:
# NyquistError
msg = "Recording rate (%i Hz) too slow for %i Hz-based marker detection."
raise ValueError(msg % (int(sampleRate), marker_hz))
# extract onset:
chunk = max(16, chunk) # trades-off against size of bandpass filter
# precision in time-domain (= smaller chunks) requires wider freq
# {16: 2400, 32: 1200, 64: 600, 128: 300}
bandSize = 150 * 2 ** (8 - int(np.log2(chunk)))
dataToUse = data[:int(sampleRate * secs)] # only look at first secs
lo = max(0, marker_hz - bandSize) # for bandpass filter
hi = marker_hz + bandSize
dftProfile = getDftBins(dataToUse, sampleRate, lo, hi, chunk)
# leading edge of startMarker in chunks
onsetChunks, thr = thresh2SD(dftProfile)
onsetSecs = onsetChunks * chunk / sampleRate # in secs
# extract offset:
ratio = chunk / sampleRate
start = onsetChunks - 4
stop = int(onsetChunks + marker_duration / ratio) + 4
backwards = dftProfile[max(start, 0):min(stop, len(dftProfile))]
offChunks, _junk = thresh2SD(backwards[::-1], thr=thr)
offSecs = (start + len(backwards) - offChunks) * ratio
# in secs
return onsetSecs, offSecs
def readWavFile(filename):
"""Return (data, sampleRate) as read from a wav file, expects int16 data.
"""
filename = pathToString(filename)
try:
sampleRate, data = wavfile.read(filename)
except Exception:
if os.path.exists(filename) and os.path.isfile(filename):
core.wait(0.01, 0)
try:
sampleRate, data = wavfile.read(filename)
except Exception:
msg = 'Failed to open wav sound file "%s"'
raise SoundFileError(msg % filename)
if data.dtype != 'int16':
msg = 'expected `int16` data in .wav file %s'
raise AttributeError(msg % filename)
if len(data.shape) == 2 and data.shape[1] == 2:
data = data.transpose()
data = data[0] # left channel only? depends on how the file was made
return data, sampleRate
def getDftBins(data=None, sampleRate=None, low=100, high=8000, chunk=64):
"""Return DFT (discrete Fourier transform) of ``data``, doing so in
time-domain bins, each of size ``chunk`` samples.
e.g., for getting FFT magnitudes in a ms-by-ms manner.
If given a sampleRate, the data are bandpass filtered (low, high).
"""
# good to reshape & vectorize data rather than use a python loop
if data is None:
data = []
bins = []
i = chunk
if sampleRate:
# just to get freq vector
_junk, freq = getDft(data[:chunk], sampleRate)
band = (freq > low) & (freq < high) # band (frequency range)
while i <= len(data):
magn = getDft(data[i - chunk:i])
if sampleRate:
bins.append(np.std(magn[band])) # filtered by frequency
else:
bins.append(np.std(magn)) # unfiltered
i += chunk
return np.array(bins)
[docs]def getDft(data, sampleRate=None, wantPhase=False):
"""Compute and return magnitudes of numpy.fft.fft() of the data.
If given a sample rate (samples/sec), will return (magn, freq).
If wantPhase is True, phase in radians is also returned
(magn, freq, phase). data should have power-of-2 samples,
or will be truncated.
"""
# www.vibrationdata.com/Shock_and_Vibration_Signal_Analysis.pdf
# and .../python/fft.py
# truncate to power-of-2 slice; zero-padding to round up is ok too
samples = 2 ** int(np.log2(len(data)))
samplesHalf = samples // 2
dataSlice = data[:samples]
# get magn & phase from the DFT:
dft = np.fft.fft(dataSlice)
dftHalf = dft[:samplesHalf] / samples
magn = abs(dftHalf) * 2
magn[0] /= 2.
if wantPhase:
phase = np.arctan2(dftHalf.real, dftHalf.imag) # in radians
if sampleRate:
deltaf = sampleRate / samplesHalf / 2.
freq = np.linspace(0, samplesHalf * deltaf,
samplesHalf, endpoint=False)
if wantPhase:
return magn, freq, phase
return magn, freq
else:
if wantPhase:
return magn, phase
return magn
def getRMSBins(data, chunk=64):
"""Return RMS (loudness) in bins of ``chunk`` samples
"""
# better to vectorize
bins = []
i = chunk
while i <= len(data):
r = getRMS(data[i - chunk:i])
bins.append(r)
i += chunk
return np.array(bins)
[docs]def getRMS(data):
"""Compute and return the audio power ("loudness").
Uses numpy.std() as RMS. std() is same as RMS if the mean is 0,
and .wav data should have a mean of 0.
Returns an array if given stereo data (RMS computed within-channel).
`data` can be an array (1D, 2D) or filename; .wav format only.
data from .wav files will be normalized to -1..+1 before RMS is computed.
"""
def _rms(data):
"""Audio loudness / power, as rms; ~2x faster than std()
"""
if len(data.shape) > 1:
return np.std(data, axis=1) # np.sqrt(np.mean(data ** 2, axis=1))
return np.std(data) # np.sqrt(np.mean(data ** 2))
if isinstance(data, str):
if not os.path.isfile(data):
raise ValueError('getRMS: could not find file %s' % data)
_junk, data = wavfile.read(data)
data_tr = np.transpose(data)
data = data_tr / 32768.
elif not isinstance(data, np.ndarray):
data = np.array(data).astype(float)
return _rms(data)
class SoundFormatNotSupported(Exception):
"""Class to report an unsupported sound format"""
class SoundFileError(Exception):
"""Class to report sound file failed to load"""
class MicrophoneError(Exception):
"""Class to report a microphone error"""
class _GSQueryThread(threading.Thread):
"""Internal thread class to send a sound file to Google, stash the response.
"""
def __init__(self, request):
threading.Thread.__init__(self, None, 'GoogleSpeechQuery', None)
# request is a previously established urllib2.request() obj, namely:
# request = urllib2.Request(url, audio, header) at end of
# Speech2Text.__init__
self.request = request
# set vars and flags:
self.t0 = None
self.response = None
self.duration = None
self.stopflag = False
self.running = False
self.timedout = False
self._reset()
def _reset(self):
# whether run() has been started, not thread start():
self.started = False
# initialize data fields that will be exposed:
self.confidence = None
self.json = None
self.raw = ''
self.word = ''
self.detailed = ''
self.words = []
def elapsed(self):
# report duration depending on the state of the thread:
if self.started is False:
return None
elif self.running:
return core.getTime() - self.t0
else: # whether timed-out or not:
return self.duration
def _unpackRaw(self):
# parse raw url response from google, expose via data fields (see
# _reset):
if type(self.raw) != str:
self.json = json.load(self.raw)
else:
self._reset()
self.status = 'FAILED'
self.stop()
return
self.status = self.json['status']
report = []
for utter_list in self.json["hypotheses"]:
for k in utter_list:
report.append("%-10s : %s" % (k, utter_list[k]))
if k == 'confidence':
self.conf = self.confidence = float(utter_list[k])
for key in self.json:
if key != "hypotheses":
report.append("%-10s : %s" % (key, self.json[key]))
self.detailed = '\n'.join(report)
self.words = tuple([line.split(':')[1].lstrip() for line in report
if line.startswith('utterance')])
if len(self.words):
self.word = self.words[0]
else:
self.word = ''
def run(self):
self.t0 = core.getTime() # before .running goes True
self.running = True
self.started = True
self.duration = 0
try:
self.raw = urllib.request.urlopen(self.request)
except Exception: # pragma: no cover
# yeah, its the internet, stuff happens
# maybe temporary HTTPError: HTTP Error 502: Bad Gateway
try:
self.raw = urllib.request.urlopen(self.request)
except Exception as ex: # or maybe a dropped connection, etc
logging.error(str(ex))
self.running = False # proceeds as if "timedout"
self.duration = core.getTime() - self.t0
# if no one called .stop() in the meantime, unpack the data:
if self.running:
self._unpackRaw()
self.running = False
self.timedout = False
else:
self.timedout = True
def stop(self):
self.running = False
class Speech2Text():
"""Class for speech-recognition (voice to text), using Google's public API.
Google's speech API is currently free to use, and seems to work well.
Intended for within-experiment processing (near real-time, 1-2s delayed), in which
it's often important to skip a slow or failed response, and not wait a long time;
`BatchSpeech2Text()` reverses these priorities.
It is possible (and
perhaps even likely) that Google will start charging for usage. In addition, they
can change the interface at any time, including in the middle of an experiment.
(If so, please post to the user list and we'll try to develop a fix, but
there could still be some downtime.) Presumably, confidential
or otherwise sensitive voice data should not be sent to google.
:Note:
Requires that flac is installed (free download from https://xiph.org/flac/download.html).
If you download and install flac, but get an error that flac is missing,
try setting the full path to flac in preferences -> general -> flac.
:Usage:
a) Always import and make an object; no data are available yet::
from microphone import Speech2Text
gs = Speech2Text('speech_clip.wav') # set-up only
b) Then, either: Initiate a query and wait for response from google (or until the time-out limit is reached). This is "blocking" mode, and is the easiest to do::
resp = gs.getResponse() # execution blocks here
print(resp.word, resp.confidence)
c) Or instead (advanced usage): Initiate a query, but do not wait for a response ("thread" mode: no blocking, no timeout, more control). `running` will change to False when a response is received (or hang indefinitely if something goes wrong--so you might want to implement a time-out as well)::
resp = gs.getThread() # returns immediately
while resp.running:
print('.',) # displays dots while waiting
sys.stdout.flush()
core.wait(0.1)
print(resp.words)
d) Options: Set-up with a different language for the same speech clip; you'll get a different response (possibly having UTF-8 characters)::
gs = Speech2Text('speech_clip.wav', lang='ja-JP')
resp = gs.getResponse()
:Example:
See Coder demos / input / speech_recognition.py
:Known limitations:
Availability is subject to the whims of google. Any changes google
makes along the way could either cause complete failure (disruptive),
or could cause slightly different results to be obtained (without it being
readily obvious that something had changed). For this reason,
it's probably a good idea to re-run speech samples through `Speech2Text` at the end of
a study; see `BatchSpeech2Text()`.
:Author: Jeremy R. Gray, with thanks to Lefteris Zafiris for his help
and excellent command-line perl script at https://github.com/zaf/asterisk-speech-recog (GPLv2)
"""
def __init__(self, filename,
lang='en-US',
timeout=10,
samplingrate=16000,
pro_filter=2,
level=0):
"""
:Parameters:
`filename` : <required>
name of the speech file (.flac, .wav, or .spx) to process. wav files will be
converted to flac, and for this to work you need to have flac (as an
executable). spx format is speex-with-headerbyte (for Google).
`lang` :
the presumed language of the speaker, as a locale code; default 'en-US'
`timeout` :
seconds to wait before giving up, default 10
`samplingrate` :
the sampling rate of the speech clip in Hz, either 16000 or 8000. You can
record at a higher rate, and then down-sample to 16000 for speech
recognition. `file` is the down-sampled file, not the original.
the sampling rate is auto-detected for .wav files.
`pro_filter` :
profanity filter level; default 2 (e.g., f***)
`level` :
flac compression level (0 less compression but fastest)
"""
# set up some key parameters:
results = 5 # how many words wanted
self.timeout = timeout
useragent = PSYCHOPY_USERAGENT
host = "www.google.com/speech-api/v1/recognize"
# determine file type, convert wav to flac if needed:
if not os.path.isfile(filename):
raise IOError("Cannot find file: %s" % filename)
ext = os.path.splitext(filename)[1]
if ext not in ['.flac', '.wav']:
raise SoundFormatNotSupported("Unsupported filetype: %s\n" % ext)
if ext == '.wav':
_junk, samplingrate = readWavFile(filename)
if samplingrate not in [16000, 8000]:
raise SoundFormatNotSupported(
'Speech2Text sample rate must be 16000 or 8000 Hz')
self.filename = filename
if ext == ".flac":
filetype = "x-flac"
elif ext == ".wav": # convert to .flac
filetype = "x-flac"
filename = wav2flac(filename, level=level) # opt for speed
logging.info("Loading: %s as %s, audio/%s" %
(self.filename, lang, filetype))
# occasional error; core.wait(.1) is not always enough; better slow
# than fail
c = 0
while not os.path.isfile(filename) and c < 10:
core.wait(.1, 0)
c += 1
audio = open(filename, 'rb').read()
if ext == '.wav' and filename.endswith('.flac'):
try:
os.remove(filename)
except Exception:
pass
# urllib2 makes no attempt to validate the server certificate. here's an idea:
# http://thejosephturner.com/blog/2011/03/19/https-certificate-verification-in-python-with-urllib2/
# set up the https request:
url = 'https://' + host + '?xjerr=1&' +\
'client=psychopy3&' +\
'lang=' + lang + '&'\
'pfilter=%d' % pro_filter + '&'\
'maxresults=%d' % results
header = {'Content-Type': 'audio/%s; rate=%d' % (filetype, samplingrate),
'User-Agent': useragent}
web.requireInternetAccess() # needed to access google's speech API
try:
self.request = urllib.request.Request(url, audio, header)
except Exception: # pragma: no cover
# try again before accepting defeat
logging.info("https request failed. %s, %s. trying again..." %
(filename, self.filename))
core.wait(0.2, 0)
self.request = urllib.request.Request(url, audio, header)
def getThread(self):
"""Send a query to Google using a new thread, no blocking or timeout.
Returns a thread which will **eventually** (not immediately) have the speech
data in its namespace; see getResponse. In theory, you could have several
threads going simultaneously (almost all the time is spent waiting for a
response), rather than doing them sequentially (not tested).
"""
gsqthread = _GSQueryThread(self.request)
gsqthread.start()
logging.info("Sending speech-recognition https request to google")
gsqthread.file = self.filename
while not gsqthread.running:
# can return too quickly if thread is slow to start
core.wait(0.001, 0)
return gsqthread # word and time data will eventually be in the namespace
def getResponse(self):
"""Calls `getThread()`, and then polls the thread until there's a response.
Will time-out if no response comes within `timeout` seconds. Returns an
object having the speech data in its namespace. If there's no match,
generally the values will be equivalent to `None` (e.g., an empty string).
If you do `resp = getResponse()`, you'll be able to access the data
in several ways:
`resp.word` :
the best match, i.e., the most probably word, or `None`
`resp.confidence` :
Google's confidence about `.word`, ranging 0 to 1
`resp.words` :
tuple of up to 5 guesses; so `.word` == `.words[0]`
`resp.raw` :
the raw response from Google (just a string)
`resp.json` :
a parsed version of raw, from `json.load(raw)`
"""
gsqthread = self.getThread()
while gsqthread.elapsed() < self.timeout:
# don't need precise timing to poll an http connection
core.wait(0.05, 0)
if not gsqthread.running:
break
if gsqthread.running: # timed out
gsqthread.status = 408 # same as http code
return gsqthread # word and time data are already in the namespace
class BatchSpeech2Text(list):
def __init__(self, files, threads=3, verbose=False):
"""Like `Speech2Text()`, but takes a list of sound files or a directory name to search
for matching sound files, and returns a list of `(filename, response)` tuples.
`response`'s are described in `Speech2Text.getResponse()`.
Can use up to 5 concurrent threads. Intended for
post-experiment processing of multiple files, in which waiting for a slow response
is not a problem (better to get the data).
If `files` is a string, it will be used as a directory name for glob
(matching all `*.wav`, `*.flac`, and `*.spx` files).
There's currently no re-try on http error."""
list.__init__(self) # [ (file1, resp1), (file2, resp2), ...]
maxThreads = min(threads, 5) # I get http errors with 6
self.timeout = 30
if type(files) == str and os.path.isdir(files):
f = glob.glob(os.path.join(files, '*.wav'))
f += glob.glob(os.path.join(files, '*.flac'))
f += glob.glob(os.path.join(files, '*.spx'))
fileList = f
else:
fileList = list(files)
web.requireInternetAccess() # needed to access google's speech API
for i, filename in enumerate(fileList):
gs = Speech2Text(filename, level=5)
self.append((filename, gs.getThread())) # tuple
if verbose:
logging.info("%i %s" % (i, filename))
while self._activeCount() >= maxThreads:
core.wait(.1, 0) # idle at max count
def _activeCount(self):
# self is a list of (name, thread) tuples; count active threads
count = len(
[f for f, t in self if t.running and t.elapsed() <= self.timeout])
return count
def _getFlacPath(path=None):
"""Return a path to flac binary. Log flac version (if flac was found).
"""
global FLAC_PATH
if FLAC_PATH is None:
if path:
FLAC_PATH = path
elif prefs.general['flac']:
FLAC_PATH = prefs.general['flac']
else:
FLAC_PATH = 'flac'
try:
version, se = core.shellCall([FLAC_PATH, '-v'], stderr=True)
if se:
raise MicrophoneError
except Exception:
msg = ("flac not installed (or wrong path in prefs); "
"download from https://xiph.org/flac/download.html")
logging.error(msg)
raise MicrophoneError(msg)
logging.info('Using ' + version)
return FLAC_PATH
[docs]def flac2wav(path, keep=True):
"""Uncompress: convert .flac file (on disk) to .wav format (new file).
If `path` is a directory name, convert all .flac files in the directory.
`keep` to retain the original .flac file(s), default `True`.
"""
flac_path = _getFlacPath()
flac_files = []
path = pathToString(path)
if path.endswith('.flac'):
flac_files = [path]
elif type(path) == str and os.path.isdir(path):
flac_files = glob.glob(os.path.join(path, '*.flac'))
if len(flac_files) == 0:
logging.warn('failed to find .flac file(s) from %s' % path)
return None
wav_files = []
for flacfile in flac_files:
wavname = flacfile.strip('.flac') + '.wav'
flac_cmd = [flac_path, "-d", "--totally-silent",
"-f", "-o", wavname, flacfile]
_junk, se = core.shellCall(flac_cmd, stderr=True)
if se:
logging.error(se)
if not keep:
os.unlink(flacfile)
wav_files.append(wavname)
if len(wav_files) == 1:
return wav_files[0]
else:
return wav_files
[docs]def wav2flac(path, keep=True, level=5):
"""Lossless compression: convert .wav file (on disk) to .flac format.
If `path` is a directory name, convert all .wav files in the directory.
`keep` to retain the original .wav file(s), default `True`.
`level` is compression level: 0 is fastest but larger,
8 is slightly smaller but much slower.
"""
flac_path = _getFlacPath()
wav_files = []
path = pathToString(path)
if path.endswith('.wav'):
wav_files = [path]
elif type(path) == str and os.path.isdir(path):
wav_files = glob.glob(os.path.join(path, '*.wav'))
if len(wav_files) == 0:
logging.warn('failed to find .wav file(s) from %s' % path)
return None
flac_files = []
for wavname in wav_files:
flacfile = wavname.replace('.wav', '.flac')
flac_cmd = [flac_path, "-%d" % level, "-f",
"--totally-silent", "-o", flacfile, wavname]
_junk, se = core.shellCall(flac_cmd, stderr=True)
if se or not os.path.isfile(flacfile): # just try again
# ~2% incidence when recording for 1s, 650+ trials
# never got two in a row; core.wait() does not help
logging.warn('Failed to convert to .flac; trying again')
_junk, se = core.shellCall(flac_cmd, stderr=True)
if se:
logging.error(se)
if not keep:
os.unlink(wavname)
flac_files.append(flacfile)
if len(wav_files) == 1:
return flac_files[0]
else:
return flac_files
[docs]def switchOn(sampleRate=48000, outputDevice=None, bufferSize=None):
"""You need to switch on the microphone before use, which can take
several seconds. The only time you can specify the sample rate (in Hz)
is during switchOn().
Considerations on the default sample rate 48kHz::
DVD or video = 48,000
CD-quality = 44,100 / 24 bit
human hearing: ~15,000 (adult); children & young adult higher
human speech: 100-8,000 (useful for telephone: 100-3,300)
Google speech API: 16,000 or 8,000 only
Nyquist frequency: twice the highest rate, good to oversample a bit
pyo's downsamp() function can reduce 48,000 to 16,000 in about 0.02s
(uses integer steps sizes). So recording at 48kHz will generate
high-quality archival data, and permit easy downsampling.
outputDevice, bufferSize: set these parameters on the pyoSndServer
before booting; None means use pyo's default values
"""
# imports pyo, creates sound.pyoSndServer using sound.initPyo() if not yet
# created
t0 = core.getTime()
if prefs.hardware['audioLib'][0] != 'pyo':
logging.warning("Starting Microphone but sound lib preference is set to be {}. "
"Clashes might occur since 'pyo' is not "
"preferred lib but is needed for Microphone"
.format(prefs.hardware['audioLib']))
try:
global pyo
import pyo
global haveMic
haveMic = True
except ImportError: # pragma: no cover
msg = ('Microphone class not available, needs pyo; '
'see http://ajaxsoundstudio.com/software/pyo/')
logging.error(msg)
raise ImportError(msg)
if pyo.serverCreated():
backend_pyo.pyoSndServer.setSamplingRate(sampleRate)
else:
# backend_pyo.init() will create pyoSndServer. We want there only
# ever to be one server
# will automatically use duplex=1 and stereo if poss
backend_pyo.init(rate=sampleRate)
if outputDevice:
backend_pyo.pyoSndServer.setOutputDevice(outputDevice)
if bufferSize:
backend_pyo.pyoSndServer.setBufferSize(bufferSize)
logging.exp('%s: switch on (%dhz) took %.3fs' %
(__file__.strip('.py'), sampleRate, core.getTime() - t0))
def switchOff():
"""(Not needed as of v1.76.00; kept for backwards compatibility only.)
"""
logging.info("deprecated: microphone.switchOff() is no longer needed.")